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Circulant partial Hadamard matrices

A matrix A ∈ Rm×n is circulant if each row after the first is a
right cyclic shift of its predecessor by 1 position.

EG: Writing A = circm(a1, . . . , an),

circ2(a, b, c) =

(
a b c
c a b

)
, circ3(a, b) =

a b
b a
a b


A circulant partial Hadamard matrix is a (rectangular) circulant
matrix H ∈ {±1}k×n satisfying

HH> = nIk .

A third parameter r gives the sum along the first row of H.

We denote such H by r -H(k × n).
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Examples

The title slide displays a 0-H(7× 16)

0-H(2× 4): circ2×4(11−−) =

(
1 1 − −
− 1 1 −

)

0-H(3× 8): circ3×8(111− 1−−−)

2-H(4× 8): circ4×8(1− 1111−−)

4-H(4× 8): circ4×8(−111− 111)
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Applications

The study of CPHs arose out of a basic question in stream cypher
cryptography

An application has arisen in relation to study of fMRI technology
(Lin et al 2017, Statistica Sinica
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Ryser’s Conjecture about circulant Hadamard matrices

Obs: If k = n, then H = r -H(k × n)

= r -H(n × n) would be a
circulant Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

Verified to n = 548, 964, 900 and for n < 1011 with at most 3
exceptions (Schmidt).

There is a circulant H(n, 4)

H = circ(−111) =


− 1 1 1
1 − 1 1
1 1 − 1
1 1 1 −


Row sum r = 2. So this is a 2-H(4× 4).
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Heuristic approach to Ryser’s conjecture

I H = H(n), circulant

with row-sum r
⇒ ∀k ≤ n, r -H(k × n) exists (in particular k = n

2 )

I Easy to show: r =
√
n.

I So circulant H(n)⇒
√
n-H(n2 × n). (Necessary condition)

I How common are r -H(n2 × n)? And can we have r ≈
√
n?

I Infinitely many 2-H(n2 × n) are known. (n = 2(pt + 1))

I There are three known 4-H(n2 × n). (n = 8, 12, 28)

I Thus far no r -H(n2 × n) are known with r > 4.

I Much empirical evidence suggests that, for large n, r �
√
n

I Since we apparently cannot even approach the above
necessary condition, failure of Ryser’s conjecture is
unlikely—even a near counterexample is improbable!
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A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are:

c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×)

and c + 1 ( r(c−1)2 ×)



A relation between r , k , n

Theorem: r
√
k ≤ n

Sketch: c1, . . . , cn columns of H.

Sum of entries: c1 + · · ·+ cn = EkHE
>
n = rk.

Examine row sums of HH> = kI two ways, gives
∑

c2i = kn

Cauchy-Schwartz inequality to vectors (1 1 · · · 1)kH and
(1 1 · · · 1)n gives the relation.

Easy to show: If r
√
k = n then k |n and H = (K | K | · · · | K )

( nk copies of a circulant H(k)).

So modulo Ryser’s conjecture, equality is impossible, k > 4.

So k ≤
(
n
r

)2
. What if c = n

r , k = c2 − 1?

Theorem If H = r -H((c2 − 1)× cr), then the only possible

column sums of H are: c − 1 ( r(c+1)
2 ×) and c + 1 ( r(c−1)2 ×)



What if n
r is not an integer?

The case
n = cr , k = c2 − 1, c ∈ Z

gives special structure because it approaches the bound r
√
k ≤ n.

The condition c ∈ Z is constricting.

Can’t we just say |k − c2| ≤ 1?

But there is a sensitive balance in how parameters force exactly
two column sums.

Could there be other exact conditions on c , r , n approaching
r
√
k ≤ n and forcing similar structure?

Initial attempts proved fruitless.
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A successful approach
Parity turns out to be a critical issue in locating cases with threshold behaviour

Suppose ∃r -H(k × n).

Write
kr

n
= m + δ

where

1. m ∈ Z;

2. m and k have opposite parity; and

3. δ ∈ [−1, 1).

Observe:

1. m and δ are uniquely determined by r , k , n;

2. If n
r = c ∈ Z, k = c2 − 1 then m = c , δ = 1

c

(except when c = 1 which is impossible if k > 1)
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Column sum relations

For i ∈ {−k,−k + 1, . . . , k − 1, k}:
put bi for # of columns of H with sum i .

For 1 ≤ i ≤ k write ai = bi + b−i and a0 = b0.Then

k∑
i=0

ai = n, (A)

and our sum of column squares result may be written

k∑
i=0

i2ai = nk (B)

Note: - column sums must have the same parity as k

- Therefore if i 6≡ k (mod 2), then ai = 0

- This will be important later.
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A column sum inequality

The sum of the entries of H is

(b1 − b−1) + 2(b2 − b−2) + · · ·+ k(bk − b−k) = rk.

Now clearly, ai ≥ bi − b−i

We infer that

a1 + 2a2 + · · ·+ kak =
k∑

i=0

iai ≥ rk. (C)

This is a very crude approximation

but it suffices to force threshold column-sum behaviour.
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Getting a bound on k when kr
n = m + δ

Consider
(m2 − 1)(A) + (B)− 2m(C )

That is,

(m2 − 1)
(∑

ai = n
)

+
(∑

i2ai = nk
)
− 2m

(∑
iai ≥ rk

)
which simplifies to:∑[

(m − i)2 − 1
]
ai ≤ n

(
m2 − 1 + k − 2m

rk

n

)
= n

[(
m − rk

n

)2

+ k − 1−
(
rk

n

)2
]

Now m − rk
n = δ ...
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Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0 (another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0 (another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0 (another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0 (another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0

(another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0 (another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

So finally we have

∑[
(m − i)2 − 1

]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]
. (*)

I Recall m was chosen to have opposite parity to k

I So when i , k have the same parity, m − i is odd.

I Recall when i , k have opposite parity, ai = 0.

I Therefore LHS ≥ 0 (another very crude estimate!)

I Therefore δ2 + k − 1−
(
kr
n

)2 ≥ 0

and so (
rk

n

)2

+ 1 ≤ k + δ2.



Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k :

( r
n

)2
k2 − k + (1− δ2) ≤ 0

(a concave-up parabola) so k cannot exceed the larger root:

k ≤
1 +

√
1 + (δ2 − 1)

(
2r
n

)2
2
(
r
n

)2 ,

yielding an upper bound on k .

The case of equality makes the RHS of (*) equal to 0:

0 ≤
∑[

(m − i)2 − 1
]
ai ≤ n

[
δ2 + k − 1−

(
kr

n

)2
]

= 0.

Note m − i 6= ±1 implies (m − i)2 − 1 > 0, which forces ai = 0.
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Threshold necessary conditions

So H has only two possible column sums, i = m ± 1

.
From our basic relations it is easy to work out how many of each.
We summarize.

Theorem (Threshold necessary conditions)

Suppose ∃ r -H(k × n), and m, δ are as described. Then

1.
(
rk
n

)2
+ 1 ≤ k + δ2;

2. k ≤ 1+
√

1+(δ2−1)( 2r
n )

2

2( r
n )

2 .

3. If
(
rk
n

)2
+ 1 = k + δ2 then all column sums are equal to

m ± 1; further there are

(a) am−1 = n 1−δ
2 columns having sum m − 1, and

(b) am+1 = n 1+δ
2 columns having sum m + 1.
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(b) am+1 = n 1+δ
2 columns having sum m + 1.



An awkward inequality

k ≤ 1+
√

1+(δ2−1)( 2r
n )

2

2( r
n )

2 looks problematic as δ depends on k .

Regard this as an upper bound for k among cases with constant δ.

That is, among each residue class modulo 2n
gcd(r ,2n)

So more than one k value may produce a threshold case!

We examine a few test cases.
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Examination of 12-H(k × 36) for threshold cases

(n, r) = (36, 12); kmax = 8

k m δ Threshold inequality
1 0 1

3 Equality

2 1 − 1
3 Satisfied

3 1 −1 Satisfied

4 1 1
3 Satisfied

5 2 − 1
3 Satisfied

6 3 −1 Satisfied

7 2 1
3 Satisfied

8 3 − 1
3 Equality

9 4 −1 Equality

10 3 − 1
3 Violated



Examination of 10-H(k × 40) for threshold cases

(n, r) = (40, 10)
kmax = 13

k m δ Threshold inequality
1 0 1

4 Equality
2 1 − 1

2 Satisfied

3 0 3
4 Satisfied

4 1 0 Satisfied

5 2 − 3
4 Satisfied

6 1 1
2 Satisfied

7 2 − 1
4 Satisfied

8 3 −1 Satisfied

9 2 1
4 Satisfied

10 3 − 1
2 Satisfied

11 2 3
4 Satisfied

12 3 0 Satisfied

13 4 − 3
4 Satisfied

14 3 1
2 Satisfied

15 4 − 1
4 Equality

16 5 −1 Equality

17 4 1
4 Violated



Examination of 12-H(k × 40) for threshold cases

(n, r) = (40, 12); kmax = 10

k m δ Threshold inequality
1 0 3

10 Equality

2 1 − 2
5 Satisfied

3 0 9
10 Satisfied

4 1 1
5 Satisfied

5 2 − 1
2 Satisfied

6 1 4
5 Satisfied

7 2 1
10 Satisfied

8 3 − 3
5 Satisfied

9 2 7
10 Satisfied

10 3 0 Equality

11 4 − 7
10 Violated



Thanks for listening!
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