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Introduction: Two-layer Neural Network (NN)

Width-N Two-layer NN

fNN(x) =
1√
N

N∑
i=1

aiσ(x⊤w i ) =
1√
N

a⊤σ(W⊤x).

• Input data: x ∈ Rd .

• Trainable parameters: W ∈ Rd×N , a ∈ RN .

• Element-wise nonlinearity: σ : R → R.

Optimization: given a convex loss ℓ,

• Optimizing a under fixed W is convex.

• Optimizing W under fixed a is non-convex .
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output
y ∈ R

Our Goal: precise characterization of the performance of the trained NN.
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Introduction: Training and Test Setting

• Training. Empirical risk minimization (potentially ℓ2-regularized):

L(f ) = 1
n

n∑
i=1

(f (x i )− yi )
2, yi = f ∗(x i ) + εi ,

where f ∗ is the target function (teacher model), and ε is i.i.d. label noise.

• Test. Prediction risk: R(f ) = Ex [(f (x)− f ∗(x))2] = ∥f − f ∗∥2
L2(Px )

.

Regime of Interest – Proportional asymptotic limit: n, d ,N → ∞,
n/d → ψ1, N/d → ψ2, where ψ1, ψ2 ∈ (0,∞).

Why is this an interesting regime to analyze?

• It corresponds to the setting where the network width and data size are
comparable, which is consistent with practical choices of model scaling.

• It might be possible to derive the precise prediction risk in this limit.
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Kernel Models Related to NN

Two widely-studied kernels derived from two-layer NN:

• Conjugate Kernel (CK) with features: ϕCK(x) =
1√
N
σ(W⊤x) ∈ RN .

Regression on the CK corresponds to fixing W and only learning the 2nd layer a.

• Tangent Kernel (NTK) with features: ϕNT(x) =
1√
Nd

Vec
(
σ′(W⊤x)x⊤) ∈ RNd .

This kernel arises from gradient descent on certain wide neural networks.

When W is randomly initialized, we arrive at a random features (RF) model, the
precise asymptotics of which has been extensively studied in the proportional limit.

[Louart, Liao, and Couillet, 2018]. [Mei and Montanari, 2019]. 5



Limitation of Kernel Ridge Regression

Can these RF models fully capture the effectiveness of NNs? Not quite...

Consider the ridge regression estimator for RF ∈ {CK,NT}:

f λRF(x) = ⟨ϕRF(x), âλ⟩, âλ = argmina

{
1
n

n∑
i=1

(yi − ⟨ϕRF(x i ), a⟩)2 +
λ

N
∥a∥2

2

}
.

Theorem (Ghorbani et al. 19, Hu and Lu 20, Bartlett et al. 21, ...)

[Informal] Denote P>1 as the projector orthogonal to constants and linear functions
in L2(PX ). Then under certain concentration conditions on the input x , we have1

inf
λ>0

min
{
R
(
f λCK

)
,R

(
f λNT

)}
≥ ∥P>1f

∗∥2
L2 + od,P(1),

• In the proportional limit, RF models can only learn linear functions.
• NNs are clearly more powerful than linear models on the input...

1Similar lower bound also holds for certain rotationally invariant kernels studied in [El Karoui 10]. 6



Feature Learning in Two-layer NN

Where does this gap come from? Feature Learning!

• When we optimize the first-layer parameters W , we expect the model to “adapt”
to the data and learn useful representations.

• In RF models, W is fixed, so there is no “representation learning”.

Motivation: Can we precisely capture the presence of feature learning in the
proportional limit, when the first-layer W is optimized via gradient descent?

Empirical Observation:
• Neural network features often change most rapidly in

the early phase of gradient descent (GD) training.

We consider the most simplified setting of the “early
phase”: one gradient step on W , and analyze how the
learned CK adapts to the learning problem. [Fort et al. 2020].
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Problem Setting: Basic Assumptions

1. Proportional Limit. n, d ,N → ∞, n/d → ψ1, N/d → ψ2, ψ1, ψ2 ∈ (0,∞).

2. Student-teacher Setup. yi = f ∗(x i ) + εi , where x i
i.i.d.∼ N (0, I ), εi is i.i.d. noise

with variance σ2
ε , and f ∗ is Lipschitz with ∥f ∗∥L2 = Θd(1).

3. Normalized Activation. σ has bounded first three derivatives, and is normalized
such that E[σ(z)] = 0, E[zσ(z)] = µ1 ̸= 0, for z ∼ N (0, 1).

4. Gaussian Initialization. [W 0]ij
i.i.d.∼ N (0, 1/d), [a]j

i.i.d.∼ N (0, 1/N).

Note: we use the mean-field parameterization2,
which admits a feature learning limit (i.e., the
weights do not “freeze” around the initialization).

f (x) =
1√
N

N∑
i=1

aiσ(⟨x ,w i ⟩) = 1√
N
a⊤︸ ︷︷ ︸

≈1/N

σ(W⊤x).

NNs trained till L(f ) < 10−3.
2The NTK scaling corresponds to dropping the 1√

N
-prefactor.
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Problem Setting: One-step Gradient Descent

• One-step GD on 1st Layer. We take one gradient step3 on the empirical MSE
loss L(f ) = 1

n

∑n
i=1(f (x i )− yi )

2, that is, W 1 = W 0 + η
√
N · G 0, where

G 0 := −1
n
X⊤

[(
1√
N

(
1√
N
σ(XW 0)a − y

)
a⊤

)
⊙ σ′(XW 0)

]
,

• Ridge Regression for 2nd Layer. After learning the features for one step, we
perform ridge regression on the trained CK using a fresh set of data {X̃ , ỹ}:

âλ = argmina

{
1
n
∥ỹ −Φa∥2 +

λ

N
∥a∥2

}
, Φ :=

1√
N
σ(X̃W 1) ∈ Rn×N .

Denote f λGD(x) =
1√
N
â⊤
λ σ

(
W 1

⊤x
)
, and prediction risk: RGD(λ) = R(f λGD).

This Work: We aim to compute RGD(λ), and show its improvement over the
initialized RF, and potentially over the lower bound ∥P>1f

∗∥2
L2 .

Challenge: cannot directly use random matrix theory, as W 1 is no longer “random”.

3Some of our results also apply to multiple gradient steps on W .
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Properties of the Gradient Matrix G 0

Can we exploit certain structure of the first GD step to simplify the calculation?

Orthogonal Decomposition of σ:
σ(z) = µ1z+σ⊥(z) , where µ1=E[σ′(z)] ⇒ E[σ⊥(z)]=E[zσ⊥(z)]=0.

Proposition (BES+22)

Recall G 0 = 1
η
√
N
(W 1−W 0). Define rank-1 matrix A := µ1

n
√
N
X⊤ya⊤. Then

√
N · ∥G 0 − A∥ ≲ ∥G 0∥, w.h.p.

Intuition: Many commonly-used activations are monotone, so σ′ is not centered:

n
√
N · G 0 = µ1X⊤(y − f0(X ))a⊤ + X⊤((y − f0(X ))a⊤ ⊙ σ′

⊥(XW 0)
)

Hence G 0 contains: ∥A∥F ≍ ∥B∥F , but ∥A∥ ≫ ∥B∥

• A rank-1 “spike” A

• A “residual” with smaller operator norm (but not Frobenius norm) B
10



Selection of Learning Rate η

Based on the decomposition of G 0, we focus on the following choices4 of η:

• Small lr: η = Θ(1) ⇒ ∥W 1 − W 0∥ ≍ ∥W 0∥.

• Large lr: η = Θ(
√
N) ⇒ ∥W 1 − W 0∥F ≍ ∥W 0∥F .

Remarks:

• Under η = Θ(1), the NN after one GD step remains close to the kernel regime:
each neuron (or parameter) does not travel far away from the initialization, i.e.,∣∣[W 1 − W 0]ij

∣∣ ≪ ∣∣[W 0]ij
∣∣ for all i , j with high probability.

• η = Θ(
√
N) mirrors the maximal update parameterization [Yang and Hu 2020]:

for x ∼ N (0, I ), the change in each coordinate of the feature vector is significant,

i.e.,
∣∣σ(W⊤

1 x)− σ(W⊤
0 x)

∣∣
i
≍

∣∣σ(W⊤
0 x)

∣∣
i
= Θ̃(1) for all i with high probability.

4For smaller η = o(1), one can easily verify that change in the prediction risk is negligible.
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A Spiked Model for W 1
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Blue: empirical simulation.
Red: analytic prediction.

(next slide)

• σ = tanh, f ∗(x) = ReLU(⟨x ,β∗⟩).
• Teacher vector β∗ ∝ [−1d/2; 1d/2].

• ψ1 = n/d = 4, ψ2 = N/d = 2.

• η = 2.

Observation: after one gradient step with learning rate η = Θ(1):

• The bulk of the spectrum of W remains unchanged 5.

• A spike (×) appears in W 1, which aligns with linear component of f ∗ .

5The spectrum of the initialized W 0 is characterized by the Marchenko–Pastur law. 12



Spiked Model for W 1 (continued)

Orthogonal Decomposition: f ∗(x) = µ∗
0 + µ∗

1⟨x ,β∗⟩+ P>1f
∗(x),

• Linear part: ∥β∗∥ = 1, µ∗
1β∗ = E[x f ∗(x)]; • Noninear part: ∥P>1f

∗∥L2 = µ∗
2 .

Theorem (BES+22)

For η = Θ(1), define θ1 :=
√

∥f ∗∥2
L2ψ

−1
1 + µ∗2

1 · µ1η, θ2 := µ1µ
∗
1η. The leading

singular value s1(W 1) and the corresponding singular vector u1 satisfy

s1(W 1) →
√

(1+θ21)(ψ2+θ21)

θ21
, |⟨u1,β∗⟩|2 → θ22

θ21

(
1 − ψ2+θ

2
1

θ21(θ
2
1+1)

)
,

for θ1 > ψ
1/4
2 ; otherwise, s1(W 1) → 1 +

√
ψ2, |⟨u1,β∗⟩| → 0.

When η exceeds some threshold, a “spike” appears:

• Increase step size η ⇒ larger spike s1(W 1).

• Increase sample size ψ1 ⇒ greater alignment.
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A Spiked Model for CK?

Question: How does the spike in W 1 affect the kernel (CK) matrix?

For η = Θ(1), and odd activation σ, the expected CK matrix ΣΦ satisfies∥∥ΣΦ −ΣΦ

∥∥ P→ 0, where ΣΦ = Ex

[
σ(W⊤

1 x)σ(x⊤W 1)
]
, ΣΦ = µ2

1W
⊤
1 W 1 + µ2

2I .

• Intuitively, we expect a spike to appear in the (empirical) CK matrix.

• How do we predict properties of the CK spike? Gaussian Equivalence

Nonlinear CK : Φ =
1√
N
σ(X̃W 1), “Linearized” CK : Φ̄ =

1√
N

(
µ1X̃W 1 + µ2Z

)
.

Conjecture (Gaussian Equivalence of CK Spike)

For odd activation σ and η = Θ(1), given i.i.d. training data X̃ , ỹ (independent to
W 1). Denote the left singular vectors of Φ, Φ̄ as u1, ū1, we conjecture∣∣si (Φ)− si (Φ̄)

∣∣ = od,P(1), ∀i ∈ [n]; |⟨u1, ỹ/∥ỹ∥⟩|2 = |⟨ū1, ỹ/∥ỹ∥⟩|2 + od,P(1).
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Spiked Model for CK (continued)
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• σ = SoftPlus.

• f ∗(x) = tanh(⟨x ,β∗⟩).
• ψ1 = n/d = 3/2, ψ2 = N/d = 5/4.

• η = 2.

• The bulk of the CK specetrum remains unchanged 6.

• A spike (×) appears in the learned CK, predicted by Gaussian equivalence .

• The corresponding eigenvector u1 aligns with training labels ỹ .

6The spectrum of the initialized CK0 is characterized in [Fan and Wang 2020].
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Prediction Risk of CK Ridge Regression

Question: does this alignment improve the performance of the kernel model?

Case Study: Single-index target7. f ∗(x) = σ∗(⟨x ,β∗⟩).
where ∥β∗∥ = 1, and σ∗ is Lipschitz with µ∗

0 = 0, µ∗
1 ̸= 0.

Goal: compute the prediction risk RGD(λ) of the ridge estimator

f λGD(x) =
1√
N

â⊤
λ σ

(
W 1

⊤x
)
, âλ = argmina

{1
n

∥∥∥ỹ − 1√
N
σ(X̃W 1)a

∥∥∥2
+
λ

N
∥a∥2

}
.

We consider the following learning rate scalings:

• Small lr η = Θ(1) : trained CK always improve
upon the initial CK ridge estimator (R0(λ)).

• Large lr η = Θ(
√
d) : for some f ∗, trained CK

may outperform the lower bound ∥P>1f
∗∥L2 . 103 104

sample size n
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pr
ed
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n 
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k

initialized CK
= (1)
= ( N )

P > 1f * 2
L2

7This setting is often studied in RF regression (e.g. [Gerace et al. 20],[Dhifallah and Lu 20]). 16



The Gaussian Equivalence Property

Consider the prediction risk of ridge regression on features F ∈ {CK,GE}:

RF(λ) = Ex
(
⟨ϕF(x), âλ⟩−f ∗(x)

)2
, âλ = argmina

{1
n

n∑
i=1

(yi−⟨ϕF(x i ), a⟩)2 +
λ

N
∥a∥2

}
• CK (nonlinear) : ϕCK(x) =

1√
N
σ(W⊤x).

• GE (linear) : ϕGE(x) =
1√
N

(
µ1W⊤x + µ2z

)
, z ∼ N (0, I ).

where µ1 = E[zσ(z)], µ2 =
√

E[σ(z)2]−µ2
1

The Gaussian Equivalence Property refers to: RCK(λ) ≈ RGE(λ).

Previously, the Gaussian equivalence theorem (GET) has been shown for
certain RF models [Hu and Lu 2020], but not for the trained features.

Implications of the Gaussian Equivalence:

• We can equivalently compute RGE, which can be handled via RMT tools ,
• The nonlinear CK model achieves the same performance as a linear model /

17



Gaussian Equivalence for Trained Features

Theorem (BES+22)

Assume σ is odd in addition to the previous assumptions, then for fixed
t ∈ N, after the first-layer W is trained for t gradient steps with η = Θ(1),

|RCK(λ)−RGE(λ)| = od,P(1), for λ > 0.

Intuition: GET holds when W t is not far away from the random initialization W 0.

Figure: dots represent empirical values, solid
curves are asymptotics predicted by CGMT.

• For learning rate η = Θ(1), GET remains
accurate in the early phase of training

• Prediction risk RGD(λ) can improve, but is

still lower-bounded by ∥P>1f
∗∥2

L2
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n = 4096
n = 8192
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σ = ReLU, σ∗ = tanh.
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Gaussian Equivalence Theorem (continued)

Proof Sketch. We extend the argument in [Hu and Lu 2020] outline below.

1. Lindeberg exchange . Let ĝ k be the solution of the optimization problem:

Lk ≜ min
g∈RN

{
k∑

i=1

ℓ(yi , ⟨g ,ϕGE(x i )⟩) +
n∑

j=k+1

ℓ(yj , ⟨g ,ϕCK(x j)⟩) +
n

N

(
λ∥g∥2

2 + Q(g)
)}

As there are N total swaps, it suffices to show that for bounded test function ζ,∣∣Eζ( 1
N
Lk

)
− Eζ

( 1
N
Lk−1

)∣∣ = O
(

polylogN
N3/2

)
. (A)

2. Central limit theorem . A crucial step in establishing (A) is the following CLT:∣∣∣Eφ(⟨ϕGE, g⟩)− Eφ(⟨ϕCK, g⟩)
∣∣∣ = O

(
polylogN√

N
·
(
1 + ∥g∥2

∞

))
.

This is shown using Stein’s method, when W has near-orthogonal columns.

3. ℓ∞-norm control . Finally, we show that entries of ĝ k are “evenly distributed”8:

P
(
∥ĝ k∥∞ ≥ polylogN

)
≤ exp

(
−c log2 N

)
, for all k ∈ [N].

8In this part of the analysis, [Hu and Lu 2020] required W ij to be i.i.d. Gaussian. 19



Analysis of Small Learning Rate (η = Θ(1))

Goal: can we rigorously show that one feature learning step always decreases
the prediction risk of the CK ridge regression estimator?

• Risk of initial CK (random features): R0(λ) = Ex
(
⟨σ(W⊤

0 x), â0⟩−f ∗(x)
)2.

• Risk of trained CK (after one step): RGD(λ) = Ex
(
⟨σ(W⊤

1 x), â1⟩−f ∗(x)
)2.

Theorem (BES+22)

For η = Θ(1) and λ > 0, as n/d → ψ1, N/d → ψ2, we have

R0(λ) − RGD(λ)
P→ δ(η, λ, ψ1, ψ2).

• δ(η, λ, ψ1, ψ2) is a non-negative function of η, λ, ψ1, ψ2 ∈ (0,+∞);

• δ vanishes if and only if (at least) one of µ∗
1, µ1 and η is zero.

Provable improvement over the initial CK model!

Note: this does not require the student and teacher to have the same nonlinearity
20



Small learning Rate (continued)

In some special cases, the expression of δ can be further simplified.

Proposition (BES+22)

• [Large sample limit] As ψ1 → ∞, δ is increasing with respect to η.

• [Large width limit] As ψ2 → ∞, δ(η, λ, ψ1, ψ2) → 0.
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Note: In all cases, R0(λ) ≥ RGD(λ) ≥ ∥P>1f
∗∥2

L2 due to the GET under η = Θ(1). 21



Analysis of Large Learning Rate (η = Θ(
√
d))

Finally, we consider the large learning rate regime with η = Θ(
√
d).

• W 1 travels far away from initialization ⇒ CK can be “nonlinear” ,
• In the absence of GET, precise analysis of prediction risk is difficult /

Alternative: upper-bound RGD(λ) and compare against kernel lower bound.

We define: τ∗ := infη Eξ1

(
σ∗(ξ1)− Eξ2(σ(ηξ1 + ξ2))

)2

Lemma (BES+22)

[Informal] Given bounded activation σ, after one GD step on W with η = Θ(
√
N),

there exists some f̃ (x) = 1√
N
ã⊤σ(W⊤

1 x) that achieves prediction risk “close” to τ∗.

• τ∗ can be interpreted as some measure of “model misspecification”.

• Note: the definition of τ∗ does not involve the specific value of step size η.
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Large Learning Rate (continued)

Theorem (BES+22)

After one GD step on W with η = Θ(
√
N), there exist constants C , ψ∗

1 > 0 such
that for any ψ1 > ψ∗

1 , and nϵ−1 < N−1λ < n−ϵ for some small ϵ > 0, we have

RGD(λ) ≤ 16τ∗ + C
(√

τ∗ · ψ−1/2
1 + ψ−1

1

)
,

with probability 1, as n, d ,N → ∞ proportionally.

If τ∗ ≪ ∥P>1f
∗∥2

L2 , CK ridge regression
after one feature learning step outperforms
the kernel ridge lower bound:

• σ = σ∗ = tanh: RGD(λ) < ∥P>1f
∗∥2

L2

• σ = σ∗ = erf: there exists constant
C > 0 s.t. RGD(λ) ≤ C ·ψ−1

1 = Θ(d/n)

Caution: separation only present in specific (σ, σ∗)
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(d/n)

σ=σ∗=erf, η=Nα, α ∈ [0, 1/2].
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Summary of Results

How Does One Gradient Step Change the Weights?

• The isolated singular vector of W 1 aligns with linear component of f ∗.

• The top eigenvector of CK matrix aligns with training labels y (conjecture).

How Do the Learned Features Improve Generalization?

• η = Θ(1) – Linear Regime. Precise analysis via GET; R0 ≥ RGD ≥ ∥P>1f
∗∥2

L2 .

• η = Θ(
√
d) – Nonlinear Regime. For certain f ∗, R0 ≥ ∥P>1f

∗∥2
L2 ≥ RGD .
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Future Directions

Some questions to consider:

1. A spiked model for the kernel (CK) matrix after one gradient step?

2. “Phase transition” in the Gaussian equivalence property?

3. Precise asymptotics beyond Gaussian equivalence?
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Thank you!
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