Prize-Collecting Walks and Branchings in Directed Graphs

Zac Friggstad (an UNIVERSITYOF

Alberta-Montana Combinatorics \& Algorithms Days at BIRS, 2022

Collaborators

Chaitanya Swamy - U. Waterloo (Faculty)

Sina Dezfuli - U. Alberta (M. Sc.)

Ian Post - U. Waterloo (PDF)

Part 1

A vehicle routing problem (i.e. motivation).

This talk is about finding "good" walks/trees in graphs with applications variants of the Traveling Salesperson Problem (TSP).

Classic TSP
Visit all locations and return home as cheaply as possible.

Very simple heuristic: find the cheapest connected subgraph T and do a depth-first traversal.

The solution has cost ≤ 2 times the optimum TSP tour cost.
A very brief history:

- Christofides-Serdyukov (1976): a simple 1.5-approximation.
- Karlin, Klein, Oveis Gharan (2021): slightly better

All start with a low-cost connected subgraph and augment it as cheaply as possible to get a tour spanning all nodes.

Related Problem - Orienteering

Visit as many nodes as you can in 8 hours.

Precisely: Given a start node r (depot) and a budget B, find an r-walk with cost $\leq B$ visiting as many nodes as possible.

This Talk: Symmetric distances: $\operatorname{cost}(u, v)=\operatorname{cost}(v, u)$.
But good to think of edges as directed $(u, v) \neq(v, u)$.
Other variants are studied (eg. end where you start).

Brief history

- O (1)-approximations are possible. Best is by Chekuri, Korula, and Ene: $2+\epsilon$ in $|V|^{O(1 / \epsilon)}$ time ($n=\#$ nodes). (2012)
- No approximation prior to our work would work in practice (way too slow). All fast heuristics that were proposed could behave terribly in some cases.

Our Work

- A 3-approximation in time $\tilde{O}\left(|V|^{4}\right)$. Easy to implement. Trivial to parallelize to run in $\tilde{O}\left(|V|^{3}\right)$ time using $|V|$ processors.
- A fast, combinatorial algorithm that finds branchings (maybe-not-spanning trees) with low "cost" in directed graphs. Inspired by a particular directed graph decomposition by Bang-Jensen, Frank, and Jackson (1995).
- Numerical evaluation of our algorithm: performs much better than a 3-approximation in practice.

A Tree for Orienteering

Throughout, let P^{*} be walk from r with length $\leq B$ visiting the maximum number (say OPT) of nodes.

This Talk: About finding a tree/branching T with $\operatorname{cost}(T) \leq B$ that includes $\geq O P T$ nodes (not quite, but bear with me).

How does this help?
Let v^{\prime} be the farthest (from r) node lying on P^{*}. Including the reverse of all edges not on the $r-v^{\prime}$ walk yields a walk with cost $\leq D+\left(D-\operatorname{cost}\left(r, \overline{\left.v^{\prime}\right)}\right)\right.$.

Split the walk into two walks with costs $\leq \theta$ and $\leq \theta-\operatorname{cost}\left(r, v^{\prime}\right)$. Turn the latter into a proper walk from r with additional cost at most $\operatorname{cost}\left(r, v^{\prime}\right)$.

$$
\angle B-\operatorname{cost}\left(r, v^{\prime}\right)
$$

At least one of these two solutions (both having cost $\leq B$) will cover $\geq O P T / 2$ nodes.

How to Get the Trees

Instead of viewing the edge-cost as a hard constraint, do the following.

Lagrangian Relaxation

Let $\lambda \geq 0$ be some value.
Find a tree T with minimum prize-collecting cost:

$$
\operatorname{cost}(T)+\lambda \cdot(|V|-|V(T)|)
$$

i.e. also pay λ for each node you do not include on T.

Observations

- $\lambda=0: V(T)=\{r\} . \quad \cos t(\tau)=0$
- $\lambda \rightarrow \infty: V(T)=V \cdot \operatorname{cost}(T)>B$

Hope: For some "intermediate" value $\lambda, \operatorname{cost}(T)=B$.
$\cos t(T)=0$
For such a tree T :

$$
\begin{aligned}
B+\lambda \cdot(|V|-|V(T)|) & \leq \operatorname{cost}\left(P^{*}\right)+\lambda \cdot(|V|-O P T) \\
& \leq B+\lambda \cdot(|V|-O P T)
\end{aligned}
$$

Great! We can turn it into 2 feasible walks one of which visits $\geq O P T / 2$ nodes.

Two Issues

1) We might not be able to get a λ such that $\operatorname{cost}(T)=B$. Standard fix, not discussed here (but lose a bit: gets a feasible orienteering solution with $\geq O P T / 3$ nodes).
2) It is actually still hard to find the minimum prize-collecting cost tree T.

Our Real Result
An efficient combinatorial algorithm that finds a r-rooted tree T whose prize-collecting cost is at most the prize collecting cost of any r-walk.

But first, let's quickly see how this was done before our fast algorithm.

Decomposing Preflow Graphs

Preflow Graphs: Let $G=(V, E)$ be a directed graph such that indegree (v) \geq outdegree (v) for all but one root node r.

For a node $v \neq r$, let μ_{v} be the minimum number of edges we must delete to make v not reachable from r.

Bang-Jensen et al. Decompositions

Theorem (Bang-Jensen, Frank, Jackson, 1995)

Can partition (a subset of) E into r-branchings so each $v \in V$ lies on $\geq \mu_{v}$ branchings.

r-Branching: Has a unique path from r to every other node on the branching (directed tree), but maybe doesn't include all nodes.

Leads to a linear-programming based algorithm for the Orienteering problem.

Variables

- $x_{u, v}$ for an arc (u, v) indicating we include (u, v) on the walk.
- z_{v} for a vertex v indicating v will be excluded from the walk.
minimize: $\sum_{(u, v)} \operatorname{cost}(u, v) \cdot x_{u, v}+\sum_{v \neq r} \lambda \cdot z_{v}$
subject to:

$$
\begin{aligned}
x\left(\delta^{\text {in }}(v)\right) & \geq x\left(\delta^{\text {out }}(v)\right) & \forall v \neq r & \\
x\left(\delta^{\text {in }}(S)\right) & \geq 1-z_{v} & \forall v \neq r,\{v\} \subseteq S \subseteq V-\{r\} & \text { (connectivity } \\
x\left(\delta^{\text {out }}(r)\right) & =1 & & \\
z & \in[0,1]^{v-\{r\}} & & \\
x & \geq \mathbb{R}_{\geq 0}^{E} & &
\end{aligned}
$$

Since the optimum Orienteering solution "is" a feasible solution, the optimum LP solution is at most $B+\lambda \cdot(|V|-O P T)$.

Can compute an optimal solution $\left(x^{*}, z^{*}\right)$ with rational entries. Let Δ be such that $\Delta \cdot\left(x^{*}, z^{*}\right)$ is an integer vector.

Consider the preflow multigraph having $\Delta \cdot x_{u, v}^{*}$ copies of (u, v). Do the decomposition: get Δ edge-disjoint branchings such that each v lies on $\Delta \cdot\left(1-z_{v}\right)$ of them.

Keep the branching with minimum prize-collecting cost.

Phew, that's quite a bit of work to get a single tree.
Involves solving a large linear program ($O\left(n^{2}\right)$ variables, many constraints). Very impractical.

In what follows, we discuss an approach that does not use linear programming. It can't be applied to all problems that use the Bang-Jensen et al. decomposition, but it can for Orienteering and a few other vehicle routing problems.

Part 2

A combinatorial algorithm to find such an r-branching.

Can be seen as a generalization of Edmonds' minimum-cost arborescence algorithm.

Restating the Problem

Let $G=(V, E)$ be a directed graph with a root node r, edge costs $\operatorname{cost}(u, v)$, vertex penalties $\lambda(v)$.

Want to find a r-branching T minimizing:

$$
\cos t(T)+\sum_{v \notin V(T)} \lambda(v) .
$$

That's hard to do, but for vehicle-routing applications it suffices to find such a branching whose prize-collecting cost is at most that of any walk P.

Adjusts Costs/Penalties

Suppose we subtracted $\theta(v)$ from all edges (u, v) and also from $\lambda(v)$ for each $v \in V-\{r\}$.

Let $\Theta=\sum_{v \in V-\{r\}} \theta(v)$ and $\cos ^{\prime}, \lambda^{\prime}$ denote the new costs/penalties.

Lemma

For any r-walk P,

$$
\operatorname{cost}^{\prime}(P)+\sum_{v \notin V(P)} \lambda^{\prime}(v)+\Theta \leq \cos t(P)+\sum_{v \notin V(P)} \lambda(v) .
$$

$$
\lambda^{\prime}(v)=1
$$

Super-Easy Case

In the modified graph, if r can reach every node using only 0 -cost edges, then output any single r-branching T spanning V using these edges.

The original cost of these edges is exactly Θ and the previous lemma shows $\Theta \leq \operatorname{cost}(P)+\sum_{v \notin V(P)} \lambda(v)$.

0 -Cost Cycles

If there is a cycle C of 0 -cost edges in the modified graph, contract them to a single vertex v_{C} with penalty $\sum_{v \in C} \lambda^{\prime}(v)$.

Any walk P in G naturally maps to a walk in this new graph with no worse prize-collecting cost.

Conversely, when we eventuallyt an r-branching T in this contracted graph we can turn it into an r-branching in G with no greater prize-collecting cost. If $v_{C} \notin V(T)$, do nothing. Otherwise, expand it as follows:

Final Case: A Node Dies

If $\lambda^{\prime}(v)=0$ for some $v \in V-\{r\}$, we "bypass it" and remove it.

Any walk P naturally maps to a walk in this new graph with no greater prize-collecting cost.

Final Case: A Node Dies

After finding r-branching T, do the following. For every bypassing edge (u, w) used on T, remove it and replace with $(u, v),(v, w)$.

\Rightarrow

Summary

Given ($G, \operatorname{cost}, \lambda, r$), compute $\theta(v)$ and modified costs/penalties $\cos ^{\prime}, \lambda^{\prime}$.

- If r can reach every $v \in V$ using 0-cost edges, pick any r-branching (eg. a search tree).
- Else, if there is a cycle C of 0 -cost edges then contract it, recursively find an r-branching, and expand v_{C} as described if it lies on T.
- Else, pick any $\lambda^{\prime}(v)=0$ node, bypass it, recursively find an r-branching T, and adjust any bypassing edge as described.

In any case, we get an r-branching in G.

Summary

A careful inspection shows this runs in cubic time (in $|V|$):

- At most $|V|$ "reductions" (cycle contractions or node deletions).
- Each runs in $O(|E|)$ time, note $|E|<|V|^{2}$ since we ensure the graph is simple.

Theorem (Dezfuli, F., Post, Swamy, 2022)

There is an $O\left(|V|^{3}\right)$ time algorithm that finds an r-branching T such that

$$
\operatorname{cost}(T)+\sum_{v \notin V(T)} \lambda(v) \leq \cos t(P)+\sum_{v \notin V(P)}
$$

for any r-walk P.

Notes

The bottleneck in the running time bypassing a dead node: even if $|E|=O(|V|)$ (like a road network), it could be that $\left|E^{\prime}\right|=\Omega\left(|V|^{2}\right)$ after a single bypassing step.

Open Problem: Do the bypassing implicitly, manage necessary information about bypassing/restoring with dynamic trees (eg. link/cut trees) rather than generating a bunch of new edges.

Standard techniques can handle other parts. The hope would be to reduce the running time to $O(|E| \log |E|)$.

Open Problem: If you look at the reason we lost a factor of 3 instead of 2 in the "Lagrangification step", it seems unsatisfactory. Better analysis? Better approach?

Notes

Numerical evaluation. Using TSPLIB datasets with $B=O P T_{T S P} / 2$ (as in previous work).

i.e. often visits at least $0.8 \cdot$ OPT nodes.

Works in a few minutes on instances with ~ 200 nodes (recall the final running time of Orienteering is $\tilde{O}\left(n^{4}\right)$: a linear-factor is lost in the Lagrangification part).

