Copyright (c) 2022 by P. Mark Kayll

KE and Egerváry graphs: a stability structure graph decomposition

Mark Kayll
(joint with Jack Edmonds \& Craig Larson)

University of Montana
Alberta-Montana Combinatorics and Algorithms Days
BIRS Workshop 22w2245
Banff International Research Station, AB, Canada
4 June 2022
" "It's nice to begin a talk with a quote." Michael Doob 2 October 2004

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples

- bipartite graphs

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples

- bipartite graphs

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples and not

- bipartite graphs

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples and not

- bipartite graphs

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples and not

- bipartite graphs

Kőnig-Egerváry graphs

Definition

G is Kőnig-Egerváry or KE when $\nu=\tau$

Examples and not

- bipartite graphs

KE literature

Incomplete survey

When	Who	What
1931	Egerváry	bipartite graphs are KE (\& more)
1931	Kőnig	" " " "
1979	Deming	characterization (blossom pairs) \& algorithm
1979	Sterboul	(flowers, posies)
1983	Lovász	(ear decompositions)
1986	Lovász, Plummer	(neither K_{4} nor T_{2})
1987	Bourjolly, Pulleyblank	2-bicritical graphs, fractional matchings
2006	Korach, Nguyen, Peis	characterization (extension, forb subgraphs)
2011	Larson	(critical independence)
2012	Larson	(fractional independence)

Perfect matching polytope

Example

Perfect matching polytope
Example

Perfect matching polytope
Example

Perfect matching polytope
Example

Perfect matching polytope
Example

000011

001100

110000

Perfect matching polytope

Example

Perfect matching polytope

Official stuff
$\operatorname{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$

Perfect matching polytope

Official stuff
$\operatorname{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$
Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$

Perfect matching polytope

Official stuff
$\operatorname{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$
Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$
(i) nonnegativity $\mathbf{x} \geq \mathbf{0}$

Perfect matching polytope

Official stuff

$\mathrm{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$
Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$
(i) nonnegativity $\mathbf{x} \geq \mathbf{0}$
(ii) saturation $\sum_{e \ni v} \mathbf{x}(e)=1 \quad \forall v \in V$

Perfect matching polytope

Official stuff

$\mathrm{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$
Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$
(i) nonnegativity $\mathbf{x} \geq \mathbf{0}$
(ii) saturation $\sum_{e \ni v} \mathbf{x}(e)=1 \quad \forall v \in V$

$$
\xrightarrow[N=1]{N=1}
$$

Perfect matching polytope

Official stuff

$\mathrm{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$ Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$
(i) nonnegativity $\mathbf{x} \geq \mathbf{0}$
(ii) saturation $\quad \sum_{e \ni v} \mathbf{x}(e)=1 \quad \forall v \in V \quad v$
(iii) blossom

$$
\sum_{e \in \partial(S)} \mathbf{x}(e) \geq 1 \quad \forall \text { odd } S \subseteq V
$$

Perfect matching polytope

Official stuff

$\mathrm{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$
Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$
(i) nonnegativity $\mathbf{x} \geq \mathbf{0}$
(ii) saturation $\sum_{e \ni v} \mathbf{x}(e)=1 \quad \forall v \in V$

(iii) blossom $\sum_{e \in \partial(S)} \mathbf{x}(e) \geq 1 \quad \forall$ odd $S \subseteq V$

Perfect matching polytope

Official stuff

$\operatorname{PM}(G):=\operatorname{conv}\left\{\mathbf{1}_{M} \mid M\right.$ is a perfect matching of $\left.G\right\} \subseteq \mathbb{R}^{E}$
Edmonds' constraints on $\mathbf{x} \in \mathbb{R}^{E}$
(i) nonnegativity $\mathbf{x} \geq \mathbf{0}$
(ii) saturation $\sum_{e \ni v} \mathbf{x}(e)=1 \quad \forall v \in V$品
(iii) blossom $\sum_{e \in \partial(S)} \mathbf{x}(e) \geq 1 \quad \forall$ odd $S \subseteq V$

Theorem (Edmonds, 1965)
(i), (ii), (iii) together determine $\operatorname{PM}(G)$
1965
...good times...

Outline from here

Preamble: Doob joke

Warm-up
Kőnig-Egerváry graphs
Perfect matching polytope
1965
Egerváry graphs
Basics
LP \& characterizations
Connections: bipartite, KE, Egerváry
KE graphs
Stable sets
Deming's Algorithm \& extensions
Deming decompositions
More on Egerváry graphs
Constructions
A conjecture

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only)

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples

- bipartite graphs

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples

- bipartite graphs (equiv to Birkhoff-von Neumann Theorem)

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples

- bipartite graphs (equiv to Birkhoff-von Neumann Theorem)
-

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples

- bipartite graphs (equiv to Birkhoff-von Neumann Theorem)
-

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples

- bipartite graphs (equiv to Birkhoff-von Neumann Theorem)

Egerváry graphs

Definition

G is Egerváry when $\mathrm{PM}(G)$ is determined by (i), (ii) (only) Known aliases: non-Edmonds and BvN

Examples and not

- bipartite graphs (equiv to Birkhoff-von Neumann Theorem)

Egerváry literature

When	Who	What
1936	Kőnig	bipartite graphs are Egerváry (\& more)
1946	Birkhoff	" " " "
1953	von Neumann	" " " "
1953	Hoffman, Wielandt	" " " "
1956	Hammersley, Mauldon	" "
$\begin{aligned} & 1981 \\ & 2004 \end{aligned}$	Balas de Carvalho, Lucchesi, Murty	characterize (forbidden config $C_{1} \cup C_{2} \cup M$) characterization (solid bricks)
$\begin{aligned} & 2010 \\ & 2020 \end{aligned}$	Kayll de Carvalho, Lin, Kothari, Wang	example class of Egerváry graphs PM-compactness
2012-	Edmonds, Kayll, Larson	today's talk

Corollary

A matchable G is Egerváry

G admits no spanning subgraph

$$
M \cup \bigcup_{k=1}^{2 \ell(\geq 2)} C_{k}
$$

Characterizations (matchable case)

Characterizations (matchable case)

Egerváry

Characterizations (matchable case)

Egerváry

Characterizations (matchable case)

Egerváry

G contains no nice even subdivision of T_{2}

What's needed

(for matchable G)
G admits no spanning subgraph

$$
M \cup \bigcup_{k=1}^{2 \ell(\geq 2)} C_{k}
$$

G contains no nice even subdivision of T_{2}

What's needed

(for matchable G)

G admits spanning subgraph

$$
M \cup \bigcup_{k=1}^{2 \ell}(\geq 2)
$$

G contains nice even subdivision of T_{2}

What's needed

(for matchable G)

G admits spanning subgraph

$$
M \cup \bigcup_{k=1}^{2 \ell}(\geq 2)
$$

CRUX

G contains nice even subdivision of T_{2}

Proof by picture

Proof by picture

Proof by picture

M

Proof by picture

M

Proof by picture

M

Proof by picture

M

Proof by picture

M

What's needed

(for matchable G)

G admits spanning subgraph

$$
M \cup \bigcup_{k=1}^{2 \ell}(\geq 2)
$$

CRUX

G contains nice even subdivision of T_{2}

What's needed

(for matchable G)
G admits no spanning subgraph

$$
M \cup \bigcup_{k=1}^{2 \ell(\geq 2)} C_{k}
$$

G contains no nice even subdivision of T_{2}

QED

Characterizations (matchable case)

Egerváry

G contains no nice even subdivision of T_{2}

Characterizations (matchable case)

KE

Characterizations (matchable case)

KE

Characterizations (matchable case)

KE

Characterizations (matchable case)

Characterizations (matchable case)

G contains no nice even subdivision of K_{4} or T_{2}

Characterizations (matchable case)

Egerváry

G contains no nice even subdivision of T_{2}

G contains no nice even subdivision of K_{4} or T_{2}

Two big theorems

Kőnig-Egerváry $(1931,1931)$ Bipartite graphs are KE

Birkhoff-von Neumann $(1946,1953)$ Bipartite graphs are Egerváry

Two big theorems

Kőnig-Egerváry $(1931,1931)$
Bipartite graphs are KE
Birkhoff-von Neumann $(1946,1953)$ Bipartite graphs are Egerváry

Two big theorems plus a little one

Kőnig-Egerváry $(1931,1931)$
Bipartite graphs are KE
Birkhoff-von Neumann $(1946,1953)$ Bipartite graphs are Egerváry

Kayll (2010)
KE graphs are Egerváry

Four graph classes

(actual state of affairs)

Edmonds

KE graphs: alternate definition (stability)

KE graphs: alternate definition (stability)

Recall: $\quad \tau=n-\alpha$

KE graphs: alternate definition (stability)
Recall: $\quad \tau=n-\alpha$
So: $\quad G$ is $\operatorname{KE}(\nu=\tau) \Longleftrightarrow \alpha+\nu=n$

KE graphs: alternate definition (stability)
Recall: $\quad \tau=n-\alpha$
So: $\quad G$ is $\operatorname{KE}(\nu=\tau) \Longleftrightarrow \alpha+\nu=n$

$$
[\alpha+\nu \leq \boldsymbol{n} \text { (always) }]
$$

KE graphs: alternate definition (stability)
Recall: $\quad \tau=n-\alpha$
So: $\quad G$ is $\operatorname{KE}(\nu=\tau) \Longleftrightarrow \alpha+\nu=n$

$$
[\alpha+\nu \leq \boldsymbol{n} \text { (always) }]
$$

- KE graphs are in NP:

KE graphs: alternate definition (stability)

Recall: $\quad \tau=n-\alpha$
So: $\quad G$ is $\operatorname{KE}(\nu=\tau) \Longleftrightarrow \alpha+\nu=n$

$$
[\alpha+\nu \leq \boldsymbol{n} \text { (always) }]
$$

- KE graphs are in NP:
produce a stable set and a matching

KE graphs: alternate definition (stability)

Recall: $\quad \tau=n-\alpha$
So: $\quad G$ is $\operatorname{KE}(\nu=\tau) \Longleftrightarrow \alpha+\nu=n$

$$
[\alpha+\nu \leq \boldsymbol{n} \text { (always) }]
$$

- KE graphs are in NP:
produce a stable set and a matching
- Are they in co-NP?

KE graphs: alternate definition (stability)

Recall: $\quad \tau=n-\alpha$
So: $\quad G$ is $\operatorname{KE}(\nu=\tau) \Longleftrightarrow \alpha+\nu=n$

$$
[\alpha+\nu \leq \boldsymbol{n} \text { (always) }]
$$

- KE graphs are in NP: produce a stable set and a matching
- Are they in co-NP?
- Can we find a maximum stable set efficiently?

Characterizations (matchable case)

G contains no nice even subdivision of K_{4} or T_{2}

KE graphs: towards algorithmics
Again:
G is $K E$

G contains no nice even subdivision of K_{4} or T_{2}

KE graphs: towards algorithmics

Again:
G is $K E$

G contains no nice even subdivision of K_{4} or T_{2}

Parameters:

$$
\nu=\frac{n}{2}
$$

KE graphs: towards algorithmics

Again:
G is $K E$

G contains no nice even subdivision of K_{4} or T_{2}

Parameters:

$$
\begin{gathered}
\nu=\frac{n}{2} \\
\alpha=\nu-1
\end{gathered}
$$

KE graphs: towards algorithmics

Again:
G is $K E$

G contains no nice even subdivision of K_{4} or T_{2}

Parameters:

$$
\begin{gathered}
\nu=\frac{n}{2} \\
\alpha=\nu-1 \\
(\text { so } \quad \alpha+\nu<n)
\end{gathered}
$$

Deming's Algorithm (1979)

Deming's Algorithm (1979)

InPUT: matchable G of order n

Deming's Algorithm (1979)

InPUT: matchable G of order n
OUtput: either a stable set of $\frac{n}{2}$ nodes (so $\alpha+\nu=n \ldots \mathrm{KE}$)

Deming's Algorithm (1979)

InPUT: matchable G of order n
OUtput: either a stable set of $\frac{n}{2}$ nodes (so $\alpha+\nu=n \ldots \mathrm{KE}$) or a nice even subdivision of K_{4} or T_{2}
(so $\alpha+\nu<n \ldots$ not KE)

Deming's Algorithm (1979)

InPUT: matchable G of order n
OUtput: either a stable set of $\frac{n}{2}$ nodes (so $\alpha+\nu=n \ldots \mathrm{KE}$) or a nice even subdivision of K_{4} or T_{2}

$$
\text { (so } \alpha+\nu<n \ldots \text { not KE) }
$$

ALSO: efficient computation of ν, α for KE graphs (including unmatchable ones)

Extending Deming's Algorithm

Extending Deming's Algorithm

- G not $K E \Rightarrow G$ has a K_{4} or T_{2} obstruction H

Extending Deming's Algorithm

- G not $K E \Rightarrow G$ has a K_{4} or T_{2} obstruction H
- S max stable set, M perfect matching, $|S|<|M|$ \Longrightarrow some $e \in M$ meets no $v \in S$

Extending Deming's Algorithm

- G not $K E \Rightarrow G$ has a K_{4} or T_{2} obstruction H
- S max stable set, M perfect matching, $|S|<|M|$ \Longrightarrow some $e \in M$ meets no $V \in S$
- with $e=x y$ either $H-\{x, y\}$ is KE or it (still) has an obstruction

Extending Deming's Algorithm

Extending Deming's Algorithm

- So: with M a perfect matching of H \& each $x y \in M$ run Deming on $H-\{x, y\}$

Extending Deming's Algorithm

- So: with M a perfect matching of H \& each $x y \in M$ run Deming on $H-\{x, y\}$
Definition H is a Deming subgraph if each $H-\{x, y\}$ is KE

Deming graphs are almost-KE
H

Deming graphs are almost-KE

- H contains a spanning even K_{4}-subdivision

Deming graphs are almost-KE

H

- H contains a spanning even K_{4}-subdivision
- removing ends of any red edge yields a KE graph

Deming graphs are almost-KE

\square

- H contains a spanning even K_{4}-subdivision
- removing ends of any red edge yields a KE graph
- $\alpha=2$ and $\nu=3$

Extending Deming's Algorithm

Definition H is a Deming subgraph if each $H-\{x, y\}$ is KE

Extending Deming's Algorithm

Definition H is a Deming subgraph if each $H-\{x, y\}$ is KE

- Extended Deming Algorithm

Either G is KE or it contains a Deming subgraph H; repeat algorithm on $G-H$

Deming subgraphs

Deming subgraphs

- D contains a spanning even T_{2}-subdivision

Deming subgraphs

- D contains a spanning even T_{2}-subdivision
- Deming subgraphs are not KE, contain a spanning even subdivision of K_{4} or T_{2}, and have $\alpha=\nu-1$

Deming subgraphs

- D contains a spanning even T_{2}-subdivision
- Deming subgraphs are not KE, contain a spanning even subdivision of K_{4} or T_{2}, and have $\alpha=\nu-1$

Definition these are Deming- K_{4} or Deming- T_{2} subgraphs

Deming decomposition: example

Deming decomposition: example

Deming decomposition

Deming decomposition

- What?

Deming decomposition

- What? decomposition of a matchable G into Deming subgraphs $\left\{K_{i}\right\}_{i=1}^{\ell},\left\{T_{j}\right\}_{j=1}^{t}$ plus a KE subgraph R

Deming decomposition

- What? decomposition of a matchable G into Deming subgraphs $\left\{K_{i}\right\}_{i=1}^{\ell},\left\{T_{j}\right\}_{j=1}^{t}$ plus a KE subgraph R
- Local stability? $\alpha=\nu$ for R and $\alpha=\nu-1$ for K's \& T's

Deming decomposition

- What? decomposition of a matchable G into Deming subgraphs $\left\{K_{i}\right\}_{i=1}^{\ell},\left\{T_{j}\right\}_{j=1}^{t}$ plus a KE subgraph R
- Local stability? $\alpha=\nu$ for R and $\alpha=\nu-1$ for K's \& T's
- Computation? can be found efficiently

Deming decomposition

- What? decomposition of a matchable G into Deming subgraphs $\left\{K_{i}\right\}_{i=1}^{\ell},\left\{T_{j}\right\}_{j=1}^{t}$ plus a KE subgraph R
- Local stability? $\alpha=\nu$ for R and $\alpha=\nu-1$ for K's \& T's
- Computation? can be found efficiently
- KE characterization? G is $K E \Longleftrightarrow G=R$

Deming decomposition

- What? decomposition of a matchable G into Deming subgraphs $\left\{K_{i}\right\}_{i=1}^{\ell},\left\{T_{j}\right\}_{j=1}^{t}$ plus a KE subgraph R
- Local stability? $\alpha=\nu$ for R and $\alpha=\nu-1$ for K's \& T's
- Computation? can be found efficiently
- KE characterization? $\quad G$ is $\mathrm{KE} \Longleftrightarrow G=R$
- Stability?

$$
\alpha(G) \leq \alpha(R)+\sum_{i=1}^{\ell} \alpha\left(K_{i}\right)+\sum_{j=1}^{t} \alpha\left(T_{j}\right)
$$

Buckminster Fullerene C_{60}

Buckminster Fullerene C_{60}

- $n=60$ and there are 12 pairwise-disjoint pentagonal faces

Buckminster Fullerene C_{60}

- $n=60$ and there are 12 pairwise-disjoint pentagonal faces
- A Deming decomp: 6 pairs of C_{5} 's joined by a single edge

Buckminster Fullerene C_{60}

- $n=60$ and there are 12 pairwise-disjoint pentagonal faces
- A Deming decomp: 6 pairs of C_{5} 's joined by a single edge
- $\alpha\left(C_{60}\right)=24=4+4+4+4+4+4=\sum_{j=1}^{6} \alpha\left(T_{j}\right)$

Characterizations (matchable case)

Egerváry

G contains no nice even subdivision of T_{2}

Egerváry constructions

Egerváry constructions

Weak wheels

Egerváry constructions

Weak bananas

Egerváry constructions

Bracelets

Egerváry constructions

Bipartite extensions

Corollary

Corollary

Weak wheels, weak bananas, bracelets, and bipartite extensions are all Egerváry.

Corollary

Weak wheels, weak bananas, bracelets, and bipartite extensions are all Egerváry.

Proof: These graphs don't contain disjoint odd cycles. \square

Egerváry Graph Conjecture

Egerváry Graph Conjecture

$\alpha=3$; a Deming decomposition consists of the K_{4} (with $\alpha=1$) plus the graph induced on $\{0,1,3,4\}$ (with $\alpha=2$)

Egerváry Graph Conjecture

$\alpha=3$; a Deming decomposition consists of the K_{4} (with $\alpha=1$) plus the graph induced on $\{0,1,3,4\}$ (with $\alpha=2$)

Conjecture

G Egerváry $\Longrightarrow \alpha$ is additive on its Deming decomposition:

$$
\alpha(G)=\alpha(R)+\sum_{i=1}^{\ell} \alpha\left(K_{i}\right)+\sum_{j=1}^{t} \alpha\left(T_{j}\right)
$$

