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Introduction, Main Results

· First order Poincaré inequality: measures the closeness of a random
variable F to its mean.

· Second order Poincaré inequality: measures the closeness of F to a
Gaussian r.v., with distance given by some metric on the space of
distribution functions.

· Last, Peccati, Schulte (2016): Normal approximation on the Poisson
space: Mehler’s formula, second order Poincaré inequalities and
stabilization, PTRF 165.
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Introduction: Poisson functionals

· η a Poisson process over (X,F) with intensity measure λ; thus |η ∩A| is
Poisson distributed with parameter λ(A), A ∈ F .

· N : space of all σ-finite counting measures on X, equipped with σ-field
generated by mappings ν 7→ ν(A), A ∈ F .

· F is a Poisson functional if there is measurable map f : N→ R such
that F = f(η) a.s.

· Difference operators: DxF := f(η + δx)− f(η).

· F belongs to the domain of difference operator, written F ∈ DomD, if
EF 2 <∞ and

∫
X E (DxF )2λ(dx) <∞.

· D2
x,yF := Dx(DyF ) := f(η + δx + δx)− f(η + δx)− f(η + δy) + f(η).
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Introduction

· First order Poincaré inequality:

VarF ≤
∫
X
E (DxF )2λ(dx).

· First and second order difference operators control the closeness to
Gaussianity.

· We will be interested in the behavior of a vector

F = (F1, ..., Fm), m ∈ N,

of Poisson functionals. We want to compare F with an m-dimensional
centered Gaussian vector NΣ with covariance matrix Σ ∈ Rm×m.

· We are not only interested in the weak convergence of F to NΣ, but in
quantitative bounds for the proximity between F and NΣ.
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Three distances between m-dimensional vectors

(i) H(2)
m : C2-functions h : Rm → R such that

|h(x)− h(y)| ≤ ||x− y||, x, y ∈ Rm,

sup
x∈Rm

||Hess h(x)||op ≤ 1.

Given m-dimensional random vectors Y,Z we put

d2(Y,Z) := sup
h∈H(2)

m

|Eh(Y )− Eh(Z)|

if E ||Y ||,E ||Z|| <∞.
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Three distances between m-dimensional vectors

(ii) H(3)
m : C3-functions h : Rm → R such that absolute values of the

second and third partial derivatives are bounded by 1.

Given m-dimensional random vectors Y, Z we put

d3(Y,Z) := sup
h∈H(3)

m

|Eh(Y )− Eh(Z)|

if E ||Y ||2,E ||Z||2 <∞.

(iii)
dconvex(Y,Z) := sup

h∈Im
|Eh(Y )− Eh(Z)|,

where Im is the set of indicators of convex sets in Rm.
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Main Results

· Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals
F1, . . . , Fm ∈ DomD with EFi = 0, i ∈ {1, . . . ,m}. Define

γ1 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3Fi)
2(D2

x2,x3Fi)
2
)1/2

×
(
E (Dx1Fj)

2(Dx2Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ2 :=

( m∑
i,j=1

∫
X3

(
E (D2

x1,x3Fi)
2(D2

x2,x3Fi)
2
)1/2

×
(
E (D2

x1,x3Fj)
2(D2

x2,x3Fj)
2
)1/2

λ3(d(x1, x2, x3))

)1/2

γ3 :=
m∑
i=1

∫
X
E |DxFi|3 λ(dx).
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Main results

Theorem (Schulte and Y) Let F = (F1, . . . , Fm), m ∈ N, be a vector of
Poisson functionals F1, . . . , Fm ∈ DomD with EFi = 0, i ∈ {1, . . . ,m}.
Let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive definite. Then

d3(F,NΣ) ≤ m

2

m∑
i,j=1

|σij − Cov(Fi, Fj)|+mγ1 +
m

2
γ2 +

m2

4
γ3

and

d2(F,NΣ) ≤ ‖Σ−1‖op‖Σ‖1/2op

m∑
i,j=1

|σij − Cov(Fi, Fj)|+ 2‖Σ−1‖op‖Σ‖1/2op γ1

+ ‖Σ−1‖op‖Σ‖1/2op γ2 +

√
2πm2

8
‖Σ−1‖3/2op ‖Σ‖opγ3.
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Literature

· Multivariate CLTs for vectors with dependency structures: Raic̆ (2004),
Goldstein and Rinott (2005), Chen, Goldstein, and Shao (2011), Fang and
Röllin (2015), Fang (2016), Reinert and Röllin (2009), Fang (2011), Fang
and Koike (2021).

· Peccati and Zheng (2010): bounds in terms of inverse O-U operator and
difference operator D.

· Hug, Last, Schulte (2016): establish rates with respect to d3 which
depend on knowledge of Wiener-Itô chaos expansion.
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Main results

For a vector F = (F1, . . . , Fm), m ∈ N, of Poisson functionals with
EFi = 0, i ∈ {1, . . . ,m}, we use the abbreviations

DxF := (DxF1, . . . , DxFm) for x ∈ X,

D2
x,yF := (D2

x,yF1, . . . , D
2
x,yFm) for x, y ∈ X.

γ4 :=

( m∑
i,j=1

∫
X
E (DxFi)

4 λ(dx)

+ 6

∫
X2

(
E (D2

x,yFi)
4
)1/2(E (DxFj)

4
)1/2

λ2(d(x, y))

+ 3

∫
X2

(
E (D2

x,yFi)
4
)1/2(E (D2

x,yFj)
4
)1/2

λ2(d(x, y))

)1/2

.
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Main results: CLTs for Poisson functionals

γ5 :=

(
3

m∑
i,j=1

∫
X3

(
E1{D2

x1,yF 6= 0, D2
x2,yF 6= 0}

(
‖Dx1F‖+ ‖D2

x1,yF‖
)3/4

×
(
‖Dx2F‖+ ‖D2

x2,yF‖
)3/4|Dx1Fi|3/2 |Dx2Fi|3/2

)2/3
×
(
E |Dx1Fj |3|Dx2Fj |3

)1/3
λ3(d(x1, x2, y))

+

m∑
i,j=1

∫
X3

(
E
(
‖Dx1F‖+ ‖D2

x1,yF‖
)3/2(‖Dx2F‖+ ‖D2

x2,yF‖
)3/2)1/3

×
(

45

2

(
E |D2

x1,yFi|
3|D2

x2,yFi|
3
)1/3(E |Dx1Fj |3|Dx2Fj)

3
)1/3

+
9

2

(
E |D2

x1,yFi|
3 |D2

x2,yFi|
3
)1/3(E |D2

x1,yFj |
3|D2

x2,yFj |
3
)1/3)

λ3(d(x1, x2, y))

)1/3

.
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Main results: CLTs for Poisson functionals

γ4
6 = 3

m∑
i,j=1

∫
X3

(
E1{D2

x1,yF 6= 0, D2
x2,yF 6= 0}

(
‖Dx1F‖2 + ‖D2

x1,yF‖
2
)3/4

×
(
‖Dx2F‖2 + ‖D2

x2,yF‖
2
)3/4|Dx1Fi|3/2 |Dx2Fi|3/2

)2/3
×
(
E |Dx1Fj |3|Dx2Fj |3

)1/3
λ3(d(x1, x2, y))

+

m∑
i,j=1

∫
X3

(
E
(
‖Dx1F‖2 + ‖D2

x1,yF‖
2
)3/2(‖Dx2F‖2 + ‖D2

x2,yF‖
2
)3/2)1/3

×
(

135

8

(
E |D2

x1,yFi|
3|D2

x2,yFi|
3
)1/3(E |Dx1Fj |3|Dx2Fj |3

)1/3
+

27

8

(
E |D2

x1,yFi|
3 |D2

x2,yFi|
3
)1/3(E |D2

x1,yFj |
3|D2

x2,yFj |
3
)1/3)

λ3(d(x1, x2, y)).
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Main results: CLTs for Poisson functionals

For a positive definite matrix Σ ∈ Rm×m let Σ1/2 be the positive definite
matrix in Rm×m such that Σ1/2Σ1/2 = Σ and let Σ−1/2 := (Σ1/2)−1.

Theorem (Schulte + Y). Let F = (F1, . . . , Fm), m ∈ N, be a vector of
Poisson functionals F1, . . . , Fm ∈ DomD with EFi = 0, i ∈ {1, . . . ,m},
and let Σ = (σij)i,j∈{1,...,m} ∈ Rm×m be positive definite. Then

dconvex(F,NΣ) ≤ 941m5 max{‖Σ−1/2‖op, ‖Σ−1/2‖3op}

×max

{ m∑
i,j=1

|σij − Cov(Fi, Fj)|, γ1, γ2, γ3, γ4, γ5, γ6

}
.
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Main results ... remarks

(i) For each distance d2, d3, dconvex the bounds are of the same optimal
order. It is more delicate to deal with non-smooth test functions when
using Stein’s method for normal approximation.

(ii) No logarithmic terms.

(iii) Existing results often require a.s. boundedness assumptions. In our
set-up this would require

sup
x∈X
|Dx(Fi)| ≤ C a.s., i ∈ {1, ...,m}.
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Ingredients of proof for dconvex

· 1. Stein: Let F = (F1, ..., Fm) be a vector of Poisson functionals; let
Σ ∈ Rm×m be positive definite; h : Rm → R.
· To assess the difference Eh(F )− Eh(NΣ), where h belongs to a class of
test functions, it is enough to assess the difference

E
m∑
i=1

(
Fi
∂fh
∂yi

(F )− ∂2fh
∂y2

i

(F )

)
,

where fh : Rm → R solves the Stein equation:

m∑
i=1

yi
∂f

∂yi
(y)−

m∑
i,j=1

σi,j
∂2f

∂yi∂yj
(y) = h(y)− Eh(NΣ), y ∈ Rm.

· For h smooth one can give a formula for fh, but for non-smooth h (e.g.
indicators) it is unclear how to proceed.
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2. Smoothing: Given t ∈ (0, 1), and a test function h, we introduce its
smoothed version

ht,Σ(y) :=

∫
Rm

h(
√
tz +

√
1− ty)φΣ(z)dz,

where φΣ(z) is the density of NΣ.
· Smoothing lemma: Let Im be collection of indicators of convex sets in
Rm

dconvex(F,NΣ) ≤ 4

3
sup
h∈Im

|Eht,Σ(F )− Eht,Σ(NΣ)|+ 20√
2
m

√
t

1− t
.

· This lemma actually holds for any m-dimensional random vector F .

· So it is enough to assess the difference of expectations over the smooth
class of test functions ht,Σ. This is accomplished in the next slide.
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3. Malliavin calculus on Poisson space (Peccati + Zheng) :

|Eht,Σ(F )− Eht,Σ(NΣ)| = |
m∑

i,j=1

σijE
∂2ft,h,Σ
∂yi∂yj

(F ) (∗)

−
m∑
k=1

E
∫
X
Dx

∂ft,h,Σ
∂yk

(F )(−DxL
−1Fk)λ(dx)|.

· Here ft,h,Σ : Rm → R solves the Stein equation for NΣ:

ft,h,Σ(y) :=
1

2

∫ 1

t

1

1− s

∫
Rm

(h(
√
sz+
√

1− sy)−h(z))ϕΣ(z)dzds, y ∈ Rm.

· Now show that an upper bound for rhs of (*) involves terms γ1, ..., γ6

and factors such as | log t|
√
dconvex(F,NΣ) and then choose t

appropriately. This is done as follows....
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4. Good sup norm and L2 bounds on the 2nd derivatives of ft,h,Σ

· Some of the bounding terms for dconvex(F,NΣ) involve√√√√E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

.

· However,

sup
h∈Im

√√√√E
m∑

i,j=1

(
∂2ft,h,Σ
∂yi∂yj

(F )

)2

≤ ||Σ−1||op

(
m| log t|

√
dconvex(F,NΣ) + 24m17/12

)
.

· This gives recursive inequality for dconvex(F,NΣ).

· Combine steps 2, 3, 4 and choose parameter t in the right way.
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Summary so far..

· η a Poisson process over (X,F) with intensity measure λ.

· Let F = (F1, . . . , Fm), m ∈ N, be a vector of Poisson functionals
F1, . . . , Fm ∈ DomD with EFi = 0, i ∈ {1, . . . ,m}.

· We bounded d2(F,NΣ), d3(F,NΣ), dconvex(F,NΣ) in terms of integrated
difference operators and

∑m
i,j=1 |σij − Cov(Fi, Fj)|.

· Are the integrated difference operators easy to evaluate? Same question
for
∑m

i,j=1 |σij − Cov(Fi, Fj)|.

· We show that our general results apply to a large class of Poisson
functionals known as stabilizing Poisson functionals.
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Poisson statistics in geometric probability

· Put X := W ⊂ Rd, d ≥ 2, a fixed measurable set (W is a‘window’).

· Put λ(dx) := sg(x)dx, g : Lip(W )→ R+.
· ηsg, a Poisson point process on W with intensity sg. Thus, for A ⊆W ,
|ηsg ∩A| is Poisson distributed with parameter s

∫
A g(x)dx.

· (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, measurable maps (‘scores’) from W ×N→ R.

· Poisson statistics: H
(i)
s := H

(i)
s (ηsg) :=

∑
x∈ηsg ξ

(i)
s (x, ηsg), 1 ≤ i ≤ m.

· Typically the H
(i)
s describe a global feature of a random structure in

terms of local contributions ξ
(i)
s (x, ηsg), x ∈ ηsg.
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· Poisson statistics: H
(i)
s := H

(i)
s (ηsg) :=

∑
x∈ηsg ξ

(i)
s (x, ηsg), 1 ≤ i ≤ m.

· Goal. Use the announced general results to find rates of multivariate
normal convergence for the m-vector of Poisson functionals:(

H
(1)
s − EH(1)

s√
s

, ...,
H

(m)
s − EH(m)

s√
s

)

as intensity s→∞.

Joe Yukich (joint with Matthias Schulte) (Lehigh University )Multivariate Second Order Poincaré Inequalities for Statistics in Geometric ProbabilityBIRS, Banff, April 13, 2022 21 / 32



Stabilization of scores

· The ith score ξ
(i)
s generates the Poisson statistic

H(i)
s := H(i)

s (ηsg) :=
∑
x∈ηsg

ξ(i)
s (x, ηsg).

· For s ≥ 1 we say that Rs : W ×N→ R+ is a radius of stabilization for

(ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, if for all x ∈W , M∈ N, s ≥ 1, i ∈ {1, ...,m} we

have
ξ(i)
s (x,M) = ξ(i)

s (x,M∩Bd(x,Rs(x,M))).

· Loosely speaking, this says the scores ξ
(i)
s , i ∈ {1, ...,m}, are determined

by data at distance Rs(x,M) from x.
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Exponential stabilization of scores

· We say that (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1 are exponentially stabilizing wrt ηsg

if there are constants Cstab and cstab ∈ (0,∞) such that

P(Rs(x, ηsg) ≥ r) ≤ Cstab exp(−cstabsrd), r ≥ 0, x ∈W, s ≥ 1.

· This says that scores (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1 have spatial dependencies

which decay exponentially fast.

· Idea: Sums of exponentially stabilizing scores should behave like sums of
i.i.d. random variables.

· Stabilization often holds for scores which are locally defined.
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p-moment condition on scores (ξ
(i)
s )s≥1

· We say that (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1, satisfy a p-moment condition, p ≥ 1,

if there is Cp ∈ (0,∞) such that for all i ∈ {1, ...,m}, we have

sup
s∈[1,∞)

sup
x,y∈W

E |ξ(i)
s (x, ηsg ∪ {y})|p ≤ Cp.
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Main results: rates of multivariate normal convergence

· H(i)
s := H

(i)
s (ηsg) :=

∑
x∈ηsg ξ

(i)
s (x, ηsg), s ≥ 1

· Σs: covariance matrix of s−1/2(H
(1)
s , ...,H

(m)
s ). Assume Σs is positive

definite for s ≥ 1.

Theorem (Schulte + Y.) Assume (ξ
(1)
s )s≥1, ..., (ξ

(m)
s )s≥1

(i) are exponentially stabilizing, and
(ii) satisfy the p-moment condition for some p > 6.

Then for d̃ ∈ {d2, d3, dconvex}

d̃

(
(
H

(1)
s − EH(1)

s

s1/2
, ...,

H
(m)
s − EH(m)

s

s1/2
), NΣs

)
≤ C

s1/2
, s ≥ 1. (∗)

· The rate (*) is of correct order for dconvex if at least one of the scores

(ξ
(i)
s )s≥1, i ∈ {1, ...,m} is integer valued and Σs converges to a positive

definite matrix.
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Main results: rates of multivariate normal convergence

· H(i)
s :=

∑
x∈ηsg ξ

(i)
s (x, ηsg), s ≥ 1. H̄

(i)
s := H

(i)
s − EH(i)

s . Given:

Cov(H
(i)
s , H

(j)
s )

s
→ σij , s−1/2(H̄(1)

s , ..., H̄(m)
s )

D−→ NΣ.

· Assume Σ = (σij)1≤i,j≤m is positive definite, ηsg a PPP on W ⊂ Rd.

·Theorem (Schulte + Y.) Assume (ξ
(i)
s )s≥1, 1 ≤ i ≤ m,

(i) are exponentially stabilizing, and
(ii) satisfy the p-moment condition for some p > 6.

Then for d̃ ∈ {d2, d3, dconvex} we have the sharp bound

d̃(s−1/2(H̄(1)
s , ..., H̄(m)

s ), NΣ) ≤ Cs−1/2 + C
m∑

i,j=1

∣∣∣∣∣σij − Cov(H
(i)
s , H

(j)
s )

s

∣∣∣∣∣
≤ Cs−1/d, s ≥ 1.
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Extensions

· (i) replace Poisson functionals by Poisson measures:

µ(i)
s := µ(i)

s (ηsg) :=
∑

x∈ηsg∩Ai

ξ(i)
s (x, ηsg)δx, Ai ⊂W.

· (ii) replace ηsg with a marked Poisson point process, where each Poisson
pt in ηsg carries an independent mark.
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Applications

(i) Multivariate statistics of kNN graph. Let k ∈ N and X ⊂ Rd a
finite point set. For x, y ∈ X , we put an undirected edge between x and y
if x is one of the k nearest neighbors of y and/or y is a k nearest neighbor
of x. Put

H(k)(X ) := sum of lengths of edges in kNN on X .

Theorem. Let ηsg be a Poisson point process on [0, 1]d with intensity sg,
g bounded away from 0 and ∞. Then for all ki ∈ N, 1 ≤ i ≤ m, we have

d̃(s−1/2(H̄(k1)
s (ηsg), ..., H̄

(km)
s (ηsg)), NΣ) ≤ Cs−1/d, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}.
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Applications

(ii) Multivariate statistics for equality of distributions. Let X ⊂ Rd be
a finite point set. Consider the undirected nearest neighbors graph
NNG(X ) on X . With probability πi, 1 ≤ i ≤ m, independently color the
nodes of X with color i. These are ‘marks’.

· Let H(i)(X ) be the number of edges in NNG(X ) which join nodes of
color i, 1 ≤ i ≤ m.

· Theorem. Let ηsg be the above marked Poisson point process on [0, 1]d

with intensity sg, g bounded away from 0 and ∞. We have

d̃(s−1/2(H̄(1)
s (ηsg), ..., H̄

(m)
s (ηsg)), NΣ) ≤ Cs−1/d, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}.

· This vector features in tests for equality of distributions.
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Applications

(iii) Multivariate statistics of random geometric graph. Fix r > 0. Let

X ⊂ Rd be a finite point set. Put N
(i)
s (X ) to be the number of

components of random geometric graph G(s1/dX , s1/dr) of size i.

Theorem. Let ηsg be a Poisson point process on [0, 1]d with intensity sg,
g bounded away from 0 and ∞. When r = ρs−1/d we have for all ij ∈ N,
1 ≤ j ≤ m

d̃(s−1/2(N̄ (i1)
s (ηsg), ..., N̄

(im)
s (ηsg)), NΣ) ≤ Cs−1/d, s ≥ 1,

for d̃ ∈ {d2, d3, dconvex}.
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References

Last, G., Peccati, G. and M. Schulte (2016) Normal approximation on the
Poisson space: Mehler’s formula, second order Poincaré inequalities and
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