Some Advances in the Planar Directed Steiner Tree Problem

Zachary Friggstad and Ramin Mousavi

University of Alberta

Alberta-Montana Combinatorics and Algorithms Workshop 2022

Definition

- Given a directed graph $G=(V, E)$, cost on edges, root node r, and a set of terminals $X \subseteq V-r$. The rest of vertices are called Steiner nodes
- Find a min cost subgraph such that every terminal is reachable from the root

- Special cases: Arborescence where $X=V$ or s, t-shortest path where $r=s$ and $X=\{t\}$

Definition

- Given a directed graph $G=(V, E)$, cost on edges, root node r, and a set of terminals $X \subseteq V-r$. The rest of vertices are called Steiner nodes
- Find a min cost subgraph such that every terminal is reachable from the root

- Special cases: Arborescence where $X=V$ or s, t-shortest path where $r=s$ and $X=\{t\}$

What's known?

α-approx for a minimization problem means a polytime alg that finds a solution with cost at most $\alpha \cdot \mathrm{OPT}$.

What's known?

α-approx for a minimization problem means a polytime alg that finds a solution with cost at most $\alpha \cdot \mathrm{OPT}$.

- DST is a generalization of some fundamental combinatorial problems, e.g., Set Cover and Group Steiner Tree!

What's known?

α-approx for a minimization problem means a polytime alg that finds a solution with cost at most $\alpha \cdot \mathrm{OPT}$.

- DST is a generalization of some fundamental combinatorial problems, e.g., Set Cover and Group Steiner Tree!
- Can't do "significantly" better than $\log ^{2-\delta} n$ for some fixed $\delta>0$ Halperin and Krauthgamer - 2003

What's known?

α-approx for a minimization problem means a polytime alg that finds a solution with cost at most $\alpha \cdot \mathrm{OPT}$.

- DST is a generalization of some fundamental combinatorial problems, e.g., Set Cover and Group Steiner Tree!
- Can't do "significantly" better than $\log ^{2-\delta} n$ for some fixed $\delta>0$ Halperin and Krauthgamer - 2003
- Roughly $|X|^{\epsilon}$-approximation for any $\epsilon>0$ and this the best known Charikar et al. - 1999

What's known?

α-approx for a minimization problem means a polytime alg that finds a solution with cost at most $\alpha \cdot \mathrm{OPT}$.

- DST is a generalization of some fundamental combinatorial problems, e.g., Set Cover and Group Steiner Tree!
- Can't do "significantly" better than $\log ^{2-\delta} n$ for some fixed $\delta>0$ Halperin and Krauthgamer - 2003
- Roughly $|X|^{\epsilon}$-approximation for any $\epsilon>0$ and this the best known Charikar et al. - 1999
- There is roughly a $\frac{\log ^{2}|X|}{\log \log |X|}$-approx in quasi-polytime and can't do better under some complexity assumptions Grandoni et al. - 2019

What's known?

α-approx for a minimization problem means a polytime alg that finds a solution with cost at most $\alpha \cdot \mathrm{OPT}$.

- DST is a generalization of some fundamental combinatorial problems, e.g., Set Cover and Group Steiner Tree!
- Can't do "significantly" better than $\log ^{2-\delta} n$ for some fixed $\delta>0$ Halperin and Krauthgamer - 2003
- Roughly $|X|^{\epsilon}$-approximation for any $\epsilon>0$ and this the best known Charikar et al. - 1999
- There is roughly a $\frac{\log ^{2}|X|}{\log \log |X|}$-approx in quasi-polytime and can't do better under some complexity assumptions Grandoni et al. - 2019
- Unidrected version has \approx 1.39-approx Byrka et al. - 2013

DST is hard so what now?!

- Consider restricted instances like planar or quasi-bipartite instances. Quasi-bipartite means no edge between any two Steiner nodes.

DST is hard so what now?!

- Consider restricted instances like planar or quasi-bipartite instances. Quasi-bipartite means no edge between any two Steiner nodes.
- Quasi-bipartite DST admits $\log |X|$-approx (with the same integrality gap) and this is tight Hibi and Fujito - 2012 and Friggstad et al. - 2016

DST is hard so what now?!

- Consider restricted instances like planar or quasi-bipartite instances. Quasi-bipartite means no edge between any two Steiner nodes.
- Quasi-bipartite DST admits $\log |X|$-approx (with the same integrality gap) and this is tight Hibi and Fujito - 2012 and Friggstad et al. - 2016
- Planar and quasi-bipartite instances in the undirected version of DST have a rich literature, e.g. PTAS for planar instances Borradaile et al. - 2009, and ≈ 1.22-approx for quasi-bipartite instances Goemans et al. - 2012

DST is hard so what now?!

- Consider restricted instances like planar or quasi-bipartite instances. Quasi-bipartite means no edge between any two Steiner nodes.
- Quasi-bipartite DST admits $\log |X|$-approx (with the same integrality gap) and this is tight Hibi and Fujito - 2012 and Friggstad et al. - 2016
- Planar and quasi-bipartite instances in the undirected version of DST have a rich literature, e.g. PTAS for planar instances Borradaile et al. - 2009, and ≈ 1.22-approx for quasi-bipartite instances Goemans et al. - 2012

Theorem (Friggstad-M.)

There is a 20-approx for DST on quasi-bipartite, planar instances. We can generalize it to any graph that excludes a fixed minor.

Toolbox: primal-dual

- Primal-dual algorithm is rare in the directed network design problems. One use of this is in Arborescence (more on this in the next slide).
- In contrast, primal-dual algorithm is used in the undirected network design abundantly, e.g. Guha et al. - 1999, Könemann et al. - 2013, Moldenhauer 2013, and Demaine et al. - 2014
- Why primal-dual algorithm is preferred? Can be viewed as combinatorial algorithm and usually fast and easy to implement!

Warm up (Arborescence)

Given a directed graph, edge cost and a root node r. Find a cheapest subgraph such that every node is reachable from r

Warm up (Arborescence)

Given a directed graph, edge cost and a root node r. Find a cheapest subgraph such that every node is reachable from r

Warm up (Arborescence)
$\delta^{i n}(S)$ is the set of edges entering S and $x\left(\delta^{i n}(S)\right):=\sum_{e: e \in \delta^{i n}(S)} x_{e}$

$$
\begin{aligned}
& \text { Primal LP } \\
& \begin{array}{l}
\min \sum_{e} c_{e} \cdot x_{e} \\
\quad x\left(\delta^{i n}(S)\right) \geq 1, \quad \forall S \subseteq V-r \\
\quad x \geq 0
\end{array}
\end{aligned}
$$

Dual LP

$$
\begin{aligned}
& \max \sum_{S} y_{s} \\
& \sum_{s: e \in \delta^{\operatorname{in}(S)}} y_{s} \leq c_{e}, \forall e \\
& y \geq 0
\end{aligned}
$$

Warm up (Arborescence)
$\delta^{i n}(S)$ is the set of edges entering S and $x\left(\delta^{i n}(S)\right):=\sum_{e: e \in \delta^{i n}(S)} x_{e}$

$$
\begin{aligned}
& \text { Primal LP } \\
& \begin{array}{l}
\min \sum_{e} c_{e} \cdot x_{e} \\
\quad x\left(\delta^{i n}(S)\right) \geq 1, \quad \forall S \subseteq V-r \\
\quad x \geq 0
\end{array}
\end{aligned}
$$

Dual LP

$$
\begin{aligned}
& \max \sum_{S} y_{S} \\
& \sum_{S: e \in \delta^{i n}(S)} y_{S} \leq c_{e}, \forall e \\
& y \geq 0
\end{aligned}
$$

Warm up (Arborescence)

$\delta^{\text {in }}(S)$ is the set of edges entering S and $x\left(\delta^{\text {in }}(S)\right):=\sum_{e: e \in \delta^{\text {in }}(S)} x_{e}$

$$
\begin{aligned}
& \text { Primal LP } \\
& \begin{array}{l}
\min \sum_{e} c_{e} \cdot x_{e} \\
\quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r \\
\quad x \geq 0
\end{array}
\end{aligned}
$$

Dual LP

$$
\begin{aligned}
& \max \sum_{S} y_{S} \\
& \sum_{S: e \in \delta^{\text {in }}(S)} y_{S} \leq c_{e}, \forall e \\
& y \geq 0
\end{aligned}
$$

- Find a subgraph F

Warm up (Arborescence)

$\delta^{\text {in }}(S)$ is the set of edges entering S and $x\left(\delta^{i n}(S)\right):=\sum_{e: e \in \delta^{i n}(S)} x_{e}$

$$
\begin{aligned}
& \text { Primal LP } \\
& \begin{array}{l}
\min \sum_{e} c_{e} \cdot x_{e} \\
\quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r \\
\quad x \geq 0
\end{array}
\end{aligned}
$$

Dual LP

$$
\begin{aligned}
& \max \sum_{S} y_{S} \\
& \sum_{s: e \in \delta^{i n}(S)} y_{s} \leq c_{e}, \forall e \\
& y \geq 0
\end{aligned}
$$

- Find a subgraph F
- Find a (fractional) solution \bar{y} for the Dual LP such that:

Warm up (Arborescence)

$\delta^{i n}(S)$ is the set of edges entering S and $x\left(\delta^{i n}(S)\right):=\sum_{e: e \in \delta^{i n}(S)} x_{e}$

$$
\begin{aligned}
& \text { Primal LP } \\
& \begin{array}{l}
\min \sum_{e} c_{e} \cdot x_{e} \\
\quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r \\
\quad x \geq 0
\end{array}
\end{aligned}
$$

Dual LP

$$
\begin{aligned}
& \max \sum_{S} y_{S} \\
& \sum_{S: e \in \delta^{\text {in }}(S)} y_{S} \leq c_{e}, \forall e \\
& y \geq 0
\end{aligned}
$$

- Find a subgraph F
- Find a (fractional) solution \bar{y} for the Dual LP such that:
- $\operatorname{cost}(F) \leq \operatorname{cost}(\bar{y}) \leq$ Dual LP
\leq Primal LP $\leq \mathrm{OPT}$

Primal-dual in action!

Recall the dual constraint for edge e is $\sum_{S: e \in \delta^{\text {in }}(S)} y_{S} \leq c_{e}$

- At time 0 , every node except r is active set. Increase $y_{\{x\}}, y_{\{k\}}, \ldots$

Primal-dual in action!

Recall the dual constraint for edge e is

$$
\sum_{S: e \in \delta^{i n}(S)} y_{s} \leq c_{e}
$$

- At time 0, every node except r is active set.
Increase $y_{\{x\}}, y_{\{k\}}, \ldots$
- At time $1, w z$ is bought and the red set is inactive now.

$$
y_{\{x\}}=y_{\{k\}}=y_{\{z\}}=\ldots=1 .
$$

Primal-dual in action!

Recall the dual constraint for edge e is

$$
\sum_{S: e \in \delta^{i n}(S)} y_{s} \leq c_{e}
$$

- At time 0, every node except r is active set.
Increase $y_{\{x\}}, y_{\{k\}}, \ldots$
- At time $1, w z$ is bought and the red set is inactive now.

$$
y_{\{x\}}=y_{\{k\}}=y_{\{z\}}=\ldots=1 .
$$

Primal-dual in action!

Recall the dual constraint for edge e is

$$
\sum_{S: e \in \delta^{i n}(S)} y_{S} \leq c_{e}
$$

- At time 0, every node except r is active set. Increase $y_{\{x\}}, y_{\{k\}}, \ldots$
- At time $1, w z$ is bought and the red set is inactive now.

$$
y_{\{x\}}=y_{\{k\}}=y_{\{z\}}=\ldots=1 .
$$

- At time 2, rx, rk and $z t$ are bought and the only active set is the blue one.

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{w\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1 .
\end{aligned}
$$

Primal-dual in action!

Recall the dual constraint for edge e is

$$
\sum_{S: e \in \delta^{i n}(S)} y_{S} \leq c_{e}
$$

- At time 0, every node except r is active set. Increase $y_{\{x\}}, y_{\{k\}}, \ldots$
- At time $1, w z$ is bought and the red set is inactive now.

$$
y_{\{x\}}=y_{\{k\}}=y_{\{z\}}=\ldots=1 .
$$

- At time 2, rx, rk and $z t$ are bought and the only active set is the blue one.

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{w\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1 .
\end{aligned}
$$

Primal-dual in action, continued!

Recall the dual constraint for edge e is $\sum_{S: e \in \sin (S)} y_{S} \leq c_{e}$

- At time 3, tw is bought

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3 .
\end{aligned}
$$

Primal-dual in action, continued!

Recall the dual constraint for edge e is $\sum_{S: e \in \sin ^{\text {in }}(S)} y_{S} \leq c_{e}$

- At time 3, tw is bought

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3 .
\end{aligned}
$$

Primal-dual in action, continued!

Recall the dual constraint for edge e is $\sum_{S: e \in \sin ^{\text {in }}(S)} y_{S} \leq c_{e}$

- At time 3, tw is bought

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3 .
\end{aligned}
$$

Primal-dual in action, continued!

Recall the dual constraint for edge e is $\sum_{S: e \in \operatorname{Sin}^{\text {in }}(S)} y_{S} \leq c_{e}$

- At time 3, tw is bought

$$
y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2,
$$

$$
y_{\{z\}}=1, y_{\{w\}}=3
$$

- z, t, w are strongly connected component, form a bigger active set $\{w, z, t\}$ and $y_{\{w, z, t\}}=0$

Primal-dual in action, continued!

Recall the dual constraint for edge e is $\sum_{S: e \in \delta^{\text {in }}(S)} y_{S} \leq c_{e}$

- At time 3, tw is bought

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3 .
\end{aligned}
$$

- z, t, w are strongly connected component, form a bigger active set $\{w, z, t\}$ and $y_{\{w, z, t\}}=0$
- At time 4, kw is bought and there is no active set left. So we terminate.

$$
\begin{aligned}
& \{w, z, t\} . \\
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3, \\
& y_{\{w, z, t\}}=1 .
\end{aligned}
$$

Primal-dual in action, continued!

Recall the dual constraint for edge e is $\sum_{S: e \in \delta^{\text {in }}(S)} y_{S} \leq c_{e}$

- At time 3, tw is bought

$$
\begin{aligned}
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3 .
\end{aligned}
$$

- z, t, w are strongly connected component, form a bigger active set $\{w, z, t\}$ and $y_{\{w, z, t\}}=0$
- At time 4, kw is bought and there is no active set left. So we terminate.

$$
\begin{aligned}
& \{w, z, t\} . \\
& y_{\{x\}}=y_{\{k\}}=y_{\{t\}}=2, \\
& y_{\{z\}}=1, y_{\{w\}}=3, \\
& y_{\{w, z, t\}}=1 .
\end{aligned}
$$

Primal-dual in action, continued!

- Edges are bought in the order: $w z, r x, r k, z t, t w$, and $k w$. Consider edges in the reverse order they have been added and remove them if not need it!

Primal-dual in action, continued!

- Edges are bought in the order: $w z, r x, r k, z t, t w$, and $k w$. Consider edges in the reverse order they have been added and remove them if not need it!
- Remove tw

Primal-dual in action, continued!

- Edges are bought in the order: $w z, r x, r k, z t, t w$, and $k w$. Consider edges in the reverse order they have been added and remove them if not need it!
- Remove tw
- Total dual increased is $y_{\{x\}}+\ldots+y_{\{z, t, w\}}=11$. Total cost of green edges is 11 too!

Primal-dual in action, continued!

- Edges are bought in the order: $w z, r x, r k, z t, t w$, and $k w$. Consider edges in the reverse order they have been added and remove them if not need it!
- Remove tw
- Total dual increased is $y_{\{x\}}+\ldots+y_{\{z, t, w\}}=11$. Total cost of green edges is 11 too!
- Consider an iteration. Every active set has at most one edge entering

Primal-dual in action, continued!

- Edges are bought in the order: $w z, r x, r k, z t, t w$, and $k w$. Consider edges in the reverse order they have been added and remove them if not need it!
- Remove tw
- Total dual increased is $y_{\{x\}}+\ldots+y_{\{z, t, w\}}=11$. Total cost of green edges is 11 too!
- Consider an iteration. Every active set has at most one edge entering

Back to DST!

$$
\begin{aligned}
& \text { Primal LP } \\
& \min \sum_{e} c_{e} \cdot x_{e} \\
& \quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r, S \cap X \neq \emptyset \\
& \quad x \geq 0
\end{aligned}
$$

Back to DST!

$$
\begin{aligned}
& \text { Primal LP } \\
& \min \sum_{e} c_{e} \cdot x_{e} \\
& \quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r, S \cap X \neq \emptyset \\
& \quad x \geq 0
\end{aligned}
$$

- Find a subgraph F

Back to DST!

$$
\begin{aligned}
& \text { Primal LP } \\
& \min \sum_{e} c_{e} \cdot x_{e} \\
& \quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r, S \cap X \neq \emptyset \\
& \quad x \geq 0
\end{aligned}
$$

- Find a subgraph F
- Find a (fractional) solution \bar{y} for the Dual LP such that

Back to DST!

$$
\begin{aligned}
& \text { Primal LP } \\
& \min \sum_{e} c_{e} \cdot x_{e} \\
& \quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r, S \cap X \neq \emptyset \\
& \quad x \geq 0
\end{aligned}
$$

- Find a subgraph F
- Find a (fractional) solution \bar{y} for the Dual LP such that
- $\operatorname{cost}(F) \leq 20 \cdot \operatorname{cost}(\bar{y}) \leq 20 \cdot$ OPT

Back to DST!

$$
\begin{aligned}
& \text { Primal LP } \\
& \min \sum_{e} c_{e} \cdot x_{e} \\
& \quad x\left(\delta^{i n}(S)\right) \geq 1, \forall S \subseteq V-r, S \cap X \neq \emptyset \\
& \quad x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Dual LP } \\
& \qquad \begin{array}{l}
\max \sum_{S} y_{S} \\
\sum_{S: e \in \delta^{i n}(S)} y_{S} \leq c_{e}, \forall e \\
y \geq 0
\end{array}
\end{aligned}
$$

- Find a subgraph F
- Find a (fractional) solution \bar{y} for the Dual LP such that
- $\operatorname{cost}(F) \leq 20 \cdot \operatorname{cost}(\bar{y}) \leq 20 \cdot$ OPT
- Natural thing to try is to use the "same" primal-dual algorithm for Arborescence here!

There is always an obstacle!

- Bottom set bought too many edges that aren't used for its connectivity

But sometimes there is a bypass!

- Make the bottom set to purchase only one of the downward edges.

But sometimes there is a bypass!

- Make the bottom set to purchase only one of the downward edges.
- The top active set will buy the rest of the downward edges as it grows.

But sometimes there is a bypass!

- Make the bottom set to purchase only one of the downward edges.
- The top active set will buy the rest of the downward edges as it grows.
- How to formalize this?

But sometimes there is a bypass!

- Make the bottom set to purchase only one of the downward edges.
- The top active set will buy the rest of the downward edges as it grows.
- How to formalize this?
- Introducing two buckets: expansion and killer!

But sometimes there is a bypass!

- Where does planarity is used?!

But sometimes there is a bypass!

- Where does planarity is used?!
- The average degree of active sets w.r.t. final solution is constant

But sometimes there is a bypass!

- Where does planarity is used?!
- The average degree of active sets w.r.t. final solution is constant
- We actually need every minor of the graph also has a constant average degree

Open problems

- Planar DST?
- Planar DAG DST?
- Other applications of multiple buckets typed primal-dual algorithm?

Open problems

- Planar DST?
- Planar DAG DST?
- Other applications of multiple buckets typed primal-dual algorithm?

Thank You

Bonus! The analysis

- Fix an iteration

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it
- What about expansion edges?

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it
- What about expansion edges?

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it
- What about expansion edges?

- Charge the expansion edges to an active set down the road!

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it
- What about expansion edges?

- Charge the expansion edges to an active set down the road!
- Where does planarity is used?!

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it
- What about expansion edges?

- Charge the expansion edges to an active set down the road!
- Where does planarity is used?!
- Recall relation between average degree of active sets and performance guarantee

Bonus! The analysis

- Fix an iteration
- Every active set has at most one killer edge entering it
- What about expansion edges?

- Charge the expansion edges to an active set down the road!
- Where does planarity is used?!
- Recall relation between average degree of active sets and performance guarantee
- We actually need every minor of the graph has constant average degree

