Open questions session, Thursday

Scribe: Alex Fink

March 2023

1 Chris Eur

Question 1. Fact: if P is a lattice generalized permutahedron, then $P \cap\left([0,1]^{n}+\right.$ $v)$ is also, for $v \in \mathbb{Z}^{n}$. Tile \mathbb{R}^{n} by cubes; this gives a decomposition of P into translates of matroid polytopes. Q: Do this as explicitly as possible for graphical zonotopes,

$$
Z_{G}=\sum_{\left(v_{1}, v_{2}\right) \in G} \operatorname{Conv}\left(e_{v_{1}}, e_{v_{2}}\right) \subset \mathbb{R}^{V(G)}
$$

Alex: guess: strict gammoids. A strict gammoid is a matroid defined from a directed graph G with ground set $V(G)$, and a distinguished basis $B \subseteq V(G)$; the bases are all sets of vertices that have a family of vertex-disjoint paths (possibly length zero) from B. [Revisiting this as I typed this document: no, they're gammoids but not strict, because the paths are only edge-disjoint, not vertex-disjoint.]

Question 2. Let $\pi: \mathbb{R}^{2 n} \xrightarrow{\left[I_{n}-I_{n}\right]} \mathbb{R}^{n}$. A delta-matroid D is envelopable if there exists a matroid M on $[2 n]$ such that $\pi(P(M))=P(D)$, possibly with scaling depending on conventions. Not all delta-matroids are envelopable.
Q. Are all even delta-matroids envelopable? Are all delta-matroids with the strong symmetric exchange property envelopable?

Matt L: Matroids are supposed to generalize linear spaces; delta-matroids, isotropic linear spaces. Every isotropic linear space is a linear space. Envelopability is the corresponding property when not representable.

David: There are formulae which write Plücker coordinates in terms of spinor coordinates.

Matt B, Chris: This doesn't work. The coordinates aren't monomial.
Matt L: Felipe gives an isotropic tropical linear spaces with multiple extensions to a tropical linear space. There's also in the literature an example of one with no extensions.

The definition of strong symmetric exchange meant here is one that does not require that D is even, as follows. Given two vertices $e_{B_{1}}, e_{B_{2}}$ of $P(D)$, suppose that the usual exchange relation for delta-matroids requires there to exist a vertex $e_{B_{1}}+v$. Then strong symmetric exchange also requires $e_{B_{2}}-v$.

CE: The book of Borovik, Gelfand and White has an incorrect exercise on this.

Matt L: Bouchet's paper assumes that delta-matroids are even.

2 Oliver Lorscheid, interjecting

Linear spaces satisfy not just the usual Plücker relations but also multi-exchange relations: given bases B, B^{\prime} and a set $A \subset B \backslash B^{\prime}$ of size l, there exists a set $A^{\prime} \subset B^{\prime} \backslash B$ of size l such that $B \backslash A \cap A^{\prime}$ and $B^{\prime} \backslash A^{\prime} \cap A$ are bases. It is also true that the single exchange relations implies the multi-exchange relations for matroids, i.e. over the Krasner hyperfield \mathbb{K}. Is the same true for all idylls?

Matt B:

1. To define the Grassmannian as a scheme over \mathbb{Z}, one needs to use all multi-exchange relations, not just the single exchanges.
2. The proof for \mathbb{K}-matroids can be done slickly using Edmonds' matroid intersection. I forget what paper this is in.

3 Chris Eur, resuming

Question 3. Consider

$$
A^{\bullet}\left(X_{E}\right)[\delta] /\left\langle\delta^{r}+\delta^{r-1} c_{1}\left(\mathcal{S}_{M}\right)+\cdots+c_{r}\left(\mathcal{S}_{M}\right)\right\rangle
$$

The generator of the ideal is called a Chern polynomial. If M is realized by a linear space L, then this ring $\simeq A^{\bullet}\left(\mathbb{P}\left(\mathcal{S}_{L}\right)\right)$.

Q: Do Hard Lefschetz and Hodge-Riemann hold for this ring with $l=c \delta+a$, for a ample on X_{E} ?

Nick: Are there combinatorially meaningful consequences? CE: We could remove dependence on $[\mathrm{AHK}]$, $[\mathrm{ADH}]$ from the Tutte formulae in [BEST].

June: Morally this should be related to the bipermutohedral fan for $\Sigma_{X_{E}} \times$ Σ_{M}, as a blowdown. See the book "Lefschetz Properties" by Numata, Watanabe, and others.

Matt L: By a deformation argument, taking c very small, Hard Lefschetz implies Hodge-Riemann. My conclusion from looking at the "Lefschetz Properties" book is that their techniques are ineffective: you get no control over the cone.

4 Matt Larson

Conjecture. $T_{M}(x+1, x+1)$ has log-concave coefficients for all matroids M. True for $|E(M)| \leq 9$. Fact:

$$
T_{M}(x+1, x+1)=\sum_{u \in\{0,1\}^{n}} x^{d(P(M), u)},
$$

where d is the lattice distance.
Andy: Is this known for representable matroids? ML: No.
Various people: Is this related to Merino-Welsh? ML: Not that I know.
ML: For even delta-matroids realizable in characteristic 2, this is a famous conjecture on the interlace polynomial. It's false for general delta-matroids.

Matt B: Is $T_{M}(x+1, y+1)$ Lorentzian? ML: I checked lots of strengthenings and found them false. I don't remember if I checked this one.

5 Andy Berget

Conjecture. The nunmber of set partitions of $E(M)$ into independent sets of M of sizes $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{l}, \lambda \vdash|E(M)|$, is at least the Kostka number $K_{\lambda, \rho^{t}}$, where $\rho=\rho(M): r_{1} \geq r_{2} \geq \cdots$ is the rank partition of M, determined by the condition that $r_{1}+\cdots+r_{k}=$ size of the largest union of k independent sets of M, i.e. the rank of the k-fold matroid union of M. (Assume M is loopless.)

Motivation. Pick a realisation $v_{1}, v_{2}, \ldots, v_{+} n \in \mathbb{C}^{r}$ of M. Form

$$
\mathfrak{S}(v)=\operatorname{span}\left(v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(n)} \mid \sigma \in \mathfrak{S}_{n}\right) \subset\left(\mathbb{C}^{r}\right)^{\otimes n}
$$

This is an \mathfrak{S}_{n}-representation, so it decomposes into irreducibles, indexed by partitions. It's a consequence of [Berget-Fink] that the multiplicity of each irrep is a valuative matroid invariant.

Theorem. The irrep indexed by λ appears iff $\lambda \unrhd \rho^{\mathrm{t}}$, where \unrhd is dominance order.

Theorem. The multiplicity of $\lambda=$ a hook gives the coefficients of $\bar{\chi}_{M}$ up to sign.

The Frobenius character of a \mathfrak{S}_{n}-representation is its character written as a symmetric function.

Variant conjecture. The Frobenius character of $\mathfrak{S}(V)-e_{\rho^{t}}$ is Schur-positive. Here $e_{\rho^{t}}$ is an elementary symmetric function. The Gröbner degeneration $X(v) \rightsquigarrow$ in $X(v)$ from [Berget-Fink] should have a matroidal extension, and the Frobenius character should be computable from it.

6 Johannes Rau

This question is based on mork in progress by Draisma, Pendavingh, Rau, Yuen, and a student of Draisma.

Given a matroid M, we have inequalities between three numbers:

$$
\begin{aligned}
& \quad d:=\operatorname{rk}(M) \\
& \leq \min \left\{2 \operatorname{dim}\left(\Sigma_{M}+R\right)-\operatorname{dim} R: R \text { a rational subspace of } \mathbb{R}^{n}\right\} \\
& \leq \min \left\{\sum\left(2 \operatorname{rk}_{M}\left(P_{i}\right)-1\right): P_{1} \amalg \cdots \amalg P_{k}=E\right\} .
\end{aligned}
$$

The third number is bounded above by $\min \{n, 2 d-1\}$. The third number is the second specialized to R being a subspace in the braid arrangement. For M realizable over \mathbb{C} by a subspace V, the second and third agree and both equal $\operatorname{dim}(\log (V))$.

Q: Are the second and thord always equal?
Q: Compute these three numbers for the restriction of M to each set $S \subset$ $E(M)$, defining set functions $f_{1}(S), f_{2}(S), f_{3}(S)$. Is f_{2} a matroid rank function? f_{3} ?

Q: Give an interpretation of f_{3}.

7 Federico Ardila

$T_{K_{n}}(1,-1)=A_{n-1}$, the number of alternating i.e. up-down permutations of $n-1$. The only proof I know is computing generating functions of both sides. Give a better explanation.

Eric Katz: connections to [BST]?

