Critical cases of circulant partial Hadamard matrices

R. Craigen
Dept of Mathematics
University of Manitoba

PMDW 2016

$$
\left(\begin{array}{cccccccccccccccc}
1 & 1 & 1 & - & 1 & - & - & 1 & - & - & - & - & 1 & 1 & 1 & - \\
- & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & - & - & 1 & 1 & 1 \\
1 & - & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & - & - & 1 & 1 \\
1 & 1 & - & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & - & - & 1 \\
1 & 1 & 1 & - & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & - & - \\
- & 1 & 1 & 1 & - & 1 & 1 & 1 & - & 1 & - & - & 1 & - & - & - \\
- & - & 1 & 1 & 1 & - & 1 & 1 & 1 & - & 1 & - & - & 1 & - & -
\end{array}\right)
$$

Circulant partial Hadamard matrices

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$,

$$
\operatorname{circ}_{2}(a, b, c)=\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right)
$$

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$,

$$
\operatorname{circ}_{2}(a, b, c)=\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right), \operatorname{circ}_{3}(a, b)=\left(\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right)
$$

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$,

$$
\operatorname{circ}_{2}(a, b, c)=\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right), \operatorname{circ}_{3}(a, b)=\left(\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right)
$$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in\{ \pm 1\}^{k \times n}$

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$,

$$
\operatorname{circ}_{2}(a, b, c)=\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right), \operatorname{circ}_{3}(a, b)=\left(\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right)
$$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in\{ \pm 1\}^{k \times n}$ satisfying

$$
H H^{\top}=n I_{k} .
$$

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$,

$$
\operatorname{circ}_{2}(a, b, c)=\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right), \operatorname{circ}_{3}(a, b)=\left(\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right)
$$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in\{ \pm 1\}^{k \times n}$ satisfying

$$
H H^{\top}=n I_{k} .
$$

A third parameter r gives the sum along the first row of H.

Circulant partial Hadamard matrices

A matrix $A \in \mathbb{R}^{m \times n}$ is circulant if each row after the first is a right cyclic shift of its predecessor by 1 position.

EG: Writing $A=\operatorname{circ}_{m}\left(a_{1}, \ldots, a_{n}\right)$,

$$
\operatorname{circ}_{2}(a, b, c)=\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right), \operatorname{circ}_{3}(a, b)=\left(\begin{array}{ll}
a & b \\
b & a \\
a & b
\end{array}\right)
$$

A circulant partial Hadamard matrix is a (rectangular) circulant matrix $H \in\{ \pm 1\}^{k \times n}$ satisfying

$$
H H^{\top}=n I_{k} .
$$

A third parameter r gives the sum along the first row of H.
We denote such H by $r-H(k \times n)$.

Examples

The title slide displays a $0-H(7 \times 16)$

Examples

The title slide displays a $0-H(7 \times 16)$
$0-H(2 \times 4)$:

Examples

The title slide displays a $0-H(7 \times 16)$

$$
0-H(2 \times 4): \quad \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right)
$$

Examples

The title slide displays a $0-H(7 \times 16)$

$$
\begin{aligned}
& 0-H(2 \times 4): \quad \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right) \\
& 0-H(3 \times 8):
\end{aligned}
$$

Examples

The title slide displays a $0-H(7 \times 16)$

$$
\begin{array}{ll}
0-H(2 \times 4): & \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right) \\
0-H(3 \times 8): & \operatorname{circ}_{3 \times 8}(111-1---)
\end{array}
$$

Examples

The title slide displays a $0-H(7 \times 16)$

$$
\begin{array}{ll}
0-H(2 \times 4): & \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right) \\
0-H(3 \times 8): & \operatorname{circ}_{3 \times 8}(111-1---)
\end{array}
$$

$2-H(4 \times 8)$:

Examples

The title slide displays a $0-H(7 \times 16)$

$$
\begin{array}{ll}
0-H(2 \times 4): & \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right) \\
0-H(3 \times 8): & \operatorname{circ}_{3 \times 8}(111-1---) \\
2-H(4 \times 8): & \operatorname{circ}_{4 \times 8}(1-1111--)
\end{array}
$$

Examples

The title slide displays a $0-H(7 \times 16)$

$$
\begin{array}{ll}
0-H(2 \times 4): & \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right) \\
0-H(3 \times 8): & \operatorname{circ}_{3 \times 8}(111-1---) \\
2-H(4 \times 8): & \operatorname{circ}_{4 \times 8}(1-1111--)
\end{array}
$$

$4-H(4 \times 8)$:

Examples

The title slide displays a $0-H(7 \times 16)$

$$
\begin{array}{ll}
0-H(2 \times 4): & \operatorname{circ}_{2 \times 4}(11--)=\left(\begin{array}{cccc}
1 & 1 & - & - \\
- & 1 & 1 & -
\end{array}\right) \\
0-H(3 \times 8): & \operatorname{circ}_{3 \times 8}(111-1---)
\end{array}
$$

$$
2-H(4 \times 8): \quad \quad \operatorname{circ}_{4 \times 8}(1-1111--)
$$

$$
4-H(4 \times 8): \quad \quad \operatorname{circ}_{4 \times 8}(-111-111)
$$

Applications

The study of CPHs arose out of a basic question in stream cypher cryptography

Applications

The study of CPHs arose out of a basic question in stream cypher cryptography

An application has arisen in relation to study of fMRI technology (Lin et al 2017, Statistica Sinica

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)$

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order n

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Conjecture(Ryser): If $n>4$ then there is no circulant $H(n)$.

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Conjecture(Ryser): If $n>4$ then there is no circulant $H(n)$.
Verified to $n=548,964,900$

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Conjecture(Ryser): If $n>4$ then there is no circulant $H(n)$.
Verified to $n=548,964,900$ and for $n<10^{11}$ with at most 3 exceptions (Schmidt).

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Conjecture(Ryser): If $n>4$ then there is no circulant $H(n)$.
Verified to $n=548,964,900$ and for $n<10^{11}$ with at most 3 exceptions (Schmidt).

There is a circulant $H(n, 4)$

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Conjecture(Ryser): If $n>4$ then there is no circulant $H(n)$.
Verified to $n=548,964,900$ and for $n<10^{11}$ with at most 3 exceptions (Schmidt).

There is a circulant $H(n, 4)$

$$
H=\operatorname{circ}(-111)=\left(\begin{array}{cccc}
- & 1 & 1 & 1 \\
1 & - & 1 & 1 \\
1 & 1 & - & 1 \\
1 & 1 & 1 & -
\end{array}\right)
$$

Row sum $r=2$.

Ryser's Conjecture about circulant Hadamard matrices

Obs: If $k=n$, then $H=r-H(k \times n)=r-H(n \times n)$ would be a circulant Hadamard matrix of order $n, H=H(n)$.

Conjecture(Ryser): If $n>4$ then there is no circulant $H(n)$.
Verified to $n=548,964,900$ and for $n<10^{11}$ with at most 3 exceptions (Schmidt).

There is a circulant $H(n, 4)$

$$
H=\operatorname{circ}(-111)=\left(\begin{array}{cccc}
- & 1 & 1 & 1 \\
1 & - & 1 & 1 \\
1 & 1 & - & 1 \\
1 & 1 & 1 & -
\end{array}\right)
$$

Row sum $r=2$. So this is a $2-H(4 \times 4)$.

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n,
$$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists }
$$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r $\Rightarrow \forall k \leq n, r-H(k \times n)$ exists (in particular $k=\frac{n}{2}$)
- Easy to show: $r=\sqrt{n}$.

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r $\Rightarrow \forall k \leq n, r-H(k \times n)$ exists (in particular $k=\frac{n}{2}$)
- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n)$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r $\Rightarrow \forall k \leq n, r-H(k \times n)$ exists (in particular $k=\frac{n}{2}$)
- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$.

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r $\Rightarrow \forall k \leq n, r-H(k \times n)$ exists (in particular $k=\frac{n}{2}$)
- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$?

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known.

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known 4-H $\left(\frac{n}{2} \times n\right)$.

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known $4-H\left(\frac{n}{2} \times n\right) .(n=8,12,28)$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known $4-H\left(\frac{n}{2} \times n\right) .(n=8,12,28)$
- Thus far no $r-H\left(\frac{n}{2} \times n\right)$ are known with $r>4$.

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known $4-H\left(\frac{n}{2} \times n\right) .(n=8,12,28)$
- Thus far no $r-H\left(\frac{n}{2} \times n\right)$ are known with $r>4$.
- Much empirical evidence suggests that, for large n,

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known $4-H\left(\frac{n}{2} \times n\right) .(n=8,12,28)$
- Thus far no $r-H\left(\frac{n}{2} \times n\right)$ are known with $r>4$.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known 4-H $\left(\frac{n}{2} \times n\right)$. $(n=8,12,28)$
- Thus far no $r-H\left(\frac{n}{2} \times n\right)$ are known with $r>4$.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$
- Since we apparently cannot even approach the above necessary condition,

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known $4-H\left(\frac{n}{2} \times n\right)$. $(n=8,12,28)$
- Thus far no $r-H\left(\frac{n}{2} \times n\right)$ are known with $r>4$.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$
- Since we apparently cannot even approach the above necessary condition, failure of Ryser's conjecture is unlikely

Heuristic approach to Ryser's conjecture

- $H=H(n)$, circulant with row-sum r

$$
\Rightarrow \forall k \leq n, r-H(k \times n) \text { exists (in particular } k=\frac{n}{2} \text {) }
$$

- Easy to show: $r=\sqrt{n}$.
- So circulant $H(n) \Rightarrow \sqrt{n}-H\left(\frac{n}{2} \times n\right)$. (Necessary condition)
- How common are $r-H\left(\frac{n}{2} \times n\right)$? And can we have $r \approx \sqrt{n}$?
- Infinitely many $2-H\left(\frac{n}{2} \times n\right)$ are known. $\left(n=2\left(p^{t}+1\right)\right)$
- There are three known $4-H\left(\frac{n}{2} \times n\right)$. $(n=8,12,28)$
- Thus far no $r-H\left(\frac{n}{2} \times n\right)$ are known with $r>4$.
- Much empirical evidence suggests that, for large $n, r \ll \sqrt{n}$
- Since we apparently cannot even approach the above necessary condition, failure of Ryser's conjecture is unlikely-even a near counterexample is improbable!

A relation between r, k, n

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$ Sketch: c_{1}, \ldots, c_{n} columns of H.

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} H$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} H$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$ ($\frac{n}{k}$ copies of a circulant $H(k)$).

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} H$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$ ($\frac{n}{k}$ copies of a circulant $H(k)$).

So modulo Ryser's conjecture, equality is impossible, $k>4$.

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} H$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$ ($\frac{n}{k}$ copies of a circulant $H(k)$).

So modulo Ryser's conjecture, equality is impossible, $k>4$.
So $k \leq\left(\frac{n}{r}\right)^{2}$. What if $c=\frac{n}{r}, k=c^{2}-1$?

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} H$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$ ($\frac{n}{k}$ copies of a circulant $H(k)$).

So modulo Ryser's conjecture, equality is impossible, $k>4$.
So $k \leq\left(\frac{n}{r}\right)^{2}$. What if $c=\frac{n}{r}, k=c^{2}-1$?
Theorem If $H=r-H\left(\left(c^{2}-1\right) \times c r\right)$, then the only possible column sums of H are:

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} \mathrm{H}$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$ ($\frac{n}{k}$ copies of a circulant $H(k)$).

So modulo Ryser's conjecture, equality is impossible, $k>4$.
So $k \leq\left(\frac{n}{r}\right)^{2}$. What if $c=\frac{n}{r}, k=c^{2}-1$?
Theorem If $H=r-H\left(\left(c^{2}-1\right) \times c r\right)$, then the only possible column sums of H are: $c-1\left(\frac{r(c+1)}{2} \times\right)$

A relation between r, k, n

Theorem: $r \sqrt{k} \leq n$
Sketch: c_{1}, \ldots, c_{n} columns of H.
Sum of entries: $c_{1}+\cdots+c_{n}=E_{k} H E_{n}^{\top}=r k$.
Examine row sums of $H H^{\top}=k l$ two ways, gives $\sum c_{i}^{2}=k n$
Cauchy-Schwartz inequality to vectors ($11 \cdots 1)_{k} H$ and $(11 \cdots 1)_{n}$ gives the relation.

Easy to show: If $r \sqrt{k}=n$ then $k \mid n$ and $H=(K|K| \cdots \mid K)$ ($\frac{n}{k}$ copies of a circulant $H(k)$).

So modulo Ryser's conjecture, equality is impossible, $k>4$.
So $k \leq\left(\frac{n}{r}\right)^{2}$. What if $c=\frac{n}{r}, k=c^{2}-1$?
Theorem If $H=r-H\left(\left(c^{2}-1\right) \times c r\right)$, then the only possible column sums of H are: $c-1\left(\frac{r(c+1)}{2} \times\right)$ and $c+1\left(\frac{r(c-1)}{2} \times\right)$

What if $\frac{n}{r}$ is not an integer?

What if $\frac{n}{r}$ is not an integer?
The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure

What if $\frac{n}{r}$ is not an integer?

The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure because it approaches the bound $r \sqrt{k} \leq n$.

What if $\frac{n}{r}$ is not an integer?

The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure because it approaches the bound $r \sqrt{k} \leq n$.
The condition $c \in \mathbb{Z}$ is constricting

What if $\frac{n}{r}$ is not an integer?

The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure because it approaches the bound $r \sqrt{k} \leq n$.
The condition $c \in \mathbb{Z}$ is constricting.
Can't we just say $\left|k-c^{2}\right| \leq 1$?

What if $\frac{n}{r}$ is not an integer?

The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure because it approaches the bound $r \sqrt{k} \leq n$.

The condition $c \in \mathbb{Z}$ is constricting.
Can't we just say $\left|k-c^{2}\right| \leq 1$?
But there is a sensitive balance in how parameters force exactly two column sums.

What if $\frac{n}{r}$ is not an integer?

The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure because it approaches the bound $r \sqrt{k} \leq n$.
The condition $c \in \mathbb{Z}$ is constricting.
Can't we just say $\left|k-c^{2}\right| \leq 1$?
But there is a sensitive balance in how parameters force exactly two column sums.

Could there be other exact conditions on c, r, n approaching $r \sqrt{k} \leq n$ and forcing similar structure?

What if $\frac{n}{r}$ is not an integer?

The case

$$
n=c r, k=c^{2}-1, c \in \mathbb{Z}
$$

gives special structure because it approaches the bound $r \sqrt{k} \leq n$.
The condition $c \in \mathbb{Z}$ is constricting.
Can't we just say $\left|k-c^{2}\right| \leq 1$?
But there is a sensitive balance in how parameters force exactly two column sums.

Could there be other exact conditions on c, r, n approaching $r \sqrt{k} \leq n$ and forcing similar structure?

Initial attempts proved fruitless.

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

where

1. $m \in \mathbb{Z}$

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

where

1. $m \in \mathbb{Z}$;
2. m and k have opposite parity

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

where

1. $m \in \mathbb{Z}$;
2. m and k have opposite parity; and
3. $\delta \in[-1,1)$.

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

where

1. $m \in \mathbb{Z}$;
2. m and k have opposite parity; and
3. $\delta \in[-1,1)$.

Observe:

1. m and δ are uniquely determined by r, k, n

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

where

1. $m \in \mathbb{Z}$;
2. m and k have opposite parity; and
3. $\delta \in[-1,1)$.

Observe:

1. m and δ are uniquely determined by r, k, n;
2. If $\frac{n}{r}=c \in \mathbb{Z}, k=c^{2}-1$ then $m=c, \delta=\frac{1}{c}$

A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose $\exists r-H(k \times n)$.
Write

$$
\frac{k r}{n}=m+\delta
$$

where

1. $m \in \mathbb{Z}$;
2. m and k have opposite parity; and
3. $\delta \in[-1,1)$.

Observe:

1. m and δ are uniquely determined by r, k, n;
2. If $\frac{n}{r}=c \in \mathbb{Z}, k=c^{2}-1$ then $m=c, \delta=\frac{1}{c}$ (except when $c=1$ which is impossible if $k>1$)

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$.

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$. Then

$$
\sum_{i=0}^{k} a_{i}=n
$$

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$. Then

$$
\begin{equation*}
\sum_{i=0}^{k} a_{i}=n \tag{A}
\end{equation*}
$$

and our sum of column squares result may be written

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$. Then

$$
\begin{equation*}
\sum_{i=0}^{k} a_{i}=n \tag{A}
\end{equation*}
$$

and our sum of column squares result may be written

$$
\begin{equation*}
\sum_{i=0}^{k} i^{2} a_{i}=n k \tag{B}
\end{equation*}
$$

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$. Then

$$
\begin{equation*}
\sum_{i=0}^{k} a_{i}=n \tag{A}
\end{equation*}
$$

and our sum of column squares result may be written

$$
\begin{equation*}
\sum_{i=0}^{k} i^{2} a_{i}=n k \tag{B}
\end{equation*}
$$

Note: - column sums must have the same parity as k

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$. Then

$$
\begin{equation*}
\sum_{i=0}^{k} a_{i}=n \tag{A}
\end{equation*}
$$

and our sum of column squares result may be written

$$
\begin{equation*}
\sum_{i=0}^{k} i^{2} a_{i}=n k \tag{B}
\end{equation*}
$$

Note: - column sums must have the same parity as k

- Therefore if $i \not \equiv k(\bmod 2)$, then $a_{i}=0$

Column sum relations

For $i \in\{-k,-k+1, \ldots, k-1, k\}$: put b_{i} for $\#$ of columns of H with sum i.

For $1 \leq i \leq k$ write $a_{i}=b_{i}+b_{-i}$ and $a_{0}=b_{0}$. Then

$$
\begin{equation*}
\sum_{i=0}^{k} a_{i}=n \tag{A}
\end{equation*}
$$

and our sum of column squares result may be written

$$
\begin{equation*}
\sum_{i=0}^{k} i^{2} a_{i}=n k \tag{B}
\end{equation*}
$$

Note: - column sums must have the same parity as k

- Therefore if $i \not \equiv k(\bmod 2)$, then $a_{i}=0$
- This will be important later.

A column sum inequality

The sum of the entries of H is

A column sum inequality

The sum of the entries of H is

$$
\left(b_{1}-b_{-1}\right)+2\left(b_{2}-b_{-2}\right)+\cdots+k\left(b_{k}-b_{-k}\right)=r k .
$$

A column sum inequality

The sum of the entries of H is

$$
\left(b_{1}-b_{-1}\right)+2\left(b_{2}-b_{-2}\right)+\cdots+k\left(b_{k}-b_{-k}\right)=r k .
$$

Now clearly, $a_{i} \geq b_{i}-b_{-i}$

A column sum inequality

The sum of the entries of H is

$$
\left(b_{1}-b_{-1}\right)+2\left(b_{2}-b_{-2}\right)+\cdots+k\left(b_{k}-b_{-k}\right)=r k .
$$

Now clearly, $a_{i} \geq b_{i}-b_{-i}$

We infer that

$$
\begin{equation*}
a_{1}+2 a_{2}+\cdots+k a_{k}=\sum_{i=0}^{k} i a_{i} \geq r k \tag{C}
\end{equation*}
$$

A column sum inequality

The sum of the entries of H is

$$
\left(b_{1}-b_{-1}\right)+2\left(b_{2}-b_{-2}\right)+\cdots+k\left(b_{k}-b_{-k}\right)=r k .
$$

Now clearly, $a_{i} \geq b_{i}-b_{-i}$

We infer that

$$
\begin{equation*}
a_{1}+2 a_{2}+\cdots+k a_{k}=\sum_{i=0}^{k} i a_{i} \geq r k \tag{C}
\end{equation*}
$$

This is a very crude approximation

A column sum inequality

The sum of the entries of H is

$$
\left(b_{1}-b_{-1}\right)+2\left(b_{2}-b_{-2}\right)+\cdots+k\left(b_{k}-b_{-k}\right)=r k .
$$

Now clearly, $a_{i} \geq b_{i}-b_{-i}$

We infer that

$$
\begin{equation*}
a_{1}+2 a_{2}+\cdots+k a_{k}=\sum_{i=0}^{k} i a_{i} \geq r k \tag{C}
\end{equation*}
$$

This is a very crude approximation but it suffices to force threshold column-sum behaviour.

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Consider

$$
\left(m^{2}-1\right)(A)+(B)-2 m(C)
$$

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Consider

$$
\left(m^{2}-1\right)(A)+(B)-2 m(C)
$$

That is,

$$
\left(m^{2}-1\right)\left(\sum a_{i}=n\right)+\left(\sum i^{2} a_{i}=n k\right)-2 m\left(\sum i a_{i} \geq r k\right)
$$

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Consider

$$
\left(m^{2}-1\right)(A)+(B)-2 m(C)
$$

That is,

$$
\left(m^{2}-1\right)\left(\sum a_{i}=n\right)+\left(\sum i^{2} a_{i}=n k\right)-2 m\left(\sum i a_{i} \geq r k\right)
$$

which simplifies to:

$$
\sum\left[(m-i)^{2}-1\right] a_{i}
$$

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Consider

$$
\left(m^{2}-1\right)(A)+(B)-2 m(C)
$$

That is,

$$
\left(m^{2}-1\right)\left(\sum a_{i}=n\right)+\left(\sum i^{2} a_{i}=n k\right)-2 m\left(\sum i a_{i} \geq r k\right)
$$

which simplifies to:

$$
\sum\left[(m-i)^{2}-1\right] a_{i} \quad \leq n\left(m^{2}-1+k-2 m \frac{r k}{n}\right)
$$

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Consider

$$
\left(m^{2}-1\right)(A)+(B)-2 m(C)
$$

That is,

$$
\left(m^{2}-1\right)\left(\sum a_{i}=n\right)+\left(\sum i^{2} a_{i}=n k\right)-2 m\left(\sum i a_{i} \geq r k\right)
$$

which simplifies to:

$$
\begin{aligned}
& \sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left(m^{2}-1+k-2 m \frac{r k}{n}\right) \\
&=n\left[\left(m-\frac{r k}{n}\right)^{2}+k-1-\left(\frac{r k}{n}\right)^{2}\right]
\end{aligned}
$$

Getting a bound on k when $\frac{k r}{n}=m+\delta$

Consider

$$
\left(m^{2}-1\right)(A)+(B)-2 m(C)
$$

That is,

$$
\left(m^{2}-1\right)\left(\sum a_{i}=n\right)+\left(\sum i^{2} a_{i}=n k\right)-2 m\left(\sum i a_{i} \geq r k\right)
$$

which simplifies to:

$$
\begin{aligned}
\sum\left[(m-i)^{2}-1\right] a_{i} & \leq n\left(m^{2}-1+k-2 m \frac{r k}{n}\right) \\
= & n\left[\left(m-\frac{r k}{n}\right)^{2}+k-1-\left(\frac{r k}{n}\right)^{2}\right]
\end{aligned}
$$

Now $m-\frac{r k}{n}=\delta \ldots$

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

- Recall m was chosen to have opposite parity to k

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

- Recall m was chosen to have opposite parity to k
- So when i, k have the same parity, $m-i$ is odd.

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

- Recall m was chosen to have opposite parity to k
- So when i, k have the same parity, $m-i$ is odd.
- Recall when i, k have opposite parity, $a_{i}=0$.

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

- Recall m was chosen to have opposite parity to k
- So when i, k have the same parity, $m-i$ is odd.
- Recall when i, k have opposite parity, $a_{i}=0$.
- Therefore LHS ≥ 0

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

- Recall m was chosen to have opposite parity to k
- So when i, k have the same parity, $m-i$ is odd.
- Recall when i, k have opposite parity, $a_{i}=0$.
- Therefore LHS ≥ 0 (another very crude estimate!)

Getting a bound on k (cont.)

So finally we have

$$
\begin{equation*}
\sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right] \tag{*}
\end{equation*}
$$

- Recall m was chosen to have opposite parity to k
- So when i, k have the same parity, $m-i$ is odd.
- Recall when i, k have opposite parity, $a_{i}=0$.
- Therefore LHS ≥ 0 (another very crude estimate!)
- Therefore $\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2} \geq 0$
and so

$$
\left(\frac{r k}{n}\right)^{2}+1 \leq k+\delta^{2}
$$

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola)

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola) so k cannot exceed the larger root:

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola) so k cannot exceed the larger root:

$$
k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}
$$

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola) so k cannot exceed the larger root:

$$
k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}
$$

yielding an upper bound on k.

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola) so k cannot exceed the larger root:

$$
k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}
$$

yielding an upper bound on k.
The case of equality makes the RHS of $\left({ }^{*}\right)$ equal to 0 :

$$
0 \leq \sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right]=0 .
$$

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola) so k cannot exceed the larger root:

$$
k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}
$$

yielding an upper bound on k.
The case of equality makes the RHS of $\left({ }^{*}\right)$ equal to 0 :

$$
0 \leq \sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right]=0 .
$$

Note $m-i \neq \pm 1$ implies $(m-i)^{2}-1>0$

Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

$$
\left(\frac{r}{n}\right)^{2} k^{2}-k+\left(1-\delta^{2}\right) \leq 0
$$

(a concave-up parabola) so k cannot exceed the larger root:

$$
k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}
$$

yielding an upper bound on k.
The case of equality makes the RHS of $\left({ }^{*}\right)$ equal to 0 :

$$
0 \leq \sum\left[(m-i)^{2}-1\right] a_{i} \leq n\left[\delta^{2}+k-1-\left(\frac{k r}{n}\right)^{2}\right]=0 .
$$

Note $m-i \neq \pm 1$ implies $(m-i)^{2}-1>0$, which forces $a_{i}=0$.

Threshold necessary conditions

So H has only two possible column sums, $i=m \pm 1$

Threshold necessary conditions

So H has only two possible column sums, $i=m \pm 1$.
From our basic relations it is easy to work out how many of each.

Threshold necessary conditions

So H has only two possible column sums, $i=m \pm 1$.
From our basic relations it is easy to work out how many of each. We summarize.

Threshold necessary conditions

So H has only two possible column sums, $i=m \pm 1$.
From our basic relations it is easy to work out how many of each. We summarize.

Theorem (Threshold necessary conditions)

Suppose $\exists r-H(k \times n)$, and m, δ are as described. Then

1. $\left(\frac{r k}{n}\right)^{2}+1 \leq k+\delta^{2}$;
2. $k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}$.
3. If $\left(\frac{r k}{n}\right)^{2}+1=k+\delta^{2}$ then all column sums are equal to $m \pm 1$; further there are
(a) $a_{m-1}=n \frac{1-\delta}{2}$ columns having sum $m-1$, and
(b) $a_{m+1}=n \frac{1+\delta}{2}$ columns having sum $m+1$.

An awkward inequality

An awkward inequality

$$
k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}} \text { looks problematic as } \delta \text { depends on } k \text {. }
$$

An awkward inequality

$k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}$ looks problematic as δ depends on k.

Regard this as an upper bound for k among cases with constant δ.

An awkward inequality

$k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}$ looks problematic as δ depends on k.

Regard this as an upper bound for k among cases with constant δ.

That is, among each residue class modulo $\frac{2 n}{\operatorname{gcd}(r, 2 n)}$

An awkward inequality

$k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}$ looks problematic as δ depends on k.

Regard this as an upper bound for k among cases with constant δ.

That is, among each residue class modulo $\frac{2 n}{\operatorname{gcd}(r, 2 n)}$

So more than one k value may produce a threshold case!

An awkward inequality

$k \leq \frac{1+\sqrt{1+\left(\delta^{2}-1\right)\left(\frac{2 r}{n}\right)^{2}}}{2\left(\frac{r}{n}\right)^{2}}$ looks problematic as δ depends on k.

Regard this as an upper bound for k among cases with constant δ.

That is, among each residue class modulo $\frac{2 n}{\operatorname{gcd}(r, 2 n)}$

So more than one k value may produce a threshold case!

We examine a few test cases.

Examination of $12-H(k \times 36)$ for threshold cases

$(n, r)=(36,12) ; k_{\max }=8$			
k	m	δ	Threshold inequality
1	0	$\frac{1}{3}$	Equality
2	1	$-\frac{1}{3}$	Satisfied
3	1	-1	Satisfied
4	1	$\frac{1}{3}$	Satisfied
5	2	$-\frac{1}{3}$	Satisfied
6	3	-1	Satisfied
7	2	$\frac{1}{3}$	Satisfied
8	3	$-\frac{1}{3}$	Equality
9	4	-1	Equality
10	3	$-\frac{1}{3}$	Violated

Examination of $10-H(k \times 40)$ for threshold cases

k	m	δ	Threshold inequality
1	0	$\frac{1}{4}$	Equality
2	1	$-\frac{1}{2}$	Satisfied
3	0	$\frac{3}{4}$	Satisfied
4	1	0	Satisfied
5	2	$-\frac{3}{4}$	Satisfied
6	1	$\frac{1}{2}$	Satisfied
7	2	$-\frac{1}{4}$	Satisfied
8	3	-1	Satisfied
9	2	$\frac{1}{4}$	Satisfied
10	3	$-\frac{1}{2}$	Satisfied
11	2	$\frac{3}{4}$	Satisfied
12	3	0	Satisfied
13	4	$-\frac{3}{4}$	Satisfied
14	3	$\frac{1}{2}$	Satisfied
15	4	$-\frac{1}{4}$	Equality
16	5	-1	Equality
17	4	$\frac{1}{4}$	Violated

Examination of $12-H(k \times 40)$ for threshold cases

$(n, r)=(40,12) ; k_{\max }=10$

k	m	δ	Threshold inequality
1	0	$\frac{3}{10}$	Equality
2	1	$-\frac{2}{5}$	Satisfied
3	0	$\frac{9}{10}$	Satisfied
4	1	$\frac{1}{5}$	Satisfied
5	2	$-\frac{1}{2}$	Satisfied
6	1	$\frac{4}{5}$	Satisfied
7	2	$\frac{1}{10}$	Satisfied
8	3	$-\frac{3}{5}$	Satisfied
9	2	$\frac{7}{10}$	Satisfied
10	3	0	Equality
11	4	$-\frac{7}{10}$	Violated

Thanks for listening!

References

R. Craigen, G. Faucher, R. Low and T. Wares, Circulant partial Hadamard matrices, LAA 439 (2013) pp. 3307-3317.
R. Low, M. Stamp, R. Craigen and G. Faucher, Unpredictable binary strings, Congr. Numer. 177 (2005) 65?75.
H.J. Ryser, Combinatorial Mathematics, Carus Math. Monogr., v. 14, MAA/John Wiley and Sons, 1963.
B. Schmidt, Towards Ryser's Conjecture, Proceedings of the Third European Congress of Mathematics (Birkhuser, Boston, 2001) 533-541.

Y-L. Lin, F. K. H Phoa and M-H. Kao, CPH Matrices: Construction via general difference sets and its application to FMRI Experiments, Statistica Sinica 27, 1715-1724.

