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Kőnig-Egerváry graphs
Definition
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Kőnig-Egerváry graphs
Definition
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KE literature
Incomplete survey

When Who What

1931 Egerváry bipartite graphs are KE (& more)
1931 Kőnig 00 00 00 00

1979 Deming characterization (blossom pairs) & algorithm
1979 Sterboul 00 (flowers, posies)
1983 Lovász 00 (ear decompositions)
1986 Lovász,

Plummer 00 (neither K4 nor T2)
1987 Bourjolly,

Pulleyblank 2-bicritical graphs, fractional matchings
2006 Korach,

Nguyen, Peis characterization (extension, forb subgraphs)
2011 Larson 00 (critical independence)
2012 Larson 00 (fractional independence)
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Perfect matching polytope
Official stuff

PM(G) := conv
n

1M M is a perfect matching of G

o
✓ RE

Edmonds’ constraints on x 2 RE

(i) nonnegativity x � 0

(ii) saturation
X

e 3 v

x(e) = 1 8v 2 V

(iii) blossom
X

e 2 @(S)

x(e) � 1 8 odd S ✓ V

v

Σ = 1

|> 1

odd S

Σ

Theorem (Edmonds, 1965)
(i), (ii), (iii) together determine PM(G)
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Outline from here
Preamble: Doob joke
Warm-up

Kőnig-Egerváry graphs
Perfect matching polytope
1965

Egerváry graphs
Basics
LP & characterizations
Connections: bipartite, KE, Egerváry

KE graphs
Stable sets
Deming’s Algorithm & extensions
Deming decompositions

More on Egerváry graphs
Constructions
A conjecture
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Egerváry literature
Incomplete survey

When Who What

1936 Kőnig bipartite graphs are Egerváry (& more)
1946 Birkhoff 00 00 00 00

1953 von Neumann 00 00 00 00

1953 Hoffman, Wielandt 00 00 00 00

1956 Hammersley,
Mauldon 00 00 00 00

1981 Balas characterize (forbidden config C1 [ C2 [ M)
2004 de Carvalho,

Lucchesi, Murty characterization (solid bricks)
2010 Kayll example class of Egerváry graphs
2020 de Carvalho, Lin,

Kothari, Wang PM-compactness
2012– Edmonds,

Kayll, Larson today’s talk



Corollary

A matchable G is Egerváry

()
G admits no spanning subgraph

M [
2` (�2)[

k=1

Ck
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Two big theorems

plus a little one

Kőnig–Egerváry (1931,1931)

Bipartite graphs are KE

Birkhoff–von Neumann (1946,1953)

Bipartite graphs are Egerváry

Kayll (2010)

KE graphs are Egerváry
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Four graph classes
(actual state of affairs)

Edmonds

bipartite
KE Egerváry



KE graphs: alternate definition (stability)

Recall: ⌧ = n � ↵

So: G is KE (⌫ = ⌧ ) () ↵ + ⌫ = n

[↵ + ⌫  n (always)]

KE graphs are in NP:

produce a stable set and a matching

Are they in co-NP?

Can we find a maximum stable set efficiently?
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Deming’s Algorithm (1979)

INPUT: matchable G of order n

OUTPUT: either a stable set of n

2 nodes (so ↵+ ⌫ = n . . . KE)

or a nice even subdivision of K4 orT2
(so ↵ + ⌫ < n . . . not KE)

ALSO: efficient computation of ⌫, ↵ for KE graphs
(including unmatchable ones)
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G not KE ) G has a K4 or T2 obstruction H

S max stable set, M perfect matching, |S| < |M|
=) some e 2 M meets no v 2 S

with e = xy either H � {x , y} is KE
or it (still) has an obstruction
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So: with M a perfect matching of H & each xy 2 M

run Deming on H � {x , y}
Definition H is a Deming subgraph if each H � {x , y} is KE

Extended Deming Algorithm
Either G is KE or it contains a Deming subgraph H ;
repeat algorithm on G � H
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D

D contains a spanning even T2-subdivision

Deming subgraphs are not KE, contain a spanning
even subdivision of K4 or T2, and have ↵ = ⌫ � 1

Definition these are Deming-K4 or Deming-T2 subgraphs
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Deming decomposition

What?

decomposition of a matchable G into Deming
subgraphs {Ki}`i=1, {Tj}t

j=1 plus a KE subgraph R

Local stability? ↵ = ⌫ for R and ↵ = ⌫ � 1 for K ’s & T ’s

Computation? can be found efficiently

KE characterization? G is KE () G = R

Stability?

↵(G)  ↵(R) +
X̀

i=1

↵(Ki) +
tX

j=1

↵(Tj)
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↵(Ki) +
tX

j=1

↵(Tj)
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Buckminster Fullerene C60

n = 60 and there are 12 pairwise-disjoint pentagonal faces

A Deming decomp: 6 pairs of C5’s joined by a single edge

↵(C60) = 24 = 4 + 4 + 4 + 4 + 4 + 4 =
6X

j=1

↵(Tj)
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Characterizations (matchable case)
Egerváry

G contains no nice even subdivision of T2

KE

G contains no nice even subdivision of K4 or T2
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Egerváry constructions

Bipartite extensions



Corollary

Weak wheels, weak bananas, bracelets, and bipartite
extensions are all Egerváry.

Proof: These graphs don’t contain disjoint odd cycles. ⇤
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Egerváry Graph Conjecture

↵ = 3; a Deming decomposition consists of the K4 (with ↵ = 1)
plus the graph induced on {0, 1, 3, 4} (with ↵ = 2)

Conjecture
G Egerváry =) ↵ is additive on its Deming decomposition:

↵(G) = ↵(R) +
X̀

i=1

↵(Ki) +
tX

j=1

↵(Tj)
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