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Stable Matchings

m Gale-Shapley '62: A stable matching always exists.

m Knuth '76: At most how many among n men and n women?
m Trivial: SM(n) < nl.

m Irving-Leather '86: SM(n) = Q(2.28") for n =2t

m Thurber '02: SM(n) = Q(2.28") for all n.

m Stathoupolos '11: SM(n) = O(n!/c") for ¢ > 1.

m Karlin-Oveis Gharan-Weber '18: SM(n) = O(131072").

m Palmer-Palvolgyi '22+: SM(n) = O(3.55").
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Irving-Leather '86: Rotations form a poset

Key fact: Poset downsets 1-1 stable matchings
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Tangled grid poset

Rotation poset downside: complex and difficult to analyze.
Instead, we investigate the simpler tangled grid poset.
Lemma: Tangled grid contains the rotation poset.

The tangled grid is composed of two n-member chain
decompositions — m-chains and w-chains — such that every
m-chain and w-chain intersect in exactly one poset element.
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m We can encode a downset D by its maximal intersections with
each m-chain or each w-chain.

m So number of downsets is bounded by number of such
encodings.

m Trivial bound: (n+1)". ®
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E[IogX]<i|og(n+1)+ ZZk( )
Mj=2« ()

Sita f Z(Iogk)kxz(l X)L dx

2|ogk

=> K D)(k+2) 1.2037...

Applying Main Lemma gives

2n
log #encodings < E [Z log X; (s, w)] <2n-1.2038.
i1

#encodings < e24076n < 11.11".
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Sc XA, X,'(S,ﬂ') = |{X,' | X € S,XJ =5j ifﬂ'_l(j) < W_l(i)}l
i.e., Xi(s,m) is the number of different ith entries of elements in S
that agree with so-far revealed elements.

Lemma.

n
log |S| < E(s x [Z IogX;(s,ﬂ)]
i-1

Proof 1 [a la Shannon]: Encode text from alphabet over S with
letters occurring uniformly—cannot beat log|S]|.

Proof 2 [a la Shannon]:

log|S| = H(s) = zn: H(s; | s; for j satisfying 71 (j) < 77 *(i))
i-1
ilH(s, | Xi(s,m)) = ZZ Prs[Xi(s,7) = k]- H(s; | Xi(s,7) = k)

= i=1 k

IN
3

> Pry[Xi(s,7) = k] -log Xi(s, ) = ZE [log Xi(s,m)].
K

i=1 i=1
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Thank you for your attention!
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