Critical cases of circulant partial Hadamard matrices

R. Craigen Dept of Mathematics University of Manitoba

PMDW 2016

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

EG: Writing $A = \operatorname{circ}_m(a_1, \ldots, a_n)$

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

EG: Writing $A = \operatorname{circ}_m(a_1, \ldots, a_n)$,

$$\operatorname{circ}_2(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$$

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A = \operatorname{circ}_m(a_1, \dots, a_n)$, $\operatorname{circ}_2(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$, $\operatorname{circ}_3(a, b) = \begin{pmatrix} a & b \\ b & a \\ a & b \end{pmatrix}$

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing
$$A = \operatorname{circ}_m(a_1, \dots, a_n)$$
,
 $\operatorname{circ}_2(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$, $\operatorname{circ}_3(a, b) = \begin{pmatrix} a & b \\ b & a \\ a & b \end{pmatrix}$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in \{\pm 1\}^{k \times n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing
$$A = \operatorname{circ}_m(a_1, \dots, a_n)$$
,
 $\operatorname{circ}_2(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$, $\operatorname{circ}_3(a, b) = \begin{pmatrix} a & b \\ b & a \\ a & b \end{pmatrix}$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in \{\pm 1\}^{k \times n}$ satisfying

$$HH^{\top} = nI_k.$$

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing
$$A = \operatorname{circ}_m(a_1, \dots, a_n)$$
,
 $\operatorname{circ}_2(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$, $\operatorname{circ}_3(a, b) = \begin{pmatrix} a & b \\ b & a \\ a & b \end{pmatrix}$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in \{\pm 1\}^{k \times n}$ satisfying

$$HH^{\top} = nI_k.$$

A third parameter r gives the sum along the first row of H.

A matrix $A \in \mathbb{R}^{m \times n}$ is **circulant** if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing
$$A = \operatorname{circ}_m(a_1, \dots, a_n)$$
,
 $\operatorname{circ}_2(a, b, c) = \begin{pmatrix} a & b & c \\ c & a & b \end{pmatrix}$, $\operatorname{circ}_3(a, b) = \begin{pmatrix} a & b \\ b & a \\ a & b \end{pmatrix}$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in \{\pm 1\}^{k \times n}$ satisfying

$$HH^{\top} = nI_k.$$

A third parameter r gives the sum along the first row of H.

We denote such *H* by r- $H(k \times n)$.

The title slide displays a $0-H(7 \times 16)$

The title slide displays a $0-H(7 \times 16)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $0-H(2 \times 4)$:

The title slide displays a $0-H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The title slide displays a 0- $H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 $0-H(3 \times 8)$:

The title slide displays a 0- $H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

0-
$$H(3 \times 8)$$
: circ_{3×8}(111 - 1 - --)

The title slide displays a $0-H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

0- $H(3 \times 8)$: circ_{3×8}(111 - 1 - --)

 $2-H(4 \times 8)$:

The title slide displays a $0-H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

0-
$$H(3 \times 8)$$
: circ_{3×8}(111 - 1 - --)

2- $H(4 \times 8)$: circ_{4×8}(1 - 1111 - -)

The title slide displays a $0-H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

0-
$$H(3 \times 8)$$
: circ_{3×8}(111 - 1 - --)

2- $H(4 \times 8)$: circ_{4×8}(1 - 1111 - -)

 $4-H(4 \times 8)$:

The title slide displays a $0-H(7 \times 16)$

0-
$$H(2 \times 4)$$
: circ_{2×4}(11 - -) = $\begin{pmatrix} 1 & 1 & - & - \\ - & 1 & 1 & - \end{pmatrix}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

0-
$$H(3 \times 8)$$
: circ_{3×8}(111 - 1 - --)

2- $H(4 \times 8)$: circ_{4×8}(1 - 1111 - -)

4- $H(4 \times 8)$: circ_{4×8}(-111 - 111)

Applications

The study of CPHs arose out of a basic question in stream cypher cryptography

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Applications

The study of CPHs arose out of a basic question in stream cypher cryptography

An application has arisen in relation to study of fMRI technology (Lin et al 2017, Statistica Sinica

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Obs: If k = n, then $H = r - H(k \times n)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Verified to n = 548,964,900

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

Verified to n = 548,964,900 and for $n < 10^{11}$ with at most 3 exceptions (Schmidt).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

Verified to n = 548,964,900 and for $n < 10^{11}$ with at most 3 exceptions (Schmidt).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

There is a circulant H(n, 4)

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

Verified to n = 548,964,900 and for $n < 10^{11}$ with at most 3 exceptions (Schmidt).

There is a circulant H(n, 4)

$$H = \operatorname{circ}(-111) = \begin{pmatrix} - & 1 & 1 & 1 \\ 1 & - & 1 & 1 \\ 1 & 1 & - & 1 \\ 1 & 1 & 1 & - \end{pmatrix}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Row sum r = 2.

Obs: If k = n, then $H = r - H(k \times n) = r - H(n \times n)$ would be a *circulant* Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

Verified to n = 548,964,900 and for $n < 10^{11}$ with at most 3 exceptions (Schmidt).

There is a circulant H(n, 4)

$$H = \operatorname{circ}(-111) = \begin{pmatrix} - & 1 & 1 & 1 \\ 1 & - & 1 & 1 \\ 1 & 1 & - & 1 \\ 1 & 1 & 1 & - \end{pmatrix}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Row sum r = 2. So this is a 2- $H(4 \times 4)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• H = H(n), circulant

• H = H(n), circulant with row-sum r

•
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \leq n$,

•
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists

► H = H(n), circulant with row-sum r $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00
►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Easy to show: $r = \sqrt{n}$.
- ► So circulant *H*(*n*)

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

• So circulant
$$H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$$
.

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

• How common are $r - H(\frac{n}{2} \times n)$?

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• How common are $r - H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many 2- $H(\frac{n}{2} \times n)$ are known.

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known 4- $H(\frac{n}{2} \times n)$.

►
$$H = H(n)$$
, circulant with row-sum r
 $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known 4- $H(\frac{n}{2} \times n)$. (n = 8, 12, 28)

- ► H = H(n), circulant with row-sum r $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)
- Easy to show: $r = \sqrt{n}$.
- ▶ So circulant $H(n) \Rightarrow \sqrt{n} H(\frac{n}{2} \times n)$. (Necessary condition)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known $4-H(\frac{n}{2} \times n)$. (n = 8, 12, 28)
- Thus far no $r H(\frac{n}{2} \times n)$ are known with r > 4.

► H = H(n), circulant with row-sum r $\Rightarrow \forall k \le n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

▶ So circulant $H(n) \Rightarrow \sqrt{n} - H(\frac{n}{2} \times n)$. (Necessary condition)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known $4-H(\frac{n}{2} \times n)$. (n = 8, 12, 28)
- Thus far no $r H(\frac{n}{2} \times n)$ are known with r > 4.
- Much empirical evidence suggests that, for large n,

- ► H = H(n), circulant with row-sum r $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)
- Easy to show: $r = \sqrt{n}$.
- ▶ So circulant $H(n) \Rightarrow \sqrt{n} H(\frac{n}{2} \times n)$. (Necessary condition)
- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known 4- $H(\frac{n}{2} \times n)$. (n = 8, 12, 28)
- Thus far no $r H(\frac{n}{2} \times n)$ are known with r > 4.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► H = H(n), circulant with row-sum r $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)
- Easy to show: $r = \sqrt{n}$.
- ▶ So circulant $H(n) \Rightarrow \sqrt{n} H(\frac{n}{2} \times n)$. (Necessary condition)
- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known $4-H(\frac{n}{2} \times n)$. (n = 8, 12, 28)
- Thus far no $r H(\frac{n}{2} \times n)$ are known with r > 4.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Since we apparently cannot even approach the above necessary condition,

► H = H(n), circulant with row-sum r $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

- ▶ So circulant $H(n) \Rightarrow \sqrt{n} H(\frac{n}{2} \times n)$. (Necessary condition)
- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known $4-H(\frac{n}{2} \times n)$. (n = 8, 12, 28)
- Thus far no $r H(\frac{n}{2} \times n)$ are known with r > 4.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$
- Since we apparently cannot even approach the above necessary condition, failure of Ryser's conjecture is unlikely

► H = H(n), circulant with row-sum r $\Rightarrow \forall k \leq n, r - H(k \times n)$ exists (in particular $k = \frac{n}{2}$)

• Easy to show:
$$r = \sqrt{n}$$
.

- ▶ So circulant $H(n) \Rightarrow \sqrt{n} H(\frac{n}{2} \times n)$. (Necessary condition)
- How common are $r H(\frac{n}{2} \times n)$? And can we have $r \approx \sqrt{n}$?
- ▶ Infinitely many 2- $H(\frac{n}{2} \times n)$ are known. $(n = 2(p^t + 1))$
- There are three known $4-H(\frac{n}{2} \times n)$. (n = 8, 12, 28)
- Thus far no $r H(\frac{n}{2} \times n)$ are known with r > 4.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$
- Since we apparently cannot even approach the above necessary condition, failure of Ryser's conjecture is unlikely—even a near counterexample is improbable!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem: $r\sqrt{k} \le n$

<ロト < 団ト < 団ト < 団ト < 団ト 三 のへで</p>

Theorem: $r\sqrt{k} \le n$ **Sketch**: c_1, \ldots, c_n columns of *H*.

Theorem: $r\sqrt{k} \le n$ **Sketch**: c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^{\top} = rk$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \cdots | K)$

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \dots | K)$ $(\frac{n}{k}$ copies of a circulant H(k)).

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \dots | K)$ $(\frac{n}{k}$ copies of a circulant H(k)).

So modulo Ryser's conjecture, equality is impossible, k > 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \dots | K)$ $(\frac{n}{k}$ copies of a circulant H(k)).

So modulo Ryser's conjecture, equality is impossible, k > 4.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So
$$k \leq \left(\frac{n}{r}\right)^2$$
. What if $c = \frac{n}{r}$, $k = c^2 - 1$?

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \cdots | K)$ $(\frac{n}{k}$ copies of a circulant H(k)).

So modulo Ryser's conjecture, equality is impossible, k > 4.

So
$$k \leq \left(\frac{n}{r}\right)^2$$
. What if $c = \frac{n}{r}$, $k = c^2 - 1$?

Theorem If $H = r \cdot H((c^2 - 1) \times cr)$, then the only possible column sums of H are:

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \dots | K)$ $(\frac{n}{k}$ copies of a circulant H(k)).

So modulo Ryser's conjecture, equality is impossible, k > 4.

So
$$k \leq \left(\frac{n}{r}\right)^2$$
. What if $c = \frac{n}{r}$, $k = c^2 - 1$?

Theorem If $H = r - H((c^2 - 1) \times cr)$, then the only possible column sums of H are: $c - 1(\frac{r(c+1)}{2} \times)$

Theorem: $r\sqrt{k} \le n$ **Sketch:** c_1, \ldots, c_n columns of H. Sum of entries: $c_1 + \cdots + c_n = E_k H E_n^\top = rk$. Examine row sums of $HH^\top = kI$ two ways, gives $\sum c_i^2 = kn$ Cauchy-Schwartz inequality to vectors $(1 \ 1 \ \cdots \ 1)_k H$ and $(1 \ 1 \ \cdots \ 1)_n$ gives the relation.

Easy to show: If $r\sqrt{k} = n$ then k|n and $H = (K | K | \cdots | K)$ $(\frac{n}{k}$ copies of a circulant H(k)).

So modulo Ryser's conjecture, equality is impossible, k > 4.

So
$$k \leq \left(\frac{n}{r}\right)^2$$
. What if $c = \frac{n}{r}$, $k = c^2 - 1$?

Theorem If $H = r - H((c^2 - 1) \times cr)$, then the only possible column sums of H are: $c - 1(\frac{r(c+1)}{2} \times)$ and $c + 1(\frac{r(c-1)}{2} \times)$

(ロ)、(型)、(E)、(E)、 E) のQ(()

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure because it approaches the bound $r\sqrt{k} \leq n$.

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure because it approaches the bound $r\sqrt{k} \leq n$.

The condition $c\in\mathbb{Z}$ is constricting

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure because it approaches the bound $r\sqrt{k} \leq n$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The condition $c \in \mathbb{Z}$ is constricting.

Can't we just say $|k - c^2| \le 1$?

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure because it approaches the bound $r\sqrt{k} \leq n$.

The condition $c \in \mathbb{Z}$ is constricting.

Can't we just say $|k - c^2| \le 1$?

But there is a sensitive balance in how parameters force exactly two column sums.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure because it approaches the bound $r\sqrt{k} \leq n$.

The condition $c \in \mathbb{Z}$ is constricting.

Can't we just say $|k - c^2| \le 1$?

But there is a sensitive balance in how parameters force exactly two column sums.

Could there be <u>other</u> exact conditions on c, r, n approaching $r\sqrt{k} \le n$ and forcing similar structure?

The case

$$n = cr, k = c^2 - 1, c \in \mathbb{Z}$$

gives special structure because it approaches the bound $r\sqrt{k} \leq n$.

The condition $c \in \mathbb{Z}$ is constricting.

Can't we just say $|k - c^2| \le 1$?

But there is a sensitive balance in how parameters force exactly two column sums.

Could there be <u>other</u> exact conditions on c, r, n approaching $r\sqrt{k} \le n$ and forcing similar structure?

Initial attempts proved fruitless.
Parity turns out to be a critical issue in locating cases with threshold behaviour

(ロ)、(型)、(E)、(E)、 E) の(()

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where

1. $m \in \mathbb{Z}$

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where

- 1. $m \in \mathbb{Z}$;
- 2. *m* and *k* have opposite parity

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

where

1. $m \in \mathbb{Z}$; 2. m and k have opposite parity; and 3. $\delta \in [-1, 1)$.

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

where

1. $m \in \mathbb{Z}$; 2. m and k have opposite parity; and 3. $\delta \in [-1, 1)$.

Observe:

1. *m* and δ are uniquely determined by r, k, n

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

where

1. $m \in \mathbb{Z}$; 2. m and k have opposite parity; and 3. $\delta \in [-1, 1)$.

Observe:

1. *m* and δ are uniquely determined by r, k, n; 2. If $\frac{n}{r} = c \in \mathbb{Z}$, $k = c^2 - 1$ then $m = c, \delta = \frac{1}{c}$

Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose $\exists r - H(k \times n)$.

Write

$$\frac{kr}{n} = m + \delta$$

where

1. $m \in \mathbb{Z}$; 2. m and k have opposite parity; and 3. $\delta \in [-1, 1)$.

Observe:

1. *m* and δ are uniquely determined by r, k, n; 2. If $\frac{n}{r} = c \in \mathbb{Z}$, $k = c^2 - 1$ then $m = c, \delta = \frac{1}{c}$ (except when c = 1 which is impossible if k > 1)

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

・ロト・日本・ヨト・ヨー うへの

For $1 \leq i \leq k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$.

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For $1 \le i \le k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$. Then

$$\sum_{i=0}^{k} a_i = n$$

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For $1 \le i \le k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$. Then

$$\sum_{i=0}^{k} a_i = n, \tag{A}$$

and our sum of column squares result may be written

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For $1 \le i \le k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$. Then

$$\sum_{i=0}^{k} a_i = n, \tag{A}$$

and our sum of column squares result may be written

$$\sum_{i=0}^{k} i^2 a_i = nk \tag{B}$$

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For $1 \le i \le k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$. Then

$$\sum_{i=0}^{k} a_i = n, \tag{A}$$

and our sum of column squares result may be written

$$\sum_{i=0}^{k} i^2 a_i = nk \tag{B}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

<u>Note</u>: - column sums must have the same parity as k

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For $1 \le i \le k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$. Then

$$\sum_{i=0}^{k} a_i = n, \tag{A}$$

and our sum of column squares result may be written

$$\sum_{i=0}^{k} i^2 a_i = nk \tag{B}$$

<u>Note</u>: - column sums must have the same parity as k

- Therefore if $i \not\equiv k \pmod{2}$, then $a_i = 0$

For
$$i \in \{-k, -k+1, \dots, k-1, k\}$$
:
put b_i for $\#$ of columns of H with sum i .

For $1 \le i \le k$ write $a_i = b_i + b_{-i}$ and $a_0 = b_0$. Then

$$\sum_{i=0}^{k} a_i = n, \tag{A}$$

and our sum of column squares result may be written

$$\sum_{i=0}^{k} i^2 a_i = nk \tag{B}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

<u>Note</u>: - column sums must have the same parity as k

- Therefore if $i \not\equiv k \pmod{2}$, then $a_i = 0$
- This will be important later.

The sum of the entries of H is

The sum of the entries of H is

$$(b_1 - b_{-1}) + 2(b_2 - b_{-2}) + \cdots + k(b_k - b_{-k}) = rk.$$

・ロト・日本・ヨト・ヨー うへの

The sum of the entries of H is

$$(b_1 - b_{-1}) + 2(b_2 - b_{-2}) + \cdots + k(b_k - b_{-k}) = rk.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Now clearly, $a_i \geq b_i - b_{-i}$

The sum of the entries of H is

$$(b_1 - b_{-1}) + 2(b_2 - b_{-2}) + \cdots + k(b_k - b_{-k}) = rk.$$

Now clearly, $a_i \geq b_i - b_{-i}$

We infer that

$$a_1+2a_2+\cdots+ka_k=\sum_{i=0}^k ia_i\geq rk.$$
 (C)

(ロ)、(型)、(E)、(E)、 E) の(()

The sum of the entries of H is

$$(b_1 - b_{-1}) + 2(b_2 - b_{-2}) + \cdots + k(b_k - b_{-k}) = rk.$$

Now clearly, $a_i \geq b_i - b_{-i}$

We infer that

$$a_1+2a_2+\cdots+ka_k=\sum_{i=0}^k ia_i\geq rk.$$
 (C)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This is a very crude approximation

The sum of the entries of H is

$$(b_1 - b_{-1}) + 2(b_2 - b_{-2}) + \cdots + k(b_k - b_{-k}) = rk.$$

Now clearly, $a_i \geq b_i - b_{-i}$

We infer that

$$a_1+2a_2+\cdots+ka_k=\sum_{i=0}^kia_i\geq rk.$$
 (C)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This is a <u>very</u> crude approximation but it suffices to force threshold column-sum behaviour.

Consider

$$(m^2-1)(A) + (B) - 2m(C)$$

Consider

$$(m^2-1)(A) + (B) - 2m(C)$$

That is,

$$(m^2-1)\left(\sum a_i=n\right)+\left(\sum i^2a_i=nk\right)-2m\left(\sum ia_i\geq rk\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consider

$$(m^2-1)(A) + (B) - 2m(C)$$

That is,

$$(m^2-1)\left(\sum a_i=n\right)+\left(\sum i^2a_i=nk\right)-2m\left(\sum ia_i\geq rk\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

which simplifies to:

$$\sum \left[(m-i)^2 - 1 \right] a_i$$

Consider

$$(m^2-1)(A) + (B) - 2m(C)$$

That is,

$$(m^2-1)\left(\sum a_i=n\right)+\left(\sum i^2a_i=nk\right)-2m\left(\sum ia_i\geq rk\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

which simplifies to:

$$\sum \left[(m-i)^2-1
ight] a_i \qquad \leq n\left(m^2-1+k-2mrac{rk}{n}
ight)$$

Consider

$$(m^2-1)(A) + (B) - 2m(C)$$

That is,

$$(m^2-1)\left(\sum a_i=n\right)+\left(\sum i^2a_i=nk\right)-2m\left(\sum ia_i\geq rk\right)$$

which simplifies to:

$$\sum \left[(m-i)^2 - 1 \right] a_i \leq n \left(m^2 - 1 + k - 2m \frac{rk}{n} \right)$$
$$= n \left[\left(m - \frac{rk}{n} \right)^2 + k - 1 - \left(\frac{rk}{n} \right)^2 \right]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Consider

$$(m^2-1)(A) + (B) - 2m(C)$$

That is,

$$(m^2-1)\left(\sum a_i=n\right)+\left(\sum i^2a_i=nk\right)-2m\left(\sum ia_i\geq rk\right)$$

which simplifies to:

$$\sum \left[(m-i)^2 - 1 \right] a_i \leq n \left(m^2 - 1 + k - 2m \frac{rk}{n} \right)$$
$$= n \left[\left(m - \frac{rk}{n} \right)^2 + k - 1 - \left(\frac{rk}{n} \right)^2 \right]$$

(ロ)、(型)、(E)、(E)、 E) の(()

Now $m - \frac{rk}{n} = \delta$...

So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Recall m was chosen to have opposite parity to k

So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Recall m was chosen to have opposite parity to k
So when i, k have the same parity, m - i is odd.

So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall m was chosen to have opposite parity to k
So when i, k have the same parity, m - i is odd.
Recall when i, k have opposite parity, a_i = 0.

So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall m was chosen to have opposite parity to k

- So when i, k have the same parity, m i is odd.
- Recall when *i*, *k* have opposite parity, $a_i = 0$.
- ► Therefore LHS ≥ 0

So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall m was chosen to have opposite parity to k

- So when i, k have the same parity, m i is odd.
- Recall when *i*, *k* have opposite parity, $a_i = 0$.
- Therefore LHS ≥ 0 (another very crude estimate!)
So finally we have

$$\sum \left[(m-i)^2 - 1 \right] a_i \le n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right]. \qquad (*)$$

• Recall m was chosen to have opposite parity to k

- So when i, k have the same parity, m i is odd.
- Recall when *i*, *k* have opposite parity, $a_i = 0$.
- Therefore LHS ≥ 0 (another very crude estimate!)

• Therefore
$$\delta^2 + k - 1 - \left(\frac{kr}{n}\right)^2 \ge 0$$

and so

$$\left(\frac{rk}{n}\right)^2 + 1 \le k + \delta^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Which may be arranged as a quadratic inequality in k:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

(a concave-up parabola)

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(a concave-up parabola) so k cannot exceed the larger root:

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

(a concave-up parabola) so k cannot exceed the larger root:

$$k \leq \frac{1 + \sqrt{1 + \left(\delta^2 - 1\right)\left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

(a concave-up parabola) so k cannot exceed the larger root:

$$k \leq \frac{1 + \sqrt{1 + \left(\delta^2 - 1\right)\left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2},$$

yielding an upper bound on k.

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

(a concave-up parabola) so k cannot exceed the larger root:

$$k \leq \frac{1 + \sqrt{1 + \left(\delta^2 - 1\right)\left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2},$$

yielding an upper bound on k.

The case of equality makes the RHS of (*) equal to 0:

$$0 \leq \sum \left[(m-i)^2 - 1 \right] a_i \leq n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right] = 0$$

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

(a concave-up parabola) so k cannot exceed the larger root:

$$k \leq \frac{1 + \sqrt{1 + \left(\delta^2 - 1\right)\left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2},$$

yielding an upper bound on k.

The case of equality makes the RHS of (*) equal to 0:

$$0 \leq \sum \left[(m-i)^2 - 1 \right] a_i \leq n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right] = 0$$

Note $m - i \neq \pm 1$ implies $(m - i)^2 - 1 > 0$

・ロト・4回ト・4回ト・目・9900

Which may be arranged as a quadratic inequality in k:

$$\left(\frac{r}{n}\right)^2 k^2 - k + (1 - \delta^2) \le 0$$

(a concave-up parabola) so k cannot exceed the larger root:

$$k \leq \frac{1 + \sqrt{1 + \left(\delta^2 - 1\right)\left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2},$$

yielding an upper bound on k.

The case of equality makes the RHS of (*) equal to 0:

$$0 \leq \sum \left[(m-i)^2 - 1 \right] a_i \leq n \left[\delta^2 + k - 1 - \left(\frac{kr}{n} \right)^2 \right] = 0.$$

Note $m - i \neq \pm 1$ implies $(m - i)^2 - 1 > 0$, which forces $a_i = 0$.

So *H* has only two possible column sums, $i = m \pm 1$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

So H has only two possible column sums, $i = m \pm 1$. From our basic relations it is easy to work out how many of each.

So H has only two possible column sums, $i = m \pm 1$. From our basic relations it is easy to work out how many of each. We summarize.

So H has only two possible column sums, $i = m \pm 1$. From our basic relations it is easy to work out how many of each. We summarize.

Theorem (Threshold necessary conditions)

Suppose $\exists r - H(k \times n)$, and m, δ are as described. Then

1.
$$\left(\frac{rk}{n}\right)^2 + 1 \le k + \delta^2;$$

2. $k \le \frac{1 + \sqrt{1 + (\delta^2 - 1)\left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2}.$

3. If $\left(\frac{rk}{n}\right)^2 + 1 = k + \delta^2$ then all column sums are equal to $m \pm 1$; further there are

(a)
$$a_{m-1} = n \frac{1-\delta}{2}$$
 columns having sum $m-1$, and
(b) $a_{m+1} = n \frac{1+\delta}{2}$ columns having sum $m+1$.

$$k \leq rac{1+\sqrt{1+(\delta^2-1)\left(rac{2r}{n}
ight)^2}}{2\left(rac{r}{n}
ight)^2}$$
 looks problematic as δ depends on k .

$$k \leq \frac{1 + \sqrt{1 + (\delta^2 - 1) \left(\frac{2r}{n}\right)^2}}{2\left(\frac{r}{n}\right)^2} \text{ looks problematic as } \delta \text{ depends on } k.$$

Regard this as an upper bound for k among cases with constant δ .

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

$$k \leq rac{1+\sqrt{1+(\delta^2-1)\left(rac{2r}{n}
ight)^2}}{2\left(rac{r}{n}
ight)^2}$$
 looks problematic as δ depends on k

Regard this as an upper bound for k among cases with constant δ .

That is, among each residue class modulo $\frac{2n}{\gcd(r,2n)}$

$$k \leq rac{1+\sqrt{1+(\delta^2-1)\left(rac{2r}{n}
ight)^2}}{2\left(rac{r}{n}
ight)^2}$$
 looks problematic as δ depends on k

Regard this as an upper bound for k among cases with constant δ .

That is, among each residue class modulo $\frac{2n}{\gcd(r,2n)}$

So more than one k value may produce a threshold case!

$$k \leq rac{1+\sqrt{1+(\delta^2-1)\left(rac{2r}{n}
ight)^2}}{2\left(rac{r}{n}
ight)^2}$$
 looks problematic as δ depends on k

Regard this as an upper bound for k among cases with constant δ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

That is, among each residue class modulo $\frac{2n}{\gcd(r,2n)}$

So more than one k value may produce a threshold case!

We examine a few test cases.

Examination of 12- $H(k \times 36)$ for threshold cases

т	δ	Threshold inequality
0	$\frac{1}{3}$	Equality
1	$-\frac{1}{3}$	Satisfied
1	-1	Satisfied
1	$\frac{1}{3}$	Satisfied
2	$-\frac{1}{3}$	Satisfied
3	-1	Satisfied
2	$\frac{1}{3}$	Satisfied
3	$-\frac{1}{3}$	Equality
4	-1	Equality
3	$-\frac{1}{3}$	Violated
	m 0 1 1 2 3 2 3 4 3	$\begin{array}{c cccc} m & \delta \\ \hline 0 & \frac{1}{3} \\ 1 & -\frac{1}{3} \\ 1 & -1 \\ 1 & \frac{1}{3} \\ 2 & -\frac{1}{3} \\ 3 & -1 \\ 2 & \frac{1}{3} \\ 3 & -\frac{1}{3} \\ 3 & -\frac{1}{3} \\ 4 & -1 \\ 3 & -\frac{1}{3} \end{array}$

 $(n, r) = (36, 12); k_{max} = 8$

Examination of $10-H(k \times 40)$ for threshold cases

k	m	δ	Threshold inequality
1	0	$\frac{1}{4}$	Equality
2	1	$-\frac{1}{2}$	Satisfied
3	0	$\frac{3}{4}$	Satisfied
4	1	0	Satisfied
5	2	$-\frac{3}{4}$	Satisfied
6	1	$\frac{1}{2}$	Satisfied
7	2	$-\frac{1}{4}$	Satisfied
8	3	-1	Satisfied
9	2	$\frac{1}{4}$	Satisfied
10	3	$-\frac{1}{2}$	Satisfied
11	2	$\frac{3}{4}$	Satisfied
12	3	0	Satisfied
13	4	$-\frac{3}{4}$	Satisfied
14	3	$\frac{1}{2}$	Satisfied
15	4	$-\frac{1}{4}$	Equality
16	5	-1	Equality
17	4	$\frac{1}{4}$	Violated

æ

$$(n, r) = (40, 10)$$

 $k_{max} = 13$

Examination of 12- $H(k \times 40)$ for threshold cases

$(n, r) = (40, 12); k_{max} = 10$						
k	m	δ	Threshold inequality			
1	0	$\frac{3}{10}$	Equality			
2	1	$-\frac{2}{5}$	Satisfied			
3	0	$\frac{9}{10}$	Satisfied			
4	1	$\frac{1}{5}$	Satisfied			
5	2	$-\frac{1}{2}$	Satisfied			
6	1	$\frac{4}{5}$	Satisfied			
7	2	$\frac{1}{10}$	Satisfied			
8	3	$-\frac{3}{5}$	Satisfied			
9	2	$\frac{7}{10}$	Satisfied			
10	3	0	Equality			
11	4	$-\frac{7}{10}$	Violated			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Thanks for listening!

References

R. CRAIGEN, G. FAUCHER, R. LOW AND T. WARES, *Circulant partial Hadamard matrices*, LAA **439** (2013) pp. 3307–3317.

R. LOW, M. STAMP, R. CRAIGEN AND G. FAUCHER, Unpredictable binary strings, Congr. Numer. **177** (2005) 65?75.

H.J. RYSER, *Combinatorial Mathematics*, Carus Math. Monogr., v. **14**, MAA/John Wiley and Sons, 1963.

B. SCHMIDT, *Towards Ryser's Conjecture*, Proceedings of the Third European Congress of Mathematics (Birkhuser, Boston, 2001) 533-541.

Y-L. LIN, F. K. H PHOA AND M-H. KAO, *CPH Matrices: Construction via general difference sets and its application to FMRI Experiments*, Statistica Sinica **27**, 1715-1724.