Siblings of Countable NE-Free Posets

Davoud Abdi

University of Calgary
Alberta-Montana Combinatorics and Algorithms Days Banff International Research Station

$$
\text { June 5, } 2022
$$

Embedding and Sibling

Embedding

An injective map preserving the structure.

Sibling

Two structures \mathcal{E} and \mathcal{E}^{\prime} are called siblings (or equimorphic), denoted by $\mathcal{E} \approx \mathcal{E}^{\prime}$, when there are mutual embeddings between them. $\mathcal{E} \approx \mathcal{E}^{\prime} \cong \mathcal{E}^{\prime \prime}, g\left(\mathcal{E}^{\prime}\right)=\mathcal{E}^{\prime \prime} \supseteq(g \circ f)(\mathcal{E}) \cong \mathcal{E}$.

Siblings in Some Categories

Cantor-Schröder-Bernstein Theorem (Sets)

If there exist injective maps $f: A \rightarrow B$ and $g: B \rightarrow A$ between two sets A and B, then there exists a bijection (isomorphism) $h: A \rightarrow B$.

Vector Spaces

If there are injective linear transformations between two vector spaces over a fixed field, then they are isomorphic.

Rational Numbers

\mathbb{Q} as a chain: there are mutual injective and order preserving maps between \mathbb{Q} and $\mathbb{Q}+\infty$, nonetheless, $\mathbb{Q} \not \equiv \mathbb{Q}+\infty$.

Thomassé's Conjecture

Sibling Number

The number of isomorphism classes of siblings of a structure \mathcal{R}, denoted by $\operatorname{Sib}(\mathcal{R})$.

If R is a ray, $\operatorname{Sib}(R)=1$ in the category of trees,

and $\operatorname{Sib}(R)=\aleph_{0}$ in the category of graphs.

Thomassé's Conjecture (2000)

For a countable relational structure $\mathcal{R}, \operatorname{Sib}(\mathcal{R})=1$ or \aleph_{0} or $2^{\aleph_{0}}$.

The Alternate Thomassé Conjecture

For a relational structure \mathcal{R} of any cardinality, $\operatorname{Sib}(\mathcal{R})=1$ or ∞.

The Bonato-Tardif Conjecture, Positive Results

The Bonato-Tardif (BT) Conjecture
If T is a tree, then $\operatorname{Sib}(T)=1$ or ∞ in the category of trees.
The BT conjecture holds for:

- rayless trees [Bonato, Tardif] (2006)
- rooted trees [Tyomkyn] (2009)
- scattered trees [Laflamme, Pouzet, Sauer] (2017)

The Alternate Thomassé Conjecture, Positive Results

The Alternate Thomassé conjecture holds for:

- rayless graphs [Bonato, Bruhn, Diestel, Sprüssel] (2011)
- chains [Laflamme, Pouzet, Woodrow] (2017)
- countable \aleph_{0}-categorical structures [Laflamme, Pouzet, Sauer, Woodrow] (2021)
- countable cographs [Hahn, Pouzet, Woodrow] (2021)
- countable universal theories [Braunfeld, Laskowski] (2021)

NE-Free Posets

N

' N ' is following poset on four elements $\{a, b, c, d\}: a<b, c<b, c<d$, $a \perp c, b \perp d$ and $a \perp d$.

NE-Free Poset

An NE-free poset is a poset which does not embed an induced N.

Simple Examples

Chains, Antichains, Antichains Substituted with Chains (direct sums of chains)

Poset Substitution

Poset Substitution

Let Q be a poset and $\left\{P_{u}\right\}_{u \in Q}$ a pairwise disjoint family of posets. The poset obtained by replacing each $u \in Q$ with a poset P_{u} is called poset substitution, denoted by $P:=Q\left[P_{u} / u: u \in Q\right]$.

Direct Sum and Linear Sum

Q antichain $\Longrightarrow P$ is called a direct sum, denoted by $P=\bigoplus_{u \in Q} P_{u}$, each P_{u} is called a component.
Q chain $\Longrightarrow P$ is called a linear sum, denoted by $P=+_{u \in Q} P_{u}$, and each P_{u} is called a summand.

Context Poset of Poset Labelled Sum

Let (I, \leq) be a chain and $r: I \rightarrow\{-1,0,+1\}$. Define $Q_{r}^{\prime}=\left(I, \leq^{\prime}\right)$ as follows: for $i<j$,

- $i \perp j$ if $r(i)=0$,
- $i<^{\prime} j$ if $r(i)=-1$,
- $j<^{\prime} i$ if $r(i)=+1$.

$I \Longrightarrow Q_{r}^{\prime}$

$$
(I, \leq): \begin{aligned}
& d \bullet 0 \\
& b \bullet 0 \\
& a \bullet-1
\end{aligned} \longrightarrow Q_{r}^{\prime}=\left(I, \leq^{\prime}\right): b \cdot{ }^{c \cdot 1} d
$$

Proposition

For any map $r, Q_{r}^{\prime}=\left(I, \leq^{\prime}\right)$ is an $N E$-free poset.

Poset Labelled Sum

Poset Labelled Sum

I a chain,
$r: I \rightarrow\{-1,0,+1\}$ a map,
$\left\{\left(P_{i}, \leq_{i}\right)\right\}_{i \in I}$ a pairwise disjoint family of non-empty posets.
The poset substitution $P=Q_{r}^{\prime}\left[P_{i} / i: i \in I\right]$ is called the poset labelled sum of the P_{i}.

Proposition

A poset substitution $P=Q\left[P_{i} / i: i \in I\right]$ is $N E$-free if and only if Q and each P_{i} are $N E$-free.

Thus, the poset labelled sum of $N E$-free posets is $N E$-free.

An Example of Poset Labelled Sum

$(1, \leq)$	r	P_{i}	$P=Q_{r}^{\prime}\left[P_{i} / i: i \in I\right]$
			..$^{\bullet} \dot{a}_{4 k+1}$
$i_{1} \bullet$	+1	$\left\{a_{1}\right\}$	
i_{2}	0	$\left\{a_{2}\right\}$,
$i_{3}{ }^{\circ}$	-1	$\left\{a_{3}\right\}$	
$i_{4} \bullet$	0	$\left\{a_{4}\right\}$	a_{3}
i_{5} 。	+1	$\left\{a_{5}\right\}$	a_{7}
$i_{6}{ }^{\circ}$	0	$\left\{a_{6}\right\}$	
	\vdots	\vdots	

Classification of NE-Free Posets

Dense Mapping

$r: I \rightarrow\{-1,0,+1\}$ takes 0 and ± 1 densely if the following holds: for $i<k$ there is j with $i<j \leq k$ such that $|r(i)| \neq|r(j)|$.
For instance, suppose $I=\mathbb{Z}, r(i)=0$ for $i=2 k, r(i)=-1$ for $i=4 k+1$ and $r(i)=+1$ for $i=4 k+3$.

Theorem

Let P be an NE-free poset with more than one element. Then either
(1) a direct sum i.e. $P=\bigoplus_{i} P_{i}$; or
(2) a linear sum i.e. $P=+{ }_{i} P_{i}$; or
(3) $P=Q_{r}^{\prime}\left[P_{i} / i: i \in I\right]$ where (I, \leq) is a chain with no first element and the P_{i} are NE-free and r is a mapping on the chain (I, \leq) taking 0 and ± 1 densely.

Siblings of Direct and Linear Sums

Proposition (1)

If P is a countable direct, resp linear, sum of $N E$-free posets, then $\operatorname{Sib}(P)=1$ or ∞ on condition that this property holds for each component, resp summand, of P.

Siblings of Poset Labelled Sums

Theorem (2)

Let $P=Q_{r}^{\prime}\left[P_{i} / i: i \in I\right]$ be countable where (I, \leq) is a chain with no first element, the P_{i} are non-empty NE-free posets and $r: I \rightarrow\{-1,0,+1\}$ takes 0 and ± 1 densely. Then $\operatorname{Sib}(P)=2^{\aleph_{0}}$.

How to obtain?

P can be represented as $P=\sum C$ where $C=(I, \leq, \ell)$ such that $\ell(i)=\left(P_{i}, r(i)\right)$.
For each $f \in\{0,1\}^{\mathbb{N}}$, we construct a labelled chain C_{f} such that $\sum C \approx \sum C_{f}$, and it is proven that there are continuum many functions $f \in\{0,1\}^{\mathbb{N}}$ such that $\sum C_{f} \not \equiv \sum C_{g}$ for $f \neq g$.

Main Result

Theorem

If P is a countable NE-free poset, then $\operatorname{Sib}(P)=1$ or ∞.

Sketch of Proof

We can use induction because embeddability is a well-founded relation by Thomassé's theorem (The class of countable NE-free posets is wqo under embeddability).

- If $P=Q_{r}^{\prime}\left[P_{i} / i: i \in I\right]$, then $\operatorname{Sib}(P)=2^{\aleph_{0}}$ by theorem (2).
- Otherwise, $P=\bigoplus_{i} P_{i}$ or $P={ }_{i} P_{i}$. In either case, if $P \hookrightarrow P_{i}$ for some i, then $\operatorname{Sib}(P)=\infty$. If $P_{i} \hookrightarrow P$ strictly, then by $\operatorname{Sib}(P)=1$ or ∞ by induction hypothesis and proposition (1).

Counterexamples

Counterexample to the Bonato-Tardif Conjecture [Claimed by Tateno, Rigorous Exposition by Abdi, Laflamme, Tateno, Woodrow]
There are locally finite trees having arbitrary finite number of siblings.
Counterexample to Thomassé's Conjecture [Abdi, Laflamme, Tateno, Woodrow]
Tateno's example can be adapted to construct posets contradicting Thomassé's conjecture.

Future Directions

Thomasse's Conjecture for NE-Free Posets

For a countable $N E$-free poset P, is it true that $\operatorname{Sib}(P)=1$ or \aleph_{0} or $2^{\aleph_{0}}$?

Boundaries

For which classes of relations the conjectures of Bonato-Tardif and Thomassé (both the original and the alternate form) are true and for which ones they are false?

Thank You for Your Attention

