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Circulant partial Hadamard matrices

A matrix A € R™*" is circulant if each row after the first is a
right cyclic shift of its predecessor by 1 position.

EG: Writing A = circpy(a1, .-, an),

a b c a b
circp(a, b, c) = (c b) ,circs(a,b)=| b a
a b

A circulant partial Hadamard matrix is a (rectangular) circulant
matrix H € {+1}**" satisfying

HHT = nl,.
A third parameter r gives the sum along the first row of H.

We denote such H by r-H(k x n).
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Examples

The title slide displays a 0-H(7 x 16)

0-H(2 x 4): circpxa(1l — =) = (i
0-H(3 x 8): circgxg(111 —1— ——)
2-H(4 x 8): circaxg(l — 1111 — )

4-H(4 x 8): circaxg(—111 — 111)
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Applications

The study of CPHs arose out of a basic question in stream cypher
cryptography

An application has arisen in relation to study of fMRI technology
(Lin et al 2017, Statistica Sinica
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Ryser’'s Conjecture about circulant Hadamard matrices

Obs: If k = n, then H = r-H(k x n) = r-H(n x n) would be a
circulant Hadamard matrix of order n, H = H(n).

Conjecture(Ryser): If n > 4 then there is no circulant H(n).

Verified to n = 548,964,900 and for n < 10! with at most 3
exceptions (Schmidt).

There is a circulant H(n, 4)

- 1 1 1
H = circ(—111) = 1 I 1 i
1 1 1 —

Row sum r = 2. So this is a 2-H(4 x 4).
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H = H(n), circulant with row-sum r

= Yk < n,r-H(k x n) exists (in particular k = %)
Easy to show: r = /n.
So circulant H(n) = /n-H(5 x n). (Necessary condition)
How common are r-H(5 x n)? And can we have r ~ /n?
Infinitely many 2-H(4 x n) are known. (n =2(p" + 1))
There are three known 4-H(35 x n). (n=8,12,28)
Thus far no r-H(5 x n) are known with r > 4.
Much empirical evidence suggests that, for large n, r < \/n

Since we apparently cannot even approach the above
necessary condition, failure of Ryser’'s conjecture is
unlikely—even a near counterexample is improbable!
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A relation between r, k, n

Theorem: rvk < n
Sketch: ¢, ..., c, columns of H.

Sum of entries: ¢; + --- + ¢, = ExHE,| = rk.
Examine row sums of HHT = ki two ways, gives > (:,-2 = kn

Cauchy-Schwartz inequality to vectors (11 --- 1),H and
(11 --- 1), gives the relation.

Easy to show: If rv/k = n then klnand H= (K | K | --- | K)
(# copies of a circulant H(k)).

So modulo Ryser's conjecture, equality is impossible, k > 4.
So k< (2)%. What if c = 1, k= ¢ — 17

Theorem If H = r-H((c? — 1) x cr), then the only possible
column sums of H are: ¢ —1 (@x) and ¢ +1 (@x)
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What if Z is not an integer?

The case
n=cr,k=c*>—1,ceZ

gives special structure because it approaches the bound rv/k < n.
The condition ¢ € Z is constricting.
Can't we just say |k — c?| < 17

But there is a sensitive balance in how parameters force exactly
two column sums.

Could there be other exact conditions on ¢, r, n approaching
rv'k < n and forcing similar structure?

Initial attempts proved fruitless.
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A successful approach

Parity turns out to be a critical issue in locating cases with threshold behaviour
Suppose 3r-H(k x n).

Write
kr
—=m+9
n
where
1. meZ;

2. m and k have opposite parity; and
3. 6 €[-1,1).

Observe:
1. m and ¢ are uniquely determined by r, k, n;
2. f2=ceZ k=c>—1thenm=c,6=1

(except when ¢ = 1 which is impossible if k > 1)
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Column sum relations

Forie{—k,—k+1,...,k—1 k}:
put b; for # of columns of H with sum J.

For 1 < i < k write a; = b; + b_; and ag = by.Then

and our sum of column squares result may be written
k
Z i%aj = nk (B)
i=0

Note: - column sums must have the same parity as k
- Therefore if i # k (mod 2), then a; =0
- This will be important later.
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A column sum inequality

The sum of the entries of H is
(bl - b—l) + 2(b2 - b—2) + -+ k(bk — b—k) = rk.

Now clearly, a; > b; — b_;

We infer that

k
a1 +2ay + -+ - + kag :Zia,- > rk.
i=0
This is a very crude approximation
but it suffices to force threshold column-sum behaviour.
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Getting a bound on k when % =m+9

Consider
(m?* = 1)(A) + (B) — 2m(C)

That is,

(m2 -1) (Z aj= n) + < i?a; = nk) —2m <Z ia; > rk)

which simplifies to:

2 [(m =iy =1]a §n<m2—1—|—k—2mrk>

e ey

Now m— " =§ .
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Getting a bound on k (cont.)

So finally we have

Z[(m—i)z—l]a,-gn

P Recall m was chosen to have opposite parity to k
» So when i, k have the same parity, m — / is odd.
» Recall when i, k have opposite parity, a; = 0.

» Therefore LHS > 0 (another very crude estimate!)

» Therefore 62+ k — 1 — (%)2 >0

and so
rk\ 2 5
— | +1<k+6°.

n

2
P +k—1-— kr .
n
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Getting a bound on k (cont.)

Which may be arranged as a quadratic inequality in k:

<%>2k2—k+(1—62)§0

(a concave-up parabola) so k cannot exceed the larger root:

1+\/1 2 1) (%)?

yielding an upper bound on k.
The case of equality makes the RHS of (*) equal to 0:

fr\ 2
0<Z m— ) —1 a,gn 62+k—1—<nr>]:0_

Note m — i # +1 implies (m — i)> — 1 > 0, which forces a; = 0.
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Threshold necessary conditions

So H has only two possible column sums, i = m £ 1.
From our basic relations it is easy to work out how many of each.
We summarize.

Theorem (Threshold necessary conditions)
Suppose 3 r-H(k x n), and m, ¢ are as described. Then

L(%) 41 < k462

0 k< HYLHED(E)
ETEey
3. If (%)2 +1 = k + 62 then all column sums are equal to
m =+ 1; further there are
(a) am—1 = n'5%columns having sum m — 1, and

(b) am1 = ntE2columns having sum m + 1.




An awkward inequality



An awkward inequality

k < 1+y/ 1‘;((5;—21)(2::)2

looks problematic as § depends on k.



An awkward inequality

< THHEDE)

-2

looks problematic as § depends on k.

Regard this as an upper bound for k among cases with constant §.



An awkward inequality

< THHEDE)

-2

looks problematic as § depends on k.

Regard this as an upper bound for k among cases with constant §.

. . 2n
That is, among each residue class modulo 2cd(r.2n)



An awkward inequality

\/ﬁ
k < It 1+2((r)21)( ) looks problematic as § depends on k.

Regard this as an upper bound for k among cases with constant §.

. . 2n
That is, among each residue class modulo 2cd(r.2n)

So more than one k value may produce a threshold case!



An awkward inequality

\/ﬁ
k < It 1+2((r)21)( ) looks problematic as § depends on k.

Regard this as an upper bound for k among cases with constant §.

. . 2n
That is, among each residue class modulo gcd(r.2n)

So more than one k value may produce a threshold case!

We examine a few test cases.



Examination of 12-H(k x 36) for threshold cases

(n7 r) = (36, 12); Kmax = 8

k | m| & | Threshold inequality
110 % Equality
2 | 1| -1 Satisfied
3 | 1| —1 | Satisfied
4 11 % Satisfied
512 —% Satisfied
6 | 3 | —1 | Satisfied
712 % Satisfied
8|3 f% Equality
9 | 4 | —1 | Equality
10| 3 —% Violated




Examination of 10-H(k x 40) for threshold cases

Threshold inequality

D= S,

Equality
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Satisfied
Equality

| NI l O bW
Nlw NI=

RSN

(n,r) = (40,10)
kmax = 13

I aim

N[ =

k
k
1
2
3
4
5
6
7
8
9
10
11

O bW

12
13
14
15
16
17

|
Blw

| N|—=
i

Equality

4
m
0
1
0
1
2
1
2
3
2
3
2
3
4
3
4
5
4 Violated

ENTES




Examination of 12-H(k x 40) for threshold cases

(n7 r) = (407 12)v kmax =10
k | m| & | Threshold inequality
110 1—30 Equality
2|1 —% Satisfied
310 & | Satisfied
4 | 1| 1 |Satisfied
512 —% Satisfied
6 | 1| % |Satisfied
72| & | Satisfied
8 | 3| —2 | Satisfied
9 |2 1—70 Satisfied
10| 3 0 | Equality
111 4 —110 Violated




Thanks for listening!
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