
Some Advances in the Planar Directed Steiner
Tree Problem

Zachary Friggstad and Ramin Mousavi

University of Alberta

Alberta-Montana Combinatorics and Algorithms
Workshop 2022

Definition
▶ Given a directed graph G = (V ,E), cost on edges, root node

r , and a set of terminals X ⊆ V − r . The rest of vertices are
called Steiner nodes

▶ Find a min cost subgraph such that every terminal is
reachable from the root

r

2 2

4
4

1

2

3
3

6

2

2

2 2

4
1

2

▶ Special cases: Arborescence where X = V or s, t-shortest
path where r = s and X = {t}

Definition
▶ Given a directed graph G = (V ,E), cost on edges, root node

r , and a set of terminals X ⊆ V − r . The rest of vertices are
called Steiner nodes

▶ Find a min cost subgraph such that every terminal is
reachable from the root

r

2 2

4
4

1

2

3
3

6

22

2 2

4
1

2

▶ Special cases: Arborescence where X = V or s, t-shortest
path where r = s and X = {t}

What’s known?

α-approx for a minimization problem means a polytime alg that
finds a solution with cost at most α ·OPT.

▶ DST is a generalization of some fundamental combinatorial
problems, e.g., Set Cover and Group Steiner Tree!

▶ Can’t do “significantly” better than log2−δ n for some fixed
δ > 0 Halperin and Krauthgamer - 2003

▶ Roughly |X |ϵ-approximation for any ϵ > 0 and this the best
known Charikar et al. - 1999

▶ There is roughly a log2 |X |
log log |X | -approx in quasi-polytime and

can’t do better under some complexity assumptions Grandoni
et al. - 2019

▶ Unidrected version has ≈ 1.39-approx Byrka et al. - 2013

What’s known?

α-approx for a minimization problem means a polytime alg that
finds a solution with cost at most α ·OPT.

▶ DST is a generalization of some fundamental combinatorial
problems, e.g., Set Cover and Group Steiner Tree!

▶ Can’t do “significantly” better than log2−δ n for some fixed
δ > 0 Halperin and Krauthgamer - 2003

▶ Roughly |X |ϵ-approximation for any ϵ > 0 and this the best
known Charikar et al. - 1999

▶ There is roughly a log2 |X |
log log |X | -approx in quasi-polytime and

can’t do better under some complexity assumptions Grandoni
et al. - 2019

▶ Unidrected version has ≈ 1.39-approx Byrka et al. - 2013

What’s known?

α-approx for a minimization problem means a polytime alg that
finds a solution with cost at most α ·OPT.

▶ DST is a generalization of some fundamental combinatorial
problems, e.g., Set Cover and Group Steiner Tree!

▶ Can’t do “significantly” better than log2−δ n for some fixed
δ > 0 Halperin and Krauthgamer - 2003

▶ Roughly |X |ϵ-approximation for any ϵ > 0 and this the best
known Charikar et al. - 1999

▶ There is roughly a log2 |X |
log log |X | -approx in quasi-polytime and

can’t do better under some complexity assumptions Grandoni
et al. - 2019

▶ Unidrected version has ≈ 1.39-approx Byrka et al. - 2013

What’s known?

α-approx for a minimization problem means a polytime alg that
finds a solution with cost at most α ·OPT.

▶ DST is a generalization of some fundamental combinatorial
problems, e.g., Set Cover and Group Steiner Tree!

▶ Can’t do “significantly” better than log2−δ n for some fixed
δ > 0 Halperin and Krauthgamer - 2003

▶ Roughly |X |ϵ-approximation for any ϵ > 0 and this the best
known Charikar et al. - 1999

▶ There is roughly a log2 |X |
log log |X | -approx in quasi-polytime and

can’t do better under some complexity assumptions Grandoni
et al. - 2019

▶ Unidrected version has ≈ 1.39-approx Byrka et al. - 2013

What’s known?

α-approx for a minimization problem means a polytime alg that
finds a solution with cost at most α ·OPT.

▶ DST is a generalization of some fundamental combinatorial
problems, e.g., Set Cover and Group Steiner Tree!

▶ Can’t do “significantly” better than log2−δ n for some fixed
δ > 0 Halperin and Krauthgamer - 2003

▶ Roughly |X |ϵ-approximation for any ϵ > 0 and this the best
known Charikar et al. - 1999

▶ There is roughly a log2 |X |
log log |X | -approx in quasi-polytime and

can’t do better under some complexity assumptions Grandoni
et al. - 2019

▶ Unidrected version has ≈ 1.39-approx Byrka et al. - 2013

What’s known?

α-approx for a minimization problem means a polytime alg that
finds a solution with cost at most α ·OPT.

▶ DST is a generalization of some fundamental combinatorial
problems, e.g., Set Cover and Group Steiner Tree!

▶ Can’t do “significantly” better than log2−δ n for some fixed
δ > 0 Halperin and Krauthgamer - 2003

▶ Roughly |X |ϵ-approximation for any ϵ > 0 and this the best
known Charikar et al. - 1999

▶ There is roughly a log2 |X |
log log |X | -approx in quasi-polytime and

can’t do better under some complexity assumptions Grandoni
et al. - 2019

▶ Unidrected version has ≈ 1.39-approx Byrka et al. - 2013

DST is hard so what now?!

▶ Consider restricted instances like planar or quasi-bipartite
instances. Quasi-bipartite means no edge between any two
Steiner nodes.

▶ Quasi-bipartite DST admits log |X |-approx (with the same
integrality gap) and this is tight Hibi and Fujito - 2012 and
Friggstad et al. - 2016

▶ Planar and quasi-bipartite instances in the undirected version
of DST have a rich literature, e.g. PTAS for planar instances
Borradaile et al. - 2009, and ≈ 1.22-approx for quasi-bipartite
instances Goemans et al. - 2012

Theorem (Friggstad-M.)

There is a 20-approx for DST on quasi-bipartite, planar instances.
We can generalize it to any graph that excludes a fixed minor.

DST is hard so what now?!

▶ Consider restricted instances like planar or quasi-bipartite
instances. Quasi-bipartite means no edge between any two
Steiner nodes.

▶ Quasi-bipartite DST admits log |X |-approx (with the same
integrality gap) and this is tight Hibi and Fujito - 2012 and
Friggstad et al. - 2016

▶ Planar and quasi-bipartite instances in the undirected version
of DST have a rich literature, e.g. PTAS for planar instances
Borradaile et al. - 2009, and ≈ 1.22-approx for quasi-bipartite
instances Goemans et al. - 2012

Theorem (Friggstad-M.)

There is a 20-approx for DST on quasi-bipartite, planar instances.
We can generalize it to any graph that excludes a fixed minor.

DST is hard so what now?!

▶ Consider restricted instances like planar or quasi-bipartite
instances. Quasi-bipartite means no edge between any two
Steiner nodes.

▶ Quasi-bipartite DST admits log |X |-approx (with the same
integrality gap) and this is tight Hibi and Fujito - 2012 and
Friggstad et al. - 2016

▶ Planar and quasi-bipartite instances in the undirected version
of DST have a rich literature, e.g. PTAS for planar instances
Borradaile et al. - 2009, and ≈ 1.22-approx for quasi-bipartite
instances Goemans et al. - 2012

Theorem (Friggstad-M.)

There is a 20-approx for DST on quasi-bipartite, planar instances.
We can generalize it to any graph that excludes a fixed minor.

DST is hard so what now?!

▶ Consider restricted instances like planar or quasi-bipartite
instances. Quasi-bipartite means no edge between any two
Steiner nodes.

▶ Quasi-bipartite DST admits log |X |-approx (with the same
integrality gap) and this is tight Hibi and Fujito - 2012 and
Friggstad et al. - 2016

▶ Planar and quasi-bipartite instances in the undirected version
of DST have a rich literature, e.g. PTAS for planar instances
Borradaile et al. - 2009, and ≈ 1.22-approx for quasi-bipartite
instances Goemans et al. - 2012

Theorem (Friggstad-M.)

There is a 20-approx for DST on quasi-bipartite, planar instances.
We can generalize it to any graph that excludes a fixed minor.

Toolbox: primal-dual

▶ Primal-dual algorithm is rare in the directed network design
problems. One use of this is in Arborescence (more on this in
the next slide).

▶ In contrast, primal-dual algorithm is used in the undirected
network design abundantly, e.g. Guha et al. - 1999,
Könemann et al. - 2013, Moldenhauer 2013, and Demaine et
al. - 2014

▶ Why primal-dual algorithm is preferred? Can be viewed as
combinatorial algorithm and usually fast and easy to
implement!

Warm up (Arborescence)

Given a directed graph, edge cost and a root node r . Find a
cheapest subgraph such that every node is reachable from r

r

2 2

4
4

1

2
3

Warm up (Arborescence)

Given a directed graph, edge cost and a root node r . Find a
cheapest subgraph such that every node is reachable from r

r

2 2

4
4

1

2
3

Warm up (Arborescence)

δin(S) is the set of edges entering S and x(δin(S)) :=
∑

e:e∈δin(S)
xe

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r

x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ
for the Dual LP such that:

▶ cost(F) ≤ cost(ȳ) ≤ Dual LP
≤ Primal LP ≤ OPT

r

3

.7 1.4

Warm up (Arborescence)

δin(S) is the set of edges entering S and x(δin(S)) :=
∑

e:e∈δin(S)
xe

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r

x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ
for the Dual LP such that:

▶ cost(F) ≤ cost(ȳ) ≤ Dual LP
≤ Primal LP ≤ OPT

r

3

.7 1.4

Warm up (Arborescence)

δin(S) is the set of edges entering S and x(δin(S)) :=
∑

e:e∈δin(S)
xe

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r

x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ
for the Dual LP such that:

▶ cost(F) ≤ cost(ȳ) ≤ Dual LP
≤ Primal LP ≤ OPT

r

3

.7 1.4

Warm up (Arborescence)

δin(S) is the set of edges entering S and x(δin(S)) :=
∑

e:e∈δin(S)
xe

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r

x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ
for the Dual LP such that:

▶ cost(F) ≤ cost(ȳ) ≤ Dual LP
≤ Primal LP ≤ OPT

r

3

.7 1.4

Warm up (Arborescence)

δin(S) is the set of edges entering S and x(δin(S)) :=
∑

e:e∈δin(S)
xe

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r

x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ
for the Dual LP such that:

▶ cost(F) ≤ cost(ȳ) ≤ Dual LP
≤ Primal LP ≤ OPT

r

3

.7 1.4

Primal-dual in action!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 0, every node
except r is active set.
Increase y{x}, y{k}, ...

▶ At time 1, wz is bought
and the red set is inactive
now.
y{x} = y{k} = y{z} = ... = 1.

▶ At time 2, rx , rk and zt are
bought and the only active
set is the blue one.
y{x} = y{k} = y{w} = y{t} = 2,
y{z} = 1.

Primal-dual in action!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 0, every node
except r is active set.
Increase y{x}, y{k}, ...

▶ At time 1, wz is bought
and the red set is inactive
now.
y{x} = y{k} = y{z} = ... = 1.

▶ At time 2, rx , rk and zt are
bought and the only active
set is the blue one.
y{x} = y{k} = y{w} = y{t} = 2,
y{z} = 1.

Primal-dual in action!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 0, every node
except r is active set.
Increase y{x}, y{k}, ...

▶ At time 1, wz is bought
and the red set is inactive
now.
y{x} = y{k} = y{z} = ... = 1.

▶ At time 2, rx , rk and zt are
bought and the only active
set is the blue one.
y{x} = y{k} = y{w} = y{t} = 2,
y{z} = 1.

Primal-dual in action!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 0, every node
except r is active set.
Increase y{x}, y{k}, ...

▶ At time 1, wz is bought
and the red set is inactive
now.
y{x} = y{k} = y{z} = ... = 1.

▶ At time 2, rx , rk and zt are
bought and the only active
set is the blue one.
y{x} = y{k} = y{w} = y{t} = 2,
y{z} = 1.

Primal-dual in action!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 0, every node
except r is active set.
Increase y{x}, y{k}, ...

▶ At time 1, wz is bought
and the red set is inactive
now.
y{x} = y{k} = y{z} = ... = 1.

▶ At time 2, rx , rk and zt are
bought and the only active
set is the blue one.
y{x} = y{k} = y{w} = y{t} = 2,
y{z} = 1.

Primal-dual in action, continued!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 3, tw is bought
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3.

▶ z , t,w are strongly
connected component,
form a bigger active set
{w , z , t} and y{w ,z,t} = 0

▶ At time 4, kw is bought
and there is no active set
left. So we terminate.
{w , z , t}.
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3,
y{w ,z,t} = 1.

Primal-dual in action, continued!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 3, tw is bought
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3.

▶ z , t,w are strongly
connected component,
form a bigger active set
{w , z , t} and y{w ,z,t} = 0

▶ At time 4, kw is bought
and there is no active set
left. So we terminate.
{w , z , t}.
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3,
y{w ,z,t} = 1.

Primal-dual in action, continued!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 3, tw is bought
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3.

▶ z , t,w are strongly
connected component,
form a bigger active set
{w , z , t} and y{w ,z,t} = 0

▶ At time 4, kw is bought
and there is no active set
left. So we terminate.
{w , z , t}.
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3,
y{w ,z,t} = 1.

Primal-dual in action, continued!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 3, tw is bought
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3.

▶ z , t,w are strongly
connected component,
form a bigger active set
{w , z , t} and y{w ,z,t} = 0

▶ At time 4, kw is bought
and there is no active set
left. So we terminate.
{w , z , t}.
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3,
y{w ,z,t} = 1.

Primal-dual in action, continued!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 3, tw is bought
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3.

▶ z , t,w are strongly
connected component,
form a bigger active set
{w , z , t} and y{w ,z,t} = 0

▶ At time 4, kw is bought
and there is no active set
left. So we terminate.
{w , z , t}.
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3,
y{w ,z,t} = 1.

Primal-dual in action, continued!

Recall the dual constraint for edge e is
∑

S:e∈δin(S)
yS ≤ ce

r

x k

z
w

t

2 2

4
4

1

2
3

▶ At time 3, tw is bought
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3.

▶ z , t,w are strongly
connected component,
form a bigger active set
{w , z , t} and y{w ,z,t} = 0

▶ At time 4, kw is bought
and there is no active set
left. So we terminate.
{w , z , t}.
y{x} = y{k} = y{t} = 2,
y{z} = 1, y{w} = 3,
y{w ,z,t} = 1.

Primal-dual in action, continued!
r

x k

z
w

t

2 2

4
4

1

2
3

3

▶ Edges are bought in the order: wz , rx , rk, zt, tw , and kw .
Consider edges in the reverse order they have been added and
remove them if not need it!

▶ Remove tw
▶ Total dual increased is y{x} + ...+ y{z,t,w} = 11. Total cost of

green edges is 11 too!
▶ Consider an iteration. Every active set has at most one edge

entering

Primal-dual in action, continued!
r

x k

z
w

t

2 2

4
4

1

2
33

▶ Edges are bought in the order: wz , rx , rk, zt, tw , and kw .
Consider edges in the reverse order they have been added and
remove them if not need it!

▶ Remove tw

▶ Total dual increased is y{x} + ...+ y{z,t,w} = 11. Total cost of
green edges is 11 too!

▶ Consider an iteration. Every active set has at most one edge
entering

Primal-dual in action, continued!
r

x k

z
w

t

2 2

4
4

1

2
33

▶ Edges are bought in the order: wz , rx , rk, zt, tw , and kw .
Consider edges in the reverse order they have been added and
remove them if not need it!

▶ Remove tw
▶ Total dual increased is y{x} + ...+ y{z,t,w} = 11. Total cost of

green edges is 11 too!

▶ Consider an iteration. Every active set has at most one edge
entering

Primal-dual in action, continued!
r

x k

z
w

t

2 2

4
4

1

2
33

▶ Edges are bought in the order: wz , rx , rk, zt, tw , and kw .
Consider edges in the reverse order they have been added and
remove them if not need it!

▶ Remove tw
▶ Total dual increased is y{x} + ...+ y{z,t,w} = 11. Total cost of

green edges is 11 too!
▶ Consider an iteration. Every active set has at most one edge

entering

Primal-dual in action, continued!
r

x k

z
w

t

2 2

4
4

1

2
33

▶ Edges are bought in the order: wz , rx , rk, zt, tw , and kw .
Consider edges in the reverse order they have been added and
remove them if not need it!

▶ Remove tw
▶ Total dual increased is y{x} + ...+ y{z,t,w} = 11. Total cost of

green edges is 11 too!
▶ Consider an iteration. Every active set has at most one edge

entering

Back to DST!

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r ,S ∩ X ̸= ∅
x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ for the Dual LP such that

▶ cost(F) ≤ 20 · cost(ȳ) ≤ 20 ·OPT

▶ Natural thing to try is to use the “same” primal-dual
algorithm for Arborescence here!

Back to DST!

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r ,S ∩ X ̸= ∅
x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ for the Dual LP such that

▶ cost(F) ≤ 20 · cost(ȳ) ≤ 20 ·OPT

▶ Natural thing to try is to use the “same” primal-dual
algorithm for Arborescence here!

Back to DST!

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r ,S ∩ X ̸= ∅
x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ for the Dual LP such that

▶ cost(F) ≤ 20 · cost(ȳ) ≤ 20 ·OPT

▶ Natural thing to try is to use the “same” primal-dual
algorithm for Arborescence here!

Back to DST!

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r ,S ∩ X ̸= ∅
x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ for the Dual LP such that

▶ cost(F) ≤ 20 · cost(ȳ) ≤ 20 ·OPT

▶ Natural thing to try is to use the “same” primal-dual
algorithm for Arborescence here!

Back to DST!

Primal LP

min
∑
e

ce · xe

x(δin(S)) ≥ 1, ∀S ⊆ V − r ,S ∩ X ̸= ∅
x ≥ 0

Dual LP

max
∑
S

yS∑
S :e∈δin(S)

yS ≤ ce , ∀e

y ≥ 0

▶ Find a subgraph F

▶ Find a (fractional) solution ȳ for the Dual LP such that

▶ cost(F) ≤ 20 · cost(ȳ) ≤ 20 ·OPT

▶ Natural thing to try is to use the “same” primal-dual
algorithm for Arborescence here!

There is always an obstacle!

a

r

b

w1

wk
0 0

1

k

k 1
ϵ

0 0

There is always an obstacle!

a

r

b

w1

wk
0 0

1

k

k 1
ϵ

0 0

There is always an obstacle!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Bottom set bought
too many edges that
aren’t used for its
connectivity

There is always an obstacle!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Bottom set bought
too many edges that
aren’t used for its
connectivity

There is always an obstacle!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Bottom set bought
too many edges that
aren’t used for its
connectivity

There is always an obstacle!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Bottom set bought
too many edges that
aren’t used for its
connectivity

There is always an obstacle!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Bottom set bought
too many edges that
aren’t used for its
connectivity

There is always an obstacle!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Bottom set bought
too many edges that
aren’t used for its
connectivity

But sometimes there is a bypass!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Make the bottom set to purchase only one of the downward
edges.

▶ The top active set will buy the rest of the downward edges as
it grows.

▶ How to formalize this?

▶ Introducing two buckets: expansion and killer!

But sometimes there is a bypass!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Make the bottom set to purchase only one of the downward
edges.

▶ The top active set will buy the rest of the downward edges as
it grows.

▶ How to formalize this?

▶ Introducing two buckets: expansion and killer!

But sometimes there is a bypass!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Make the bottom set to purchase only one of the downward
edges.

▶ The top active set will buy the rest of the downward edges as
it grows.

▶ How to formalize this?

▶ Introducing two buckets: expansion and killer!

But sometimes there is a bypass!

a

r

b

w1

wk

0
1

k

k 1
ϵ

0 0

▶ Make the bottom set to purchase only one of the downward
edges.

▶ The top active set will buy the rest of the downward edges as
it grows.

▶ How to formalize this?

▶ Introducing two buckets: expansion and killer!

But sometimes there is a bypass!

▶ Where does planarity is used?!

▶ The average degree of active sets w.r.t. final solution is
constant

▶ We actually need every minor of the graph also has a constant
average degree

But sometimes there is a bypass!

▶ Where does planarity is used?!
▶ The average degree of active sets w.r.t. final solution is

constant

▶ We actually need every minor of the graph also has a constant
average degree

But sometimes there is a bypass!

▶ Where does planarity is used?!
▶ The average degree of active sets w.r.t. final solution is

constant
▶ We actually need every minor of the graph also has a constant

average degree

Open problems

▶ Planar DST?

▶ Planar DAG DST?

▶ Other applications of multiple buckets typed primal-dual
algorithm?

Thank You

Open problems

▶ Planar DST?

▶ Planar DAG DST?

▶ Other applications of multiple buckets typed primal-dual
algorithm?

Thank You

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!

▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

Bonus! The analysis

▶ Fix an iteration

▶ Every active set has at most one killer edge entering it

▶ What about expansion edges?

r

▶ Charge the expansion edges to an active set down the road!
▶ Where does planarity is used?!

▶ Recall relation between average degree of active sets and
performance guarantee

▶ We actually need every minor of the graph has constant
average degree

