At most 3.55^{n} stable matchings

Cory Palmer and Dömötör Pálvölgyi

University of Montana
Alberta-Montana Combinatorics \& Algorithms Days at BIRS

Stable Matchings

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.
■ Knuth '76: At most how many among n men and n women?

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.
■ Knuth '76: At most how many among n men and n women?
■ Trivial: $S M(n) \leq n!$.

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.
■ Knuth '76: At most how many among n men and n women?

- Trivial: $\operatorname{SM}(n) \leq n$!.

■ Irving-Leather '86: $S M(n)=\Omega\left(2.28^{n}\right)$ for $n=2^{t}$.

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.
■ Knuth '76: At most how many among n men and n women?

- Trivial: $S M(n) \leq n$!.

■ Irving-Leather '86: $S M(n)=\Omega\left(2.28^{n}\right)$ for $n=2^{t}$.

- Thurber '02: $S M(n)=\tilde{\Omega}\left(2.28^{n}\right)$ for all n.

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.
■ Knuth '76: At most how many among n men and n women?
■ Trivial: $\operatorname{SM}(n) \leq n$!.
■ Irving-Leather '86: $S M(n)=\Omega\left(2.28^{n}\right)$ for $n=2^{t}$.

- Thurber '02: $S M(n)=\tilde{\Omega}\left(2.28^{n}\right)$ for all n.

■ Stathoupolos '11: $S M(n)=O\left(n!/ c^{n}\right)$ for $c>1$.

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.

- Knuth '76: At most how many among n men and n women?

■ Trivial: $\operatorname{SM}(n) \leq n$!.

- Irving-Leather '86: $S M(n)=\Omega\left(2.28^{n}\right)$ for $n=2^{t}$.
- Thurber '02: $S M(n)=\tilde{\Omega}\left(2.28^{n}\right)$ for all n.

■ Stathoupolos '11: $S M(n)=O\left(n!/ c^{n}\right)$ for $c>1$.
■ Karlin-Oveis Gharan-Weber '18: $S M(n)=O\left(131072^{n}\right)$.

Stable Matchings

■ Gale-Shapley '62: A stable matching always exists.
■ Knuth '76: At most how many among n men and n women?
■ Trivial: $\operatorname{SM}(n) \leq n$!.
■ Irving-Leather '86: $S M(n)=\Omega\left(2.28^{n}\right)$ for $n=2^{t}$.

- Thurber '02: $S M(n)=\tilde{\Omega}\left(2.28^{n}\right)$ for all n.

■ Stathoupolos '11: $S M(n)=O\left(n!/ c^{n}\right)$ for $c>1$.
■ Karlin-Oveis Gharan-Weber '18: $S M(n)=O\left(131072^{n}\right)$.
■ Palmer-Pálvölgyi ' $22+: S M(n)=O\left(3.55^{n}\right)$.

Rotation poset

Irving-Leather '86: Rotations form a poset

Rotation poset

Irving-Leather '86: Rotations form a poset
Key fact: Poset downsets 1-1 stable matchings

Tangled grid poset

■ Rotation poset downside: complex and difficult to analyze.

Tangled grid poset

■ Rotation poset downside: complex and difficult to analyze.
■ Instead, we investigate the simpler tangled grid poset.

Tangled grid poset

■ Rotation poset downside: complex and difficult to analyze.

- Instead, we investigate the simpler tangled grid poset.

■ Lemma: Tangled grid contains the rotation poset.

Tangled grid poset

■ Rotation poset downside: complex and difficult to analyze.
■ Instead, we investigate the simpler tangled grid poset.
■ Lemma: Tangled grid contains the rotation poset.

- The tangled grid is composed of two n-member chain decompositions - m-chains and w-chains - such that every m-chain and w-chain intersect in exactly one poset element.

Downsets in TG

Downsets in TG

- We can encode a downset D by its maximal intersections with each m-chain or each w-chain.

Downsets in TG

- We can encode a downset D by its maximal intersections with each m-chain or each w-chain.
- So number of downsets is bounded by number of such encodings.

Downsets in TG

- We can encode a downset D by its maximal intersections with each m-chain or each w-chain.
- So number of downsets is bounded by number of such encodings.
- Trivial bound: $(n+1)^{n}$.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the mand w-chains one-by-one.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.
■ Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.
■ Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.
■ Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.
■ Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.

- Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.
■ Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.
■ Estimate the number of possibilities for the maximal element on the next chain.

Counting downsets in TG

- Randomly order the m-chains and w-chains.

■ Reveal the maximal element of a fixed downset D on the m and w-chains one-by-one.

- Estimate the number of possibilities for the maximal element on the next chain.

Related Puzzle

Given $n+1$ points on circle, one red, picking j random black points, what is the expected number of points X in arc containing the red point?

Related Puzzle

Given $n+1$ points on circle, one red, picking j random black points, what is the expected number of points X in arc containing the red point?

Related Puzzle

Given $n+1$ points on circle, one red, picking j random black points, what is the expected number of points X in arc containing the red point?

$$
\sum_{k} k \frac{\binom{n-k}{j-2}}{\binom{n+1}{j}} k
$$

First Bound

$$
\begin{aligned}
& E[\log X] \leq \frac{3}{2 n} \log (n+1)+\frac{1}{n} \sum_{j=2}^{n} \sum_{k} k \frac{\binom{n-k}{j-2}}{\binom{n+1}{j}} \log k \\
& \xrightarrow{n \rightarrow \infty} \int_{0}^{1} \sum_{k}(\log k) k x^{2}(1-x)^{k-1} d x \\
& =\sum_{k} \frac{2 \log k}{(k+1)(k+2)}=1.2037 \ldots
\end{aligned}
$$

First Bound

$$
\begin{aligned}
& E[\log X] \leq \frac{3}{2 n} \log (n+1)+\frac{1}{n} \sum_{j=2}^{n} \sum_{k} k \frac{\binom{n-k}{j-2}}{\binom{n+1}{j}} \log k \\
& \xrightarrow{n \rightarrow \infty} \int_{0}^{1} \sum_{k}(\log k) k x^{2}(1-x)^{k-1} d x \\
& =\sum_{k} \frac{2 \log k}{(k+1)(k+2)}=1.2037 \ldots
\end{aligned}
$$

Applying Main Lemma gives

$$
\log \# \text { encodings } \leq E\left[\sum_{i=1}^{2 n} \log X_{i}(s, \pi)\right] \leq 2 n \cdot 1.2038
$$

First Bound

$$
\begin{aligned}
& E[\log X] \leq \frac{3}{2 n} \log (n+1)+\frac{1}{n} \sum_{j=2}^{n} \sum_{k} k \frac{\binom{n-k}{j-2}}{\binom{n+1}{j}} \log k \\
& \xrightarrow{n \rightarrow \infty} \int_{0}^{1} \sum_{k}(\log k) k x^{2}(1-x)^{k-1} d x \\
& =\sum_{k} \frac{2 \log k}{(k+1)(k+2)}=1.2037 \ldots
\end{aligned}
$$

Applying Main Lemma gives

$$
\log \# \text { encodings } \leq E\left[\sum_{i=1}^{2 n} \log X_{i}(s, \pi)\right] \leq 2 n \cdot 1.2038
$$

$$
\text { \#encodings } \leq e^{2.4076 n} \lesssim 11.11^{n} \text {. }
$$

Main Lemma

$S \subset X_{i} A_{i}, \quad X_{i}(s, \pi)=\mid\left\{x_{i} \mid x \in S, x_{j}=s_{j}\right.$ if $\left.\pi^{-1}(j)<\pi^{-1}(i)\right\} \mid$
i.e., $X_{i}(s, \pi)$ is the number of different ith entries of elements in S that agree with so-far revealed elements.

Main Lemma

$S \subset X_{i} A_{i}, \quad X_{i}(s, \pi)=\mid\left\{x_{i} \mid x \in S, x_{j}=s_{j}\right.$ if $\left.\pi^{-1}(j)<\pi^{-1}(i)\right\} \mid$
i.e., $X_{i}(s, \pi)$ is the number of different i th entries of elements in S that agree with so-far revealed elements.
Lemma.

$$
\log |S| \leq E_{(s, \pi)}\left[\sum_{i=1}^{n} \log X_{i}(s, \pi)\right]
$$

Main Lemma

$S \subset X_{i} A_{i}, \quad X_{i}(s, \pi)=\mid\left\{x_{i} \mid x \in S, x_{j}=s_{j}\right.$ if $\left.\pi^{-1}(j)<\pi^{-1}(i)\right\} \mid$
i.e., $X_{i}(s, \pi)$ is the number of different ith entries of elements in S that agree with so-far revealed elements.
Lemma.

$$
\log |S| \leq E_{(s, \pi)}\left[\sum_{i=1}^{n} \log X_{i}(s, \pi)\right]
$$

Proof 1 [à la Shannon]: Encode text from alphabet over S with letters occurring uniformly-cannot beat $\log |S|$.

Main Lemma

$S \subset X_{i} A_{i}, \quad X_{i}(s, \pi)=\mid\left\{x_{i} \mid x \in S, x_{j}=s_{j}\right.$ if $\left.\pi^{-1}(j)<\pi^{-1}(i)\right\} \mid$
i.e., $X_{i}(s, \pi)$ is the number of different i th entries of elements in S that agree with so-far revealed elements.
Lemma.

$$
\log |S| \leq E_{(s, \pi)}\left[\sum_{i=1}^{n} \log X_{i}(s, \pi)\right]
$$

Proof 1 [à la Shannon]: Encode text from alphabet over S with letters occurring uniformly-cannot beat $\log |S|$.
Proof 2 [à la Shannon]:

$$
\begin{aligned}
& \log |S|=H(s)=\sum_{i=1}^{n} H\left(s_{i} \mid s_{j} \text { for } j \text { satisfying } \pi^{-1}(j)<\pi^{-1}(i)\right) \\
& \leq \sum_{i=1}^{n} H\left(s_{i} \mid X_{i}(s, \pi)\right)=\sum_{i=1}^{n} \sum_{k} \operatorname{Pr}_{s}\left[X_{i}(s, \pi)=k\right] \cdot H\left(s_{i} \mid X_{i}(s, \pi)=k\right) \\
& \leq \sum_{i=1}^{n} \sum_{k} \operatorname{Pr}_{s}\left[X_{i}(s, \pi)=k\right] \cdot \log X_{i}(s, \pi)=\sum_{i=1}^{n} E_{s}\left[\log X_{i}(s, \pi)\right]
\end{aligned}
$$

Concluding remarks

■ How to improve? Exploit the rotation poset structure.

Concluding remarks

■ How to improve? Exploit the rotation poset structure.

- In fact, the m-chains and w-chains intersect in two elements. This gives more information when revealing intersections with downset D.

Concluding remarks

■ How to improve? Exploit the rotation poset structure.

- In fact, the m-chains and w-chains intersect in two elements. This gives more information when revealing intersections with downset D.

■ Previously-revealed m-chains give information on current m-chain.

Concluding remarks

■ How to improve? Exploit the rotation poset structure.

- In fact, the m-chains and w-chains intersect in two elements. This gives more information when revealing intersections with downset D.

■ Previously-revealed m-chains give information on current m-chain.

- This leads to an upper bound of $O\left(3.55^{n}\right)$.

Concluding remarks

■ How to improve? Exploit the rotation poset structure.

- In fact, the m-chains and w-chains intersect in two elements. This gives more information when revealing intersections with downset D.

■ Previously-revealed m-chains give information on current m-chain.

- This leads to an upper bound of $O\left(3.55^{n}\right)$.
- Further improvements possible, but matching the lower bound 2.28^{n} seems out of reach.

Concluding remarks

■ How to improve? Exploit the rotation poset structure.

- In fact, the m-chains and w-chains intersect in two elements. This gives more information when revealing intersections with downset D.

■ Previously-revealed m-chains give information on current m-chain.

- This leads to an upper bound of $O\left(3.55^{n}\right)$.
- Further improvements possible, but matching the lower bound 2.28^{n} seems out of reach.

Thank you for your attention!

