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CHARLES STEIN AND PAUL MALLIAVIN

In 2009, together with I. Nourdin, we discov-
ered a way of combining Stein’s method for
probabilistic approximations (Stein, 1972) ...

... with the Malliavin calculus of variations
on a Gaussian space (Malliavin, 1978).

Crucial notion: integration by parts formulae
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WHERE IT ALL STARTED

Initial motivation: quantitative fluc-
tuations of functionals of infinite-
dimensional Gaussian fields, like e.g.
a (fractional) Brownian motion {Xt}.
Key notion: Breuer-Major CLTs.

Typical examples:
? Power variations:

n

∑
i=1
|Xti − Xti−1 |p, n→ ∞;

? Centered empirical moments:∫ T

0

(
Xt −

∫ T

0
Xudu

)m

dt, T → ∞.
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DISTINGUISHED APPLICATIONS/EXTENSION

Level/excursion sets of random fields
on manifolds (Marinucci and Peccati,
2011, Nourdin, Peccati & Rossi, 2017, ...)

Phase transitions in sparse recovery prob-
lems (Goldstein, Nourdin & Peccati, 2014).

Random geometric graphs (Reitzner
& Schulte, 2010, Last, Peccati & Schulte,
2016, Lachièze-Rey, Peccati & Yang, 2022,
Schulte & Yukich, 2021, ...)
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SETTING, I

? Main focus on normal approximations, with usual notation:

• N (µ, σ2) (1-dimensional)

• Nd(a, C) (d-dimensional).

? For m ≥ 1,
gm = (g1, ..., gm)

indicates a vector of i.i.d. N (0, 1) random variables.
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SETTING, II

? We write
W = {Wt : t ∈ [0, 1]}

for a standard Brownian motion on [0, 1]:

• W is Gaussian,
• W0 = 0,
• E[Wt] = 0,
• Cov(Ws, Ws) = s ∧ t,
• W is continuous.

? For all h ∈ L2([0, 1]) (deterministic)

W(h) :=
∫ 1

0
h(s)dWs ∼ N (0, ‖h‖2) (jointly Gaussian)
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THE PROBLEM, I

? Consider a square integrable random variable F = F(W)
such that E[F] = 0, EF2 = 1.

? Goal: compare the distribution of F and that of

Z ∼ N (0, 1).

? Tool: the 1-Wasserstein distance:

W1(F, Z) := inf
A∼F,B∼Z

E|A− B| = sup
h∈Lip(1)

|Eh(F)−Eh(Z)|.

? Remark: the analysis extends to the Kolmogorov, total varia-
tion, bounded Wasserstein (Fortet-Mourier) (...) distances.
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THE PROBLEM, II

? For a smooth g : R→ R, introduce the operator

T g(x) := xg(x)− g′(x)

(adjoint of g 7→ g′ in L2(R, e−x2/2/
√

2π)).

? Stein’s method: W1(F, Z) is actually bounded by a discrep-
ancy:

W1(F, Z) ≤ S(F, T ,G) := sup
g∈G
|E[T g(F)]|,

where G := {g ∈ C1 : ‖g′‖ ≤
√

2/π, ‖g′′‖ ≤ 2}.
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THE PROBLEM, III

? Fix g ∈ G: how to (uniformly) bound∣∣∣E[T g(F)]
∣∣∣ = ∣∣∣E[Fg(F)]−E[g′(F)]

∣∣∣ ?

? Idea: Assume that F = F(W) belongs to the domain of some
Malliavin-type operators.
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THE ORNSTEIN-UHLENBECK SEMIGROUP

? For t ≥ 0 and F = F(W) integrable, set

PtF = PtF(W) := E
[

F(e−tW +
√

1− e−2tW ′)
∣∣∣W],

where W ′ = independent copy of W.

? {Pt : t ≥ 0} = “Ornstein-Uhlenbeck semigroup” (Mehler’s
form).

? One has that

P0F = F and P∞F = E[F].
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SOME FACTS, I

? For n ≥ 1 and a symmetric (deterministic) f ∈ L2([0, 1]n),
define the Wiener-Itô multiple stochastic integral of order
n:

In( f ) := n!
∫ 1

0

∫ t1

0
· · ·

∫ tn−1

0
f (t1, ..., tn)dWtn dWtn−1 · · · dWt1 .

? For t > 0, the eigenspaces of Pt : L2(σ(W))→ L2(σ(W)) are
the spaces {Cn : n ≥ 0} defined as: C0 := R, and

Cn :=
{

In( f ) : f ∈ L2([0, 1]n), symmetric
}

, n ≥ 1.

? Cn := “nth Wiener Chaos of W” (' infinite-dimensional coun-
terpart of Hermite polynomials of degree n)
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SOME FACTS, II

? For every n ≥ 1 and t ≥ 0,

Pt In( f ) = e−nt In( f ), ∀ f ∈ L2([0, 1]n).

? [Wiener Chaos Expansion] for every F ∈ L2(σ(W)), ∃! { fn :
n ≥ 1} such that

F = E[F] +
∞

∑
n=1

In( fn) (in L2).

? As a consequence, for every F ∈ L2(σ(W)),

PtF = E[F] +
∞

∑
n=1

e−nt In( fn).

? Using Itô’s isometry,

EF2 = E2F +
∞

∑
n=1

n!‖ fn‖2.
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SOME FACTS, III

? The generator L of {Pt} is given by

LF = −
∞

∑
n=1

nIn( fn), F ∈ dom L.

? The pseudo-inverse L−1 of L is given by: for all F ∈ L2(σ(W))

L−1F = −
∞

∑
n=1

1
n

In( fn)

? One has that

LL−1F = L−1LF = F−EF.
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MALLIAVIN DERIVATIVES, I

? For F = f (Wt1 , ..., Wtd), ( f smooth) define the Malliavin
derivative of F as

DxF :=
d

∑
i=1

∂

∂xi
f (Wt1 , ..., Wtd)1[0,ti ](x), x ∈ [0, 1].

? The random element DF takes values in L2([0, 1]).
? By density and closability, the definition of D can be ex-

tended to the class

D1,2 :=

{
F : ∑

n
nn!‖ fn‖2 < ∞

}
,

in which case

DxF = ∑
n

nIn−1( fn(x, ·)).
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MALLIAVIN DERIVATIVES, II

? Chain Rule: for ϕ smooth

Dϕ(F1, ..., Fm) =
m

∑
i=1

∂

∂xi
ϕ(F1, ..., Fm)DFi.

? Write δ for the adjoint of D (the “Skorohod integral”). It
verifies: for all u ∈ dom δ and all F ∈ D1,2,

E[Fδ(u)] = E

[∫ 1

0
u(x)DxF dx

]
:= E〈DF, u〉

(“integration by parts”).
? Key relation: F ∈ dom L if F ∈ D1,2 and DF ∈ dom δ, in

which case
LF = −δDF.
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REMARKS

? When W is replaced by gm = (g1, ..., gm) ∼ Nm(0, Im), Malli-
avin operators boil down to familiar objects:

• D f (gm) = ∇ f (gm);

• δ( f1(gm), ..., fm(gm)) = ∑m
i=1 gi fi(gm)−∑i,j

∂
∂xj

fi(gm);

• L = −δ∇ is a second-order differential operator;

• δ = T for m = 1.

? In general, for F, G sufficiently smooth,

〈DF, DG〉 = 1
2
[L(FG)− F LG− G LF] := “Carré du champ”

See: Ledoux, 2012; Azmoodeh, Campese & Poly, 2013; Nourdin,
Peccati & Swan, 2014; Nourdin, Ledoux & Peccati, 2016.
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CRUCIAL COMPUTATION

? For F = F(W) such that EF = 0 and EF2 = 1, we want to
bound ∣∣∣E[T g(F)]

∣∣∣ = ∣∣∣E[Fg(F)]−E[g′(F)]
∣∣∣,

for all g such that |g′| ≤
√

2/π.
? Assume F ∈ D1,2. Then:

E[Fg(F)] = E[LL−1F g(F)] = −E[δ(DL−1F) g(F)]
= −E〈Dg(F), DL−1F〉 = E[g′(F)〈DF,−DL−1F〉].

? Finally, writing HF := 〈DF,−DL−1F〉√
π

2

∣∣∣E[T g(F)]
∣∣∣ ≤ E |1− HF| ≤ Var1/2(HF).
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BASIC BOUND

Let Z ∼ N (0, 1).

Theorem (Nourdin & Peccati, 2009)
Let F = F(W) ∈ D1,2 be such that EF = 0 and EF2 = 1. Then,

W1(F, Z) ≤
√

2
π

Var1/2(〈DF,−DL−1F〉).
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FOURTH MOMENT THEOREM

Let Z ∼ N (0, 1).

Theorem (Nourdin, Peccati & Reinert, 2010)
For q = 2, 3, ..., assume that F ∈ Cq has variance one. Then,

W1(F, Z) ≤
√

2q− 2
3πq

(EF4 −EZ4)

(
=

√
2q− 2
3πq

(EF4 − 3)

)
.

Remark: recovers Nualart & Peccati, 2005.
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SECOND ORDER INEQUALITIES

? The relation

E[Fg(F)] = E[g′(F)〈DF,−DL−1F〉],

is also the crucial identity leading to second order Poincaré
inequalities (Chatterjee, 2007, Nourdin, Peccati & Reinert,
2010).

? In our setting, such a result reads : for a smooth F,

W1(F, Z) . E[‖D2F‖4
op]

1/4E[‖DF‖4]1/4.

? Compare with the usual Poincaré inequality:

Var(F) ≤ E‖DF‖2.
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MULTIDIMENSIONAL EXTENSIONS

? Multidimensional bounds in the 1-Wasserstein distance:
Nourdin, Peccati and Réveillac, 2008. In the convex distance:
Nourdin, Peccati & Yang, 2021.

? Bounds on relative entropy (any dimension): Nourdin, Pec-
cati & Swan, 2014.

? Application to functional inequalities (entropy and trans-
port): Ledoux, Nourdin and Peccati, 2016

? Characterization of convergence on Wiener chaos: Nourdin
and Poly, 2014, and Nourdin, Nualart & Peccati, 2015.
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POISSON MEASURES

? Let (A, A , µ) be a Polish space endowed with a locally finite
Borel measure µ.

? We denote by η a Poisson measure with intensity µ. Recall
that: (i) η(B) ∼ Po(µ(B)), and (ii) ∀B, C ∈ A s.t. B ∩ C = ∅,
η(B) and η(C) are independent.

? Standard arguments yield that η is indeed a random point
measure such that

P
{

η({x}) ∈ {0, 1}, ∀x ∈ A
}
= 1.

? Here, the role of D is played by the “add-one cost operator”

D+F(η) = F(η + δx)− F(η),

(NB: this is not a derivation).
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TYPICAL STATEMENTS

? Peccati, Solé, Utzet & Taqqu, 2010: for Z ∼ N (0, 1) and F
“regular” and such that EF = 0, EF2 = 1

W1(F, Z) .
√

Var(XF) +

(∫
Z
(D+

x F)4µ(dx)
)1/2

,

where XF := −
∫

A D+
x F (D+

x L−1F) µ(dx).
? Second order Poincaré inequalities are available also in this

framework (Last, Peccati & Schulte, 2016): for Z, F as before,

W1(F, Z)2 . E

[∫
(D+

x F)4 µ(dx)
]

+E

[∫
(D+

x F)2 µ(dx)
]
×E

[∫ ∫
(D+

x D+
y F)2 µ(dx)µ(dy)

]
,

yielding that normality arises from “small local contribu-
tions”, and “vanishing second order interactions”.

23 / 27



POT-POURRI

? Fourth moment theorems on the Poisson space: Döbler &
Peccati, 2018; Döbler, Vidotto & Zheng, 2019.

? Second-order inequalities and “geometric stabilization”:
Lachièze-Rey, Schulte & Yukich, 2017; Schulte & Yukich,
2018-2021 (multidimensional convex distance).

? Geometric stabilization without Poincaré: Lachièze-Rey,
Peccati & Yang, 2022

? Stable convergence on the Poisson space: Herry, 2021.
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TWO BOOKS (2012 & 2016)
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A WEBPAGE

https://sites.google.com/site/malliavinstein
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FINAL WORDS

THANK YOU!
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