# Positive co-degree and unusual stability 

Anna Halfpap<br>University of Montana

## Alberta-Montana Combinatorics and Algorithms Days

Joint work with Cory Palmer and Nathan Lemons, and with Ramon Garcia

## Co-degree for $r$-graphs

An $r$-graph is an $r$-uniform hypergraph.

## Co-degree for $r$-graphs

An r-graph is an r-uniform hypergraph.

In an $r$-graph, the co-degree of a set $S$ of $r-1$ vertices, denoted $d_{r-1}(S)$, is the number of $r$-edges which contain $S$.

## Co-degree for $r$-graphs

An r-graph is an r-uniform hypergraph.

In an $r$-graph, the co-degree of a set $S$ of $r-1$ vertices, denoted $d_{r-1}(S)$, is the number of $r$-edges which contain $S$.

For an $r$-graph $H$, the minimum co-degree of $H$ is

$$
\delta_{r-1}(H)=\min \left\{d_{r-1}(S): S \subset V(H),|S|=r-1\right\} .
$$

## Co-degree for $r$-graphs

An $r$-graph is an $r$-uniform hypergraph, i.e., a set system in which all sets have size $r$.

In an $r$-graph, the co-degree of a set $S$ of $r-1$ vertices, denoted $d_{r-1}(S)$, is the number of $r$-edges which contain $S$.

For an r-graph $H$, the minimum positive co-degree of $H$ is

$$
\delta_{r-1}^{+}(H)=\min \left\{d_{r-1}(S): S \subset V(H),|S|=r-1, d_{r-1}(S)>0\right\}
$$

## Forbidding $r$-graphs

Let $F$ be a fixed $r$-graph. Let $\mathcal{S}_{n}$ be the set of $n$-vertex, $F$-free $r$ graphs. We define

$$
\operatorname{coex}(n, F):=\max \left\{\delta_{r-1}(H): H \in \mathcal{S}_{n}\right\}
$$

and

$$
c o^{+} e x(n, F):=\max \left\{\delta_{r-1}^{+}(H): H \in \mathcal{S}_{n}\right\}
$$

## Forbidding $r$-graphs

Let $F$ be a fixed $r$-graph. Let $\mathcal{S}_{n}$ be the set of $n$-vertex, $F$-free $r$ graphs. We define

$$
\operatorname{coex}(n, F):=\max \left\{\delta_{r-1}(H): H \in \mathcal{S}_{n}\right\}
$$

and

$$
c o^{+} e x(n, F):=\max \left\{\delta_{r-1}^{+}(H): H \in \mathcal{S}_{n}\right\}
$$

The study of $\operatorname{coex}(n, F)$ is well established; $\operatorname{co}^{+} e x(n, F)$ is a natural related question recently introduced.

## One example

Let $K_{4}^{-}$be the 3-graph on 4 vertices and 3 3-edges.

## One example

Let $K_{4}^{-}$be the 3-graph on 4 vertices and 3 3-edges.
H., Lemons, and Palmer showed that

$$
c o^{+} e x\left(n, K_{4}^{-}\right)=\lfloor n / 3\rfloor
$$

## Extremal 3-graphs

Consider the balanced blow-up of a single 3-edge:


## Extremal 3-graphs

Let $H_{6}$ be the 3-graph arising from the unique (6,3,2)-design. We can check that any blow-up of $H_{6}$ is $K_{4}^{-}$-free.

## Extremal 3-graphs

Let $H_{6}$ be the 3-graph arising from the unique (6,3,2)-design. We can check that any blow-up of $H_{6}$ is $K_{4}^{-}$-free.

It is also true that when $n \equiv 0 \bmod 6$, the balanced $n$-vertex blow-up of $H_{6}$ has minimum positive co-degree $n / 3$.

## Two extremal constructions

Theorem (H.- Lemons- Palmer, 2022+)

$$
c o^{+} e x\left(n, K_{4}^{-}\right)=\lfloor n / 3\rfloor .
$$

Moreover, suppose $H$ achieves $c^{+} e x\left(n, K_{4}^{-}\right)$. If $n \equiv 3 \bmod 6$, then $H$ is the balanced blow-up of a 3 -edge. If $n \equiv 0 \bmod 6$, then $H$ is either the balanced blow-up of a 3-edge or the balanced blowup of $H_{6}$.

## Two extremal constructions

Theorem (H.- Lemons- Palmer, 2022+)

$$
c o^{+} e x\left(n, K_{4}^{-}\right)=\lfloor n / 3\rfloor .
$$

Moreover, suppose $H$ achieves $c^{+} e x\left(n, K_{4}^{-}\right)$. If $n \equiv 3 \bmod 6$, then $H$ is the balanced blow-up of a 3 -edge. If $n \equiv 0 \bmod 6$, then $H$ is either the balanced blow-up of a 3-edge or the balanced blowup of $H_{6}$.

Is this behavior interesting?

## The stability spectrum

## $H$ is near extremal

$H$ must have small edit distance to a fixed extremal $G$

Can't predict what $H$ looks like


## $t$-stability (for positive co-degree)

Idea: when there are multiple extremal constructions (with big edit distance), then we won't have "normal" stability.

## $t$-stability (for positive co-degree)

Idea: when there are multiple extremal constructions (with big edit distance), then we won't have "normal" stability.

If we can find $t$ distinct constructions so that any near-extremal $r$-graph has small edit distance from one, we say our problem is t-stable

## $t$-stability

A general notion of $t$-stability was recently introduced by Mubayi for extremal questions where the goal is to maximize the number of (hyper)edges.

## $t$-stability

A general notion of $t$-stability was recently introduced by Mubayi for extremal questions where the goal is to maximize the number of (hyper)edges.
"Ordinary" stability is often seen in classical Turán theory. Some extremal set theory questions (e.g., finding large intersecting families) have no stability.

## $t$-stability

A general notion of $t$-stability was recently introduced by Mubayi for extremal questions where the goal is to maximize the number of (hyper)edges.
"Ordinary" stability is often seen in classical Turán theory. Some extremal set theory questions (e.g., finding large intersecting families) have no stability.
$t$-stability results for $t>1$ are less common. Liu and Mubayi recently found the first hypergraph Turán problem with 2-stability.

## 2-stability for $K_{4}^{-}$

Theorem (Garcia-H.)
Let $H$ be an $n$-vertex, $K_{4}^{-}$-free 3 -graph with

$$
\delta_{2}^{+}(H)=n / 3-o(n)
$$

Then $H$ has edit distance $o\left(n^{3}\right)$ from either the $n$-vertex balanced blow-up of a 3-edge or the $n$-vertex balanced blow-up of $H_{6}$.

## Ingredients

- Identify a "special" vertex $v$ of $H$ and look at the link graph $L(v)$;
- Argue that, because $v$ is special, we can transform $L(v)$ into one of two forms with few edits;
- Argue that, if $L(v)$ is of a good form, then we need only few edits to change to an extremal construction


## Ingredients

Theorem (Frankl-Füredi, 1984)
Let $H$ be an $n$-vertex 3 -graph in which any four vertices span either 0 or 2 3-edges. Then $H$ is either isomorphic to a blow-up of $H_{6}$, or to a 3-graph obtained by placing $n$ points on the unit circle, with edges corresponding to triangles containing the origin.

## The special vertex

Inspired by the Frankl-Füredi theorem, we will let $b(v)$ be the number of 4 -sets of vertices which contain $v$ and span exactly 1 edge.

## The special vertex

Inspired by the Frankl-Füredi theorem, we will let $b(v)$ be the number of 4 -sets of vertices which contain $v$ and span exactly 1 edge.

Because $\delta_{2}^{+}(H)>n / 3-o(n)$, it is quick to check that some $v$ has $b(v)=o\left(n^{4}\right)$. This is our "special" vertex.

## The link graph

The link graph $L(v)$ is the 2-graph on vertex set $V(H) \backslash\{v\}$ where $x y$ is an edge if $x y v$ is a 3-edge of $H$.

## The link graph

The link graph $L(v)$ is the 2-graph on vertex set $V(H) \backslash\{v\}$ where $x y$ is an edge if $x y v$ is a 3-edge of $H$.

Certain subgraphs of $L(v)$ indicate bad sets containing $v$ in $H$. Since $v$ is special, we can indicate that we don't see too many of these "bad" subgraphs.

## The link graph

After some work...

## The link graph

After some work...

With $o\left(n^{3}\right)$ edits, we can transform so that the link graph $L(v)$ is either bipartite or a subgraph of a $C_{5}$ blow-up.

## The link graph

After some work...

With $o\left(n^{3}\right)$ edits, we can transform so that the link graph $L(v)$ is either bipartite or a subgraph of a $C_{5}$ blow-up.

We can also show that these edits maintain the "specialness" of $v$.

## Wrapping up

The link graph will naturally partition the vertices of $H$ into different classes, and says where the 3-edges involving $v$ live.

## Wrapping up

The link graph will naturally partition the vertices of $H$ into different classes, and says where the 3-edges involving $v$ live.

Last step: edges not involving $v$ also must go where we expect. (Similar work to showing that the link graph looks nice.)

Thanks for your attention!
Questions?

