High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation

Jimmy Ba¹, Murat A. Erdogdu¹, Taiji Suzuki², Zhichao Wang³, Denny Wu¹, Greg Yang⁴

¹University of Toronto and Vector Institute ²University of Tokyo and RIKEN AIP ³University of California, San Diego ⁴Microsoft Research AI

Introduction

• [BES+22] Ba, Erdogdu, Suzuki, Wang, Wu, Yang. "High-dimensional asymptotics of feature learning: how one gradient step improves the representation".

Jimmy Ba

Murat A. Erdogdu

Taiji Suzuki

Zhichao Wang

Denny Wu

Greg Yang

Introduction: Two-layer Neural Network (NN)

Width-N Two-layer NN

$$f_{\mathsf{NN}}({\pmb{x}}) = rac{1}{\sqrt{N}}\sum_{i=1}^N {\pmb{a}}_i \sigma({\pmb{x}}^{ op} {\pmb{w}}_i) = rac{1}{\sqrt{N}} {\pmb{a}}^{ op} \sigma({\pmb{W}}^{ op} {\pmb{x}}).$$

- Input data: $x \in \mathbb{R}^d$.
- Trainable parameters: $\boldsymbol{W} \in \mathbb{R}^{d \times N}, \boldsymbol{a} \in \mathbb{R}^{N}$.
- Element-wise nonlinearity: $\sigma : \mathbb{R} \to \mathbb{R}$.

Optimization: given a convex loss ℓ ,

- Optimizing *a* under fixed *W* is *convex*.
- Optimizing *W* under fixed *a* is *non-convex*.

Our Goal: precise characterization of the performance of the trained NN.

Introduction: Training and Test Setting

• **Training.** Empirical risk minimization (potentially ℓ_2 -regularized):

$$\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} (f(\boldsymbol{x}_i) - y_i)^2, \quad y_i = f^*(\boldsymbol{x}_i) + \varepsilon_i,$$

where f^* is the target function (teacher model), and ε is i.i.d. label noise.

• **Test.** <u>Prediction risk</u>: $\mathcal{R}(f) = \mathbb{E}_{\mathbf{x}}[(f(\mathbf{x}) - f^*(\mathbf{x}))^2] = ||f - f^*||^2_{L^2(P_x)}$.

<u>Regime of Interest</u> – Proportional asymptotic limit: $n, d, N \to \infty$, $n/d \to \psi_1, N/d \to \psi_2$, where $\psi_1, \psi_2 \in (0, \infty)$.

Why is this an interesting regime to analyze?

- It corresponds to the setting where the network width and data size are comparable, which is consistent with practical choices of model scaling.
- It might be possible to derive the *precise* prediction risk in this limit.

Kernel Models Related to NN

Two widely-studied kernels derived from two-layer NN:

- Conjugate Kernel (CK) with features: $\phi_{CK}(x) = \frac{1}{\sqrt{N}}\sigma(W^{\top}x) \in \mathbb{R}^{N}$. Regression on the CK corresponds to fixing W and only learning the 2nd layer a.
- Tangent Kernel (NTK) with features: $\phi_{NT}(x) = \frac{1}{\sqrt{Nd}} \operatorname{Vec}(\sigma'(W^{\top}x)x^{\top}) \in \mathbb{R}^{Nd}$. This kernel arises from gradient descent on certain wide neural networks.

When W is randomly initialized, we arrive at a random features (RF) model, the precise asymptotics of which has been extensively studied in the proportional limit.

[Mei and Montanari, 2019].

Limitation of Kernel Ridge Regression

Can these RF models fully capture the effectiveness of NNs? Not quite...

Consider the *ridge regression estimator* for $RF \in \{CK, NT\}$:

$$f_{\mathsf{RF}}^{\lambda}(\boldsymbol{x}) = \langle \phi_{\mathsf{RF}}(\boldsymbol{x}), \hat{\boldsymbol{a}}_{\lambda}
angle, \quad \hat{\boldsymbol{a}}_{\lambda} = \operatorname{argmin}_{\boldsymbol{a}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_i - \langle \phi_{\mathsf{RF}}(\boldsymbol{x}_i), \boldsymbol{a} \rangle)^2 + \frac{\lambda}{N} \|\boldsymbol{a}\|_2^2
ight\}.$$

Theorem (Ghorbani et al. 19, Hu and Lu 20, Bartlett et al. 21, ...)

[Informal] Denote $P_{>1}$ as the projector orthogonal to constants and linear functions in $L^2(P_X)$. Then under certain concentration conditions on the input x, we have¹

$$\inf_{\lambda>0}\min\Big\{\mathcal{R}\big(f_{\mathrm{CK}}^{\lambda}\big),\mathcal{R}\big(f_{\mathrm{NT}}^{\lambda}\big)\Big\}\geq \frac{\|P_{>1}f^*\|_{L^2}^2}{\|P_{>1}f^*\|_{L^2}^2}+o_{d,\mathbb{P}}(1),$$

- In the proportional limit, RF models can only learn linear functions.
- NNs are clearly more powerful than linear models on the input...

¹Similar lower bound also holds for certain rotationally invariant kernels studied in [El Karoui 10].

Feature Learning in Two-layer NN

Where does this gap come from? Feature I

Feature Learning!

- When we optimize the first-layer parameters *W*, we expect the model to "adapt" to the data and learn useful representations.
- In RF models, W is fixed, so there is no "representation learning".

Motivation: Can we precisely capture the presence of *feature learning* in the proportional limit, when the first-layer W is optimized via *gradient descent*?

Empirical Observation:

• Neural network features often change most rapidly in the early phase of gradient descent (GD) training.

We consider the most simplified setting of the "early phase": <u>one gradient step</u> on W, and analyze how the learned CK adapts to the learning problem.

Problem Setting: Basic Assumptions

- 1. Proportional Limit. $n, d, N \to \infty$, $n/d \to \psi_1$, $N/d \to \psi_2$, $\psi_1, \psi_2 \in (0, \infty)$.
- 2. Student-teacher Setup. $y_i = f^*(\mathbf{x}_i) + \varepsilon_i$, where $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I)$, ε_i is i.i.d. noise with variance σ_{ε}^2 , and f^* is Lipschitz with $\|f^*\|_{L^2} = \Theta_d(1)$.
- 3. Normalized Activation. σ has bounded first three derivatives, and is normalized such that $\mathbb{E}[\sigma(z)] = 0$, $\mathbb{E}[z\sigma(z)] = \mu_1 \neq 0$, for $z \sim \mathcal{N}(0, 1)$.
- 4. Gaussian Initialization. $[W_0]_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/d), \ [a]_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1/N).$

Note: we use the <u>mean-field</u> parameterization², which admits a *feature learning limit* (i.e., the weights do not "freeze" around the initialization).

$$f(\boldsymbol{x}) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \sigma(\langle \boldsymbol{x}, \boldsymbol{w}_i \rangle) = \underbrace{\frac{1}{\sqrt{N}} \boldsymbol{a}^{\top}}_{\approx 1/N} \sigma(\boldsymbol{W}^{\top} \boldsymbol{x}).$$

²The NTK scaling corresponds to dropping the $\frac{1}{\sqrt{N}}$ -prefactor.

NNs trained till $\mathcal{L}(f) < 10^{-3}$.

Problem Setting: One-step Gradient Descent

- One-step GD on 1st Layer. We take one gradient step³ on the empirical MSE loss $\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) y_i)^2$, that is, $\mathbf{W}_1 = \mathbf{W}_0 + \eta \sqrt{N} \cdot \mathbf{G}_0$, where $\mathbf{G}_0 := -\frac{1}{n} \mathbf{X}^\top \left[\left(\frac{1}{\sqrt{N}} \left(\frac{1}{\sqrt{N}} \sigma(\mathbf{X} \mathbf{W}_0) \mathbf{a} \mathbf{y} \right) \mathbf{a}^\top \right) \odot \sigma'(\mathbf{X} \mathbf{W}_0) \right],$
- Ridge Regression for 2nd Layer. After learning the features for one step, we perform ridge regression on the trained CK using a fresh set of data $\{\tilde{X}, \tilde{y}\}$:

$$\hat{\boldsymbol{a}}_{\lambda} = \operatorname{argmin}_{\boldsymbol{a}} \left\{ \frac{1}{n} \| \tilde{\boldsymbol{y}} - \boldsymbol{\Phi} \boldsymbol{a} \|^2 + \frac{\lambda}{N} \| \boldsymbol{a} \|^2 \right\}, \quad \boldsymbol{\Phi} := \frac{1}{\sqrt{N}} \sigma(\tilde{\boldsymbol{X}} \boldsymbol{W}_1) \in \mathbb{R}^{n \times N}.$$

Denote $f_{\text{GD}}^{\lambda}(\mathbf{x}) = \frac{1}{\sqrt{N}} \hat{\mathbf{a}}_{\lambda}^{\top} \sigma(\mathbf{W}_{1}^{\top} \mathbf{x})$, and prediction risk: $\mathcal{R}_{\text{GD}}(\lambda) = \mathcal{R}(f_{\text{GD}}^{\lambda})$.

This Work: We aim to compute $\mathcal{R}_{GD}(\lambda)$, and show its *improvement* over the initialized RF, and potentially over the *lower bound* $\|P_{>1}f^*\|_{L^2}^2$.

Challenge: cannot directly use random matrix theory, as W_1 is no longer "random".

³Some of our results also apply to multiple gradient steps on W.

Can we exploit certain structure of the first GD step to simplify the calculation?

Orthogonal Decomposition of σ :

 $\sigma(z) = \mu_1 z + \sigma_{\perp}(z)$, where $\mu_1 = \mathbb{E}[\sigma'(z)] \implies \mathbb{E}[\sigma_{\perp}(z)] = \mathbb{E}[z\sigma_{\perp}(z)] = 0$.

Proposition (BES+22)

Recall
$$\mathbf{G}_0 = \frac{1}{\eta\sqrt{N}} (\mathbf{W}_1 - \mathbf{W}_0)$$
. Define rank-1 matrix $\mathbf{A} := \frac{\mu_1}{\eta\sqrt{N}} \mathbf{X}^\top \mathbf{y} \mathbf{a}^\top$. Then
 $\sqrt{N} \cdot \|\mathbf{G}_0 - \mathbf{A}\| \lesssim \|\mathbf{G}_0\|, \ w.h.p.$

Intuition: Many commonly-used activations are monotone, so σ' is not centered:

$$n\sqrt{N} \cdot \boldsymbol{G}_0 = \boldsymbol{\mu}_1 \boldsymbol{X}^\top (\boldsymbol{y} - f_0(\boldsymbol{X})) \boldsymbol{a}^\top + \boldsymbol{X}^\top ((\boldsymbol{y} - f_0(\boldsymbol{X})) \boldsymbol{a}^\top \odot \sigma'_\perp (\boldsymbol{X} \boldsymbol{W}_0))$$

Hence G_0 contains: $A \|_F \simeq \|B\|_F$, but $\|A\| \gg \|B\|$

- A rank-1 "spike" A -
- A "residual" with smaller operator norm (but not Frobenius norm) B -

Based on the decomposition of \boldsymbol{G}_0 , we focus on the following choices⁴ of η :

• Small Ir:
$$\eta = \Theta(1) \Rightarrow \|\boldsymbol{W}_1 - \boldsymbol{W}_0\| \asymp \|\boldsymbol{W}_0\|.$$

• Large Ir:
$$\eta = \Theta(\sqrt{N}) \Rightarrow \| \boldsymbol{W}_1 - \boldsymbol{W}_0 \|_F \asymp \| \boldsymbol{W}_0 \|_F.$$

Remarks:

- Under $\underline{\eta} = \Theta(1)$, the NN after one GD step remains close to the **kernel regime**: each neuron (or parameter) does not travel far away from the initialization, i.e., $|[W_1 - W_0]_{ij}| \ll |[W_0]_{ij}|$ for all i, j with high probability.
- $\eta = \Theta(\sqrt{N})$ mirrors the maximal update parameterization [Yang and Hu 2020]: for $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$, the change in each coordinate of the feature vector is significant, i.e., $\left|\sigma(\mathbf{W}_1^{\mathsf{T}}\mathbf{x}) - \sigma(\mathbf{W}_0^{\mathsf{T}}\mathbf{x})\right|_i \simeq \left|\sigma(\mathbf{W}_0^{\mathsf{T}}\mathbf{x})\right|_i = \tilde{\Theta}(1)$ for all *i* with high probability.

⁴For smaller $\eta = o(1)$, one can easily verify that change in the prediction risk is negligible.

A Spiked Model for W_1

Blue: empirical simulation. Red: analytic prediction. (next slide)

- $\sigma = \tanh, f^*(\mathbf{x}) = \operatorname{ReLU}(\langle \mathbf{x}, \boldsymbol{\beta}_* \rangle).$
- Teacher vector $\boldsymbol{\beta}_{*} \propto [-1_{d/2}; 1_{d/2}].$

•
$$\psi_1 = n/d = 4$$
, $\psi_2 = N/d = 2$.

• η = 2.

Observation: after one gradient step with learning rate $\eta = \Theta(1)$:

- The **bulk** of the spectrum of *W* remains unchanged ⁵.
- A spike (\times) appears in W_1 , which aligns with linear component of f^* .

⁵The spectrum of the initialized W_0 is characterized by the Marchenko–Pastur law.

Spiked Model for W_1 (continued)

Orthogonal Decomposition: $f^*(\mathbf{x}) = \mu_0^* + \mu_1^* \langle \mathbf{x}, \boldsymbol{\beta}_* \rangle + \mathsf{P}_{>1} f^*(\mathbf{x}),$

• Linear part: $\|\beta_*\| = 1$, $\mu_1^* \beta_* = \mathbb{E}[xf^*(x)];$ • Noninear part: $\|\mathsf{P}_{>1}f^*\|_{L^2} = \mu_2^*$.

Theorem (BES+22)

For $\eta = \Theta(1)$, define $\theta_1 := \sqrt{\|f^*\|_{L^2}^2 \psi_1^{-1} + \mu_1^{*2} \cdot \mu_1 \eta}$, $\theta_2 := \mu_1 \mu_1^* \eta$. The leading singular value $s_1(W_1)$ and the corresponding singular vector u_1 satisfy

$$s_1(\boldsymbol{W}_1) \to \sqrt{\frac{(1+\theta_1^2)(\psi_2+\theta_1^2)}{\theta_1^2}}, \qquad |\langle \boldsymbol{u}_1, \boldsymbol{\beta}_* \rangle|^2 \to \frac{\theta_2^2}{\theta_1^2} \left(1 - \frac{\psi_2+\theta_1^2}{\theta_1^2(\theta_1^2+1)}\right)$$

for
$$heta_1>\psi_2^{1/4}$$
; otherwise, $s_1(m W_1) o 1+\sqrt{\psi_2}$, $|\langlem u_1,m eta_*
angle| o 0$.

When η exceeds some threshold, a "spike" appears:

- Increase step size $\eta \Rightarrow \text{larger spike } s_1(\boldsymbol{W}_1).$
- Increase sample size $\psi_1 \Rightarrow$ greater alignment.

A Spiked Model for CK?

Question: How does the spike in W_1 affect the kernel (CK) matrix?

For $\eta = \Theta(1)$, and *odd activation* σ , the expected CK matrix Σ_{Φ} satisfies $\|\Sigma_{\Phi} - \overline{\Sigma}_{\Phi}\| \stackrel{\mathbb{P}}{\to} 0$, where $\Sigma_{\Phi} = \mathbb{E}_{\mathbf{x}} \Big[\sigma(\mathbf{W}_{1}^{\top}\mathbf{x})\sigma(\mathbf{x}^{\top}\mathbf{W}_{1}) \Big], \ \overline{\Sigma}_{\Phi} = \mu_{1}^{2}\mathbf{W}_{1}^{\top}\mathbf{W}_{1} + \mu_{2}^{2}\mathbf{I}.$

- Intuitively, we expect a spike to appear in the (empirical) CK matrix.
- How do we predict properties of the CK spike? Gaussian Equivalence Nonlinear CK : $\Phi = \frac{1}{\sqrt{N}}\sigma(\tilde{X}W_1)$, "Linearized" CK : $\bar{\Phi} = \frac{1}{\sqrt{N}}\left(\mu_1\tilde{X}W_1 + \mu_2Z\right)$.

Conjecture (Gaussian Equivalence of CK Spike)

For odd activation σ and $\eta = \Theta(1)$, given i.i.d. training data \tilde{X}, \tilde{y} (independent to W_1). Denote the left singular vectors of $\Phi, \bar{\Phi}$ as u_1, \bar{u}_1 , we conjecture

 $|s_i(\mathbf{\Phi}) - s_i(\bar{\mathbf{\Phi}})| = o_{d,\mathbb{P}}(1), \ \forall i \in [n]; \quad |\langle \mathbf{u}_1, \tilde{\mathbf{y}}/\|\tilde{\mathbf{y}}\|\rangle|^2 = |\langle \bar{\mathbf{u}}_1, \tilde{\mathbf{y}}/\|\tilde{\mathbf{y}}\|\rangle|^2 + o_{d,\mathbb{P}}(1).$

Spiked Model for CK (continued)

Blue: empirical simulation. **Red**: analytic prediction (initial CK). **Orange**: Gaussian equivalence.

- $\sigma = \text{SoftPlus}.$
- $f^*(x) = tanh(\langle x, \beta_* \rangle).$

•
$$\psi_1 = n/d = 3/2, \ \psi_2 = N/d = 5/4.$$

• η = 2.

- The **bulk** of the CK specetrum remains unchanged ⁶.
- A spike (\times) appears in the learned CK, predicted by Gaussian equivalence .
- The corresponding eigenvector u_1 aligns with training labels \tilde{y} .

⁶The spectrum of the initialized CK_0 is characterized in [Fan and Wang 2020].

Prediction Risk of CK Ridge Regression

Question: does this alignment improve the performance of the kernel model?

Case Study: Single-index target⁷. $f^*(\mathbf{x}) = \sigma^*(\langle \mathbf{x}, \boldsymbol{\beta}^* \rangle)$. where $\|\boldsymbol{\beta}_*\| = 1$, and σ^* is Lipschitz with $\mu_0^* = 0$, $\mu_1^* \neq 0$.

Goal: compute the prediction risk $\mathcal{R}_{GD}(\lambda)$ of the ridge estimator $f_{GD}^{\lambda}(\mathbf{x}) = \frac{1}{\sqrt{N}} \hat{\mathbf{a}}_{\lambda}^{\top} \sigma \left(\mathbf{W}_{1}^{\top} \mathbf{x} \right), \ \hat{\mathbf{a}}_{\lambda} = \operatorname{argmin}_{\mathbf{a}} \left\{ \frac{1}{n} \left\| \mathbf{\tilde{y}} - \frac{1}{\sqrt{N}} \sigma (\mathbf{\tilde{X}} \mathbf{W}_{1}) \mathbf{a} \right\|^{2} + \frac{\lambda}{N} \|\mathbf{a}\|^{2} \right\}.$

We consider the following learning rate scalings:

- Small Ir $\eta = \Theta(1)$: trained CK <u>always improve</u> upon the initial CK ridge estimator ($\mathcal{R}_0(\lambda)$).
- Large Ir η = Θ(√d) : for some f*, trained CK may outperform the lower bound ||P_{>1}f*||_{L²}.

⁷This setting is often studied in RF regression (e.g. [Gerace et al. 20],[Dhifallah and Lu 20]).

The Gaussian Equivalence Property

Consider the prediction risk of ridge regression on features $F \in \{CK, GE\}$: $\mathcal{R}_{F}(\lambda) = \mathbb{E}_{\mathbf{x}} (\langle \phi_{F}(\mathbf{x}), \hat{\mathbf{a}}_{\lambda} \rangle - f^{*}(\mathbf{x}))^{2}, \ \hat{\mathbf{a}}_{\lambda} = \operatorname{argmin}_{\mathbf{a}} \{ \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \langle \phi_{F}(\mathbf{x}_{i}), \mathbf{a} \rangle)^{2} + \frac{\lambda}{N} \|\mathbf{a}\|^{2} \}$

• CK (nonlinear): $\phi_{CK}(\mathbf{x}) = \frac{1}{\sqrt{N}} \sigma(\mathbf{W}^{\top} \mathbf{x}).$

• GE (linear) :
$$\phi_{\text{GE}}(\mathbf{x}) = \frac{1}{\sqrt{N}} \left(\mu_1 \mathbf{W}^\top \mathbf{x} + \mu_2 \mathbf{z} \right), \ \mathbf{z} \sim \mathcal{N}(0, \mathbf{I}).$$

where $\mu_1 = \mathbb{E}[z\sigma(z)], \ \mu_2 = \sqrt{\mathbb{E}[\sigma(z)^2] - \mu_1^2}$

The Gaussian Equivalence Property refers to: $\mathcal{R}_{CK}(\lambda) \approx \mathcal{R}_{GE}(\lambda)$.

Previously, the Gaussian equivalence theorem (GET) has been shown for certain \underline{RF} models [Hu and Lu 2020], but not for the trained features.

Implications of the Gaussian Equivalence:

- We can equivalently compute $\mathcal{R}_{\rm GE},$ which can be handled via RMT tools $\textcircled{\sc 0}$
- The <u>nonlinear</u> CK model achieves the same performance as a <u>linear</u> model ⁽²⁾

Theorem (<u>BES+22</u>)

Assume σ is **odd** in addition to the previous assumptions, then for fixed $t \in \mathbb{N}$, after the first-layer W is trained for t gradient steps with $\eta = \Theta(1)$, $|\mathcal{R}_{CK}(\lambda) - \mathcal{R}_{GE}(\lambda)| = o_{d,\mathbb{P}}(1), \text{ for } \lambda > 0.$

Intuition: GET holds when W_t is not far away from the random initialization W_0 .

Figure: dots represent empirical values, solid curves are asymptotics predicted by CGMT.

- For learning rate $\eta = \Theta(1)$, GET remains accurate in the early phase of training
- Prediction risk $\mathcal{R}_{GD}(\lambda)$ can improve, but is still lower-bounded by $\|P_{>1}f^*\|_{L^2}^2$ -----

 $\sigma = \mathsf{ReLU}, \sigma^* = \mathsf{tanh}.$

Gaussian Equivalence Theorem (continued)

Proof Sketch. We extend the argument in [Hu and Lu 2020] outline below.

1. Lindeberg exchange . Let \hat{g}_k be the solution of the optimization problem:

$$L_k \triangleq \min_{\boldsymbol{g} \in \mathbb{R}^N} \left\{ \sum_{i=1}^k \ell(y_i, \langle \boldsymbol{g}, \phi_{\mathrm{GE}}(\boldsymbol{x}_i) \rangle) + \sum_{j=k+1}^n \ell(y_j, \langle \boldsymbol{g}, \phi_{\mathrm{CK}}(\boldsymbol{x}_j) \rangle) + \frac{n}{N} (\lambda \|\boldsymbol{g}\|_2^2 + Q(\boldsymbol{g})) \right\}$$

As there are N total swaps, it suffices to show that for bounded test function ζ ,

$$\left|\mathbb{E}\zeta\left(\frac{1}{N}L_{k}\right)-\mathbb{E}\zeta\left(\frac{1}{N}L_{k-1}\right)\right|=\mathcal{O}\left(\frac{\mathsf{polylog}N}{N^{3/2}}\right).$$
(A)

2. **Central limit theorem**. A crucial step in establishing (A) is the following CLT: $\left| \mathbb{E}\varphi(\langle \phi_{\rm GE}, \boldsymbol{g} \rangle) - \mathbb{E}\varphi(\langle \phi_{\rm CK}, \boldsymbol{g} \rangle) \right| = \mathcal{O}\left(\frac{\text{polylog}N}{\sqrt{N}} \cdot \left(1 + \|\boldsymbol{g}\|_{\infty}^{2}\right)\right).$

This is shown using Stein's method, when W has near-orthogonal columns.

3. ℓ_{∞} -norm control. Finally, we show that entries of $\hat{\boldsymbol{g}}_k$ are "evenly distributed"⁸: $\mathbb{P}\left(\|\hat{\boldsymbol{g}}_k\|_{\infty} \ge \operatorname{polylog} N\right) \le \exp\left(-c \log^2 N\right)$, for all $k \in [N]$.

⁸In this part of the analysis, [Hu and Lu 2020] required W_{ij} to be i.i.d. Gaussian.

Analysis of Small Learning Rate ($\eta = \Theta(1)$)

Goal: can we rigorously show that <u>one feature learning step</u> always *decreases* the prediction risk of the CK ridge regression estimator?

- Risk of *initial* CK (random features): $\mathcal{R}_0(\lambda) = \mathbb{E}_x (\langle \sigma(W_0^\top x), \hat{a}_0 \rangle f^*(x))^2$.
- Risk of *trained* CK (after one step): $\mathcal{R}_{GD}(\lambda) = \mathbb{E}_{\mathbf{x}} (\langle \sigma(\mathbf{W}_1^{\top} \mathbf{x}), \hat{\mathbf{a}}_1 \rangle f^*(\mathbf{x}))^2$.

Theorem (BES+22)

For
$$\eta = \Theta(1)$$
 and $\lambda > 0$, as $n/d \to \psi_1$, $N/d \to \psi_2$, we have

$$\begin{array}{c} \mathcal{R}_0(\lambda) & - \mathcal{R}_{\mathrm{GD}}(\lambda) \xrightarrow{\mathbb{P}} \delta(\eta, \lambda, \psi_1, \psi_2). \end{array}$$

- $\delta(\eta, \lambda, \psi_1, \psi_2)$ is a non-negative function of $\eta, \lambda, \psi_1, \psi_2 \in (0, +\infty)$;
- δ vanishes if and only if (at least) one of μ_1^*, μ_1 and η is zero.

Provable improvement over the initial CK model!

Note: this does not require the student and teacher to have the same nonlinearity

Small learning Rate (continued)

In some special cases, the expression of δ can be further simplified.

Proposition (BES+22)

- [Large sample limit] As $\psi_1 \to \infty$, δ is increasing with respect to η .
- [Large width limit] As $\psi_2 \to \infty$, $\delta(\eta, \lambda, \psi_1, \psi_2) \to 0$.

Note: In all cases, $\mathcal{R}_0(\lambda) \geq \mathcal{R}_{GD}(\lambda) \geq \|\mathsf{P}_{>1}f^*\|_{L^2}^2$ due to the GET under $\eta = \Theta(1)$.

Analysis of Large Learning Rate $(\eta = \Theta(\sqrt{d}))$

Finally, we consider the large learning rate regime with $\eta = \Theta(\sqrt{d})$.

- W_1 travels far away from initialization \Rightarrow CK can be "nonlinear" \bigcirc
- In the absence of GET, precise analysis of prediction risk is difficult $\ensuremath{\textcircled{\sc op}}$

Alternative: upper-bound $\mathcal{R}_{GD}(\lambda)$ and compare against kernel lower bound.

We define: $\tau^* := \inf_{\eta} \mathbb{E}_{\xi_1} (\sigma^*(\xi_1) - \mathbb{E}_{\xi_2} (\sigma(\eta \xi_1 + \xi_2)))^2$

Lemma (BES+22)

[Informal] Given **bounded** activation σ , after one GD step on W with $\eta = \Theta(\sqrt{N})$, there exists some $\tilde{f}(\mathbf{x}) = \frac{1}{\sqrt{N}} \tilde{\mathbf{a}}^{\top} \sigma(W_1^{\top} \mathbf{x})$ that achieves prediction risk "close" to τ^* .

- τ^* can be interpreted as some measure of "model misspecification".
- Note: the definition of *τ*^{*} does not involve the specific value of step size *η*.

Theorem (BES+22)

After one GD step on W with $\eta = \Theta(\sqrt{N})$, there exist constants $C, \psi_1^* > 0$ such that for any $\psi_1 > \psi_1^*$, and $n^{\epsilon-1} < N^{-1}\lambda < n^{-\epsilon}$ for some small $\epsilon > 0$, we have $\mathcal{R}_{\mathrm{GD}}(\lambda) \leq 16\tau^* + C\Big(\sqrt{\tau^*} \cdot \psi_1^{-1/2} + \psi_1^{-1}\Big),$

with probability 1, as $n, d, N \rightarrow \infty$ proportionally.

If $\tau^* \ll ||\mathbf{P}_{>1}f^*||_{L^2}^2$, CK ridge regression after *one feature learning step* outperforms the kernel ridge lower bound:

- $\underline{\sigma} = \sigma^* = \tanh$: $\mathcal{R}_{\mathrm{GD}}(\lambda) < \|\mathsf{P}_{>1}f^*\|_{L^2}^2$
- $\underline{\sigma = \sigma^* = \operatorname{erf}}$: there exists constant $C > 0 \text{ s.t. } \mathcal{R}_{\operatorname{GD}}(\lambda) \le C \cdot \psi_1^{-1} = \Theta(d/n) - \cdots$

Caution: separation only present in specific (σ, σ^*)

$$\sigma = \sigma^* = ext{erf}, \ \eta = N^{lpha}, \ lpha \in [0, 1/2].$$
 23

Summary of Results

How Does One Gradient Step Change the Weights?

- The isolated singular vector of W_1 aligns with linear component of f^* .
- The top eigenvector of CK matrix aligns with training labels y (conjecture).

How Do the Learned Features Improve Generalization?

- $\eta = \Theta(1)$ Linear Regime. Precise analysis via GET; $\mathcal{R}_0 \geq ||\mathbf{\mathcal{R}}_{GD}| \geq ||\mathbf{\mathcal{P}}_{>1}f^*||_{L^2}^2$.
- $\eta = \Theta(\sqrt{d})$ Nonlinear Regime. For certain f^* , $\mathcal{R}_0 \ge \|\mathsf{P}_{>1}f^*\|_{L^2}^2 \ge \mathcal{R}_{\mathrm{GD}}$.

Signal+noise structure of W_1 .

Improvement of prediction risk.

Some questions to consider:

- 1. A spiked model for the kernel (CK) matrix after one gradient step?
- 2. "Phase transition" in the Gaussian equivalence property?
- 3. Precise asymptotics beyond Gaussian equivalence?

Thank you!

References

- El Karoui, 2010. The spectrum of kernel random matrices.
- Louart, Liao, and Couillet, 2018. A random matrix approach to neural networks.
- Mei and Montanari, 2019. The generalization error of random features regression: Precise asymptotics and double descent curve.
- Ghorbani et al., 2019. Linearized two-layer neural networks in high dimensions.
- Hu and Lu, 2020. Universality laws for high-dimensional learning with random features.
- Fan and Wang, 2020. Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks.
- Gerace et al., 2020. Generalisation error in learning with random features and the hidden manifold model.
- Yang and Hu, 2021. Feature learning in infinite-width neural networks.
- Loureiro et al., 2021. Learning curves of generic features maps for realistic datasets with a teacher-student model.
- Bartlett et al., 2021. Deep learning: a statistical viewpoint.