
Prize-Collecting Walks and Branchings in
Directed Graphs

Zac Friggstad

Alberta-Montana Combinatorics
& Algorithms Days at BIRS, 2022



Collaborators

Chaitanya Swamy - U. Waterloo (Faculty)

Sina Dezfuli - U. Alberta (M. Sc.)

Ian Post - U. Waterloo (PDF)



Part 1

A vehicle routing problem (i.e. motivation).



This talk is about finding “good” walks/trees in graphs with
applications variants of the Traveling Salesperson Problem (TSP).

Classic TSP
Visit all locations and return home as cheaply as possible.



Very simple heuristic: find the cheapest connected subgraph T and
do a depth-first traversal.

The solution has cost ≤ 2 times the optimum TSP tour cost.

A very brief history:

� Christofides-Serdyukov (1976): a simple 1.5-approximation.

� Karlin, Klein, Oveis Gharan (2021): slightly better

All start with a low-cost connected subgraph and augment it as
cheaply as possible to get a tour spanning all nodes.



Related Problem - Orienteering

Visit as many nodes as you can in 8 hours.

Precisely: Given a start node r (depot) and a budget B , find an
r -walk with cost ≤ B visiting as many nodes as possible.

This Talk: Symmetric distances: cost(u, v) = cost(v ,u).
But good to think of edges as directed (u, v) ≠ (v ,u).
Other variants are studied (eg. end where you start).



Brief history

� O(1)-approximations are possible. Best is by Chekuri, Korula,
and Ene: 2 + ✏ in �V �O(1�✏) time (n =#nodes).

� No approximation prior to our work would work in practice
(way too slow). All fast heuristics that were proposed could
behave terribly in some cases.

Our Work

� A 3-approximation in time Õ(�V �4). Easy to implement.
Trivial to parallelize to run in Õ(�V �3) time using �V �
processors.

� A fast, combinatorial algorithm that finds branchings
(maybe-not-spanning trees) with low “cost” in directed
graphs. Inspired by a particular directed graph decomposition
by Bang-Jensen, Frank, and Jackson (1995).

� Numerical evaluation of our algorithm: performs much better
than a 3-approximation in practice.



A Tree for Orienteering

Throughout, let P∗ be walk from r with length ≤ B visiting the
maximum number (say OPT ) of nodes.

This Talk: About finding a tree/branching T with cost(T ) ≤ B
that includes ≥ OPT nodes (not quite, but bear with me).

How does this help?
Let v ′ be the farthest (from r) node lying on P

∗. Including the
reverse of all edges not on the r − v ′ walk yields a walk with cost≤ D + (D − cost(r , v ′)).



Split the walk into two walks with costs ≤ D and ≤ D − cost(r , v ′).
Turn the latter into a proper walk from r with additional cost at
most cost(r , v ′).

At least one of these two solutions (both having cost ≤ B) will
cover ≥ OPT �2 nodes.



How to Get the Trees

Instead of viewing the edge-cost as a hard constraint, do the
following.

Lagrangian Relaxation
Let � ≥ 0 be some value.

Find a tree T with minimum prize-collecting cost:

cost(T ) + � ⋅ (�V � − �V (T )�)
i.e. also pay � for each node you do not include on T .



Observations

� � = 0: V (T ) = {r}.
� �→∞: V (T ) = V .

Hope: For some “intermediate” value �, cost(T ) = B .

For such a tree T :

B + � ⋅ (�V � − �V (T )�) ≤ cost(P∗) + � ⋅ (�V � −OPT )
≤ B + � ⋅ (�V � −OPT )

Great! We can turn it into 2 feasible walks one of which visits≥ OPT �2 nodes.



Two Issues

1) We might not be able to get a � such that cost(T ) = B .
Standard fix, not discussed here (but lose a bit: gets a feasible
orienteering solution with ≥ OPT �3 nodes).

2) It is actually still hard to find the minimum prize-collecting cost
tree T .

Our Real Result
An e�cient combinatorial algorithm that finds a r -rooted tree T

whose prize-collecting cost is at most the prize collecting cost of
any r -walk.

But first, let’s quickly see how this was done before our fast
algorithm.



Decomposing Preflow Graphs

Preflow Graphs: Let G = (V ,E) be a directed graph such that
indegree(v) ≥ outdegree(v) for all but one root node r .

For a node v ≠ r , let µv be the minimum number of edges we must
delete to make v not reachable from r .



Bang-Jensen et al. Decompositions

Theorem (Bang-Jensen, Frank, Jackson, 1995)

Can partition (a subset of) E into r-branchings so each v ∈ V lies

on ≥ µv branchings.

r-Branching: Has a unique path from r to every other node on
the branching (directed tree), but maybe doesn’t include all nodes.



Leads to a linear-programming based algorithm for the
Orienteering problem.

Variables

� xu,v for an arc (u, v) indicating we include (u, v) on the walk.

� zv for a vertex v indicating v will be excluded from the walk.

minimize: ∑(u,v) cost(u, v) ⋅ xu,v +∑v≠r � ⋅ zv
subject to:

x(�in(v)) ≥ x(�out(v)) ∀ v ≠ r (preflow)
x(�in(S)) ≥ 1 − zv ∀ v ≠ r ,{v} ⊆ S ⊆ V − {r} (connectivity)
x(�out(r)) = 1

z ∈ [0,1]V−{r}
x ≥ RE≥0

Since the optimum Orienteering solution “is” a feasible solution,
the optimum LP solution is at most B + � ⋅ (�V � −OPT ).



Can compute an optimal solution (x∗, z∗) with rational entries.
Let � be such that � ⋅ (x∗, z∗) is an integer vector.

Consider the preflow multigraph having � ⋅ x∗u,v copies of (u, v).
Do the decomposition: get � edge-disjoint branchings such that
each v lies on � ⋅ (1 − zv) of them.

Keep the branching with minimum prize-collecting cost.



Phew, that’s quite a bit of work to get a single tree.

Involves solving a large linear program (O(n2) variables, many
constraints). Very impractical.

In what follows, we discuss an approach that does not use linear
programming. It can’t be applied to all problems that use the
Bang-Jensen et al. decomposition, but it can for Orienteering and
a few other vehicle routing problems.



Part 2

A combinatorial algorithm to find such an
r -branching.

Can be seen as a generalization of Edmonds’ minimum-cost
arborescence algorithm.



Restating the Problem

Let G = (V ,E) be a directed graph with a root node r , edge costs
cost(u, v), vertex penalties �(v).
Want to find a r -branching T minimizing:

cost(T ) + �
v∉V (T)

�(v).

That’s hard to do, but for vehicle-routing applications it su�ces to
find such a branching whose prize-collecting cost is at most that of
any walk P .



Adjusts Costs/Penalties
Suppose we subtracted ✓(v) from all edges (u, v) and also from
�(v) for each v ∈ V − {r}.
Let ⇥ = ∑v∈V−{r} ✓(v) and cost

′,�′ denote the new
costs/penalties.

Lemma

For any r -walk P ,

cost
′(P) + �

v∉V (P)
�′(v) +⇥ ≤ cost(P) + �

v∉V (P)
�(v).



Super-Easy Case

In the modified graph, if r can reach every node using only 0-cost
edges, then output any single r -branching T spanning V using
these edges.

The original cost of these edges is exactly ⇥ and the previous
lemma shows ⇥ ≤ cost(P) +∑v∉V (P) �(v).



0-Cost Cycles

If there is a cycle C of 0-cost edges in the modified graph, contract
them to a single vertex vC with penalty ∑v∈C �′(v).

Any walk P in G naturally maps to a walk in this new graph with
no worse prize-collecting cost.



Conversely, when we eventuallyt an r -branching T in this
contracted graph we can turn it into an r -branching in G with no
greater prize-collecting cost. If vC ∉ V (T ), do nothing. Otherwise,
expand it as follows:



Final Case: A Node Dies

If �′(v) = 0 for some v ∈ V − {r}, we “bypass it” and remove it.

Any walk P naturally maps to a walk in this new graph with no
greater prize-collecting cost.



Final Case: A Node Dies

After finding r -branching T , do the following. For every bypassing
edge (u,w) used on T , remove it and replace with (u, v), (v ,w).



Summary

Given (G , cost,�, r), compute ✓(v) and modified costs/penalties
cost

′,�′.

� If r can reach every v ∈ V using 0-cost edges, pick any
r -branching (eg. a search tree).

� Else, if there is a cycle C of 0-cost edges then contract it,
recursively find an r -branching, and expand vC as described if
it lies on T .

� Else, pick any �′(v) = 0 node, bypass it, recursively find an
r -branching T , and adjust any bypassing edge as described.

In any case, we get an r -branching in G .



Summary

A careful inspection shows this runs in cubic time (in �V �):
� At most �V � “reductions” (cycle contractions or node

deletions).

� Each runs in O(�E �) time, note �E � < �V �2 since we ensure the
graph is simple.

Theorem (Dezfuli, F., Post, Swamy, 2022)

There is an O(�V �3) time algorithm that finds an r -branching T

such that

cost(T ) + �
v∉V (T)

�(v) ≤ cost(P) + �
v∉V (P)

for any r -walk P .



Notes

The bottleneck in the running time bypassing a dead node: even if�E � = O(�V �) (like a road network), it could be that �E ′� = ⌦(�V �2)
after a single bypassing step.

Open Problem: Do the bypassing implicitly, manage necessary
information about bypassing/restoring with dynamic trees (eg.
link/cut trees) rather than generating a bunch of new edges.

Standard techniques can handle other parts. The hope would be to
reduce the running time to O(�E � log �E �).
Open Problem: If you look at the reason we lost a factor of 3
instead of 2 in the “Lagrangification step”, it seems unsatisfactory.
Better analysis? Better approach?



Notes
Numerical evaluation. Using TSPLIB datasets with B = OPTTSP�2
(as in previous work).

i.e. often visits at least 0.8 ⋅OPT nodes.

Works in a few minutes on instances with ∼ 200 nodes (recall the
final running time of Orienteering is Õ(n4): a linear-factor is lost
in the Lagrangification part).




