Siblings of Countable NE-Free Posets

Davoud Abdi

University of Calgary

Alberta-Montana Combinatorics and Algorithms Days Banff International Research Station

June 5, 2022

Davoud Abdi (University of Calgary)

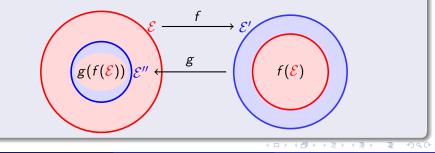
June 5, 2022 1 / 18

Embedding

An injective map preserving the structure.

Sibling

Two structures \mathcal{E} and \mathcal{E}' are called *siblings* (or equimorphic), denoted by $\mathcal{E} \approx \mathcal{E}'$, when there are mutual embeddings between them. $\mathcal{E} \approx \mathcal{E}' \cong \mathcal{E}'', \ g(\mathcal{E}') = \mathcal{E}'' \supseteq (g \circ f)(\mathcal{E}) \cong \mathcal{E}.$



Davoud Abdi (University of Calgary)

Cantor-Schröder-Bernstein Theorem (Sets)

If there exist injective maps $f : A \to B$ and $g : B \to A$ between two sets A and B, then there exists a bijection (isomorphism) $h : A \to B$.

Vector Spaces

If there are injective linear transformations between two vector spaces over a fixed field, then they are isomorphic.

Rational Numbers

 \mathbb{Q} as a chain: there are mutual injective and order preserving maps between \mathbb{Q} and $\mathbb{Q} + \infty$, nonetheless, $\mathbb{Q} \ncong \mathbb{Q} + \infty$.

- 4 同 ト 4 三 ト - 4 三 ト - -

Thomassé's Conjecture

Sibling Number

The number of isomorphism classes of siblings of a structure \mathcal{R} , denoted by $Sib(\mathcal{R})$.

If R is a ray, Sib(R) = 1 in the category of trees,

and $Sib(R) = \aleph_0$ in the category of graphs.

Thomassé's Conjecture (2000)

For a countable relation \mathcal{R} , $Sib(\mathcal{R}) = 1$ or \aleph_0 or 2^{\aleph_0} .

The Alternate Thomassé Conjecture

For a relation \mathcal{R} of any cardinality, $Sib(\mathcal{R}) = 1$ or ∞ .

Davoud Abdi (University of Calgary)

The Bonato-Tardif (BT) Conjecture

If T is a tree, then Sib(T) = 1 or ∞ in the category of trees.

The BT conjecture holds for:

- rayless trees [Bonato, Tardif] (2006)
- rooted trees [Tyomkyn] (2009)
- scattered trees [Laflamme, Pouzet, Sauer] (2017)

The Alternate Thomassé conjecture holds for:

- rayless graphs [Bonato, Bruhn, Diestel, Sprüssel] (2011)
- chains [Laflamme, Pouzet, Woodrow] (2017)
- countable ℵ₀-categorical structures [Laflamme, Pouzet, Sauer, Woodrow] (2021)
- countable cographs [Hahn, Pouzet, Woodrow] (2021)
- countable universal theories [Braunfeld, Laskowski] (2021)

'N' is the following poset on four elements $\{a, b, c, d\}$: $a < b, c < b, c < d, a \perp c, b \perp d$ and $a \perp d$.

NE-Free Poset

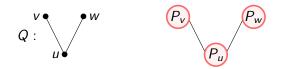
An NE-free poset is a poset which does not embed an induced N.

Simple Examples

Chains, Antichains, Antichains Substituted with Chains (direct sums of chains)

Image: A mathematical states and a mathem

Poset Substitution



Poset Substitution

Let Q be a poset and $\{P_u\}_{u \in Q}$ a pairwise disjoint family of posets. The poset obtained by replacing each $u \in Q$ with a poset P_u is called *poset* substitution, denoted by $P := Q[P_u/u : u \in Q]$.

Direct Sum and Linear Sum

Q antichain $\implies P$ is called a *direct sum*, denoted by $P = \bigoplus_{u \in Q} P_u$, each P_u is called a *component*. Q chain $\implies P$ is called a *linear sum*, denoted by $P = +_{u \in Q} P_u$, and each

 P_u is called a *summand*.

Context Poset of Poset Labelled Sum

Let (I, \leq) be a chain and $r: I \rightarrow \{-1, 0, +1\}$. Define $Q'_r = (I, \leq')$ as follows: for i < j,

•
$$i \perp j$$
 if $r(i) = 0$,

•
$$i < j$$
 if $r(i) = -1$,

•
$$j <' i$$
 if $r(i) = +1$.

 $I \Longrightarrow Q_r^I$

Proposition

For any map r, $Q_r^I = (I, \leq')$ is an NE-free poset.

Poset Labelled Sum

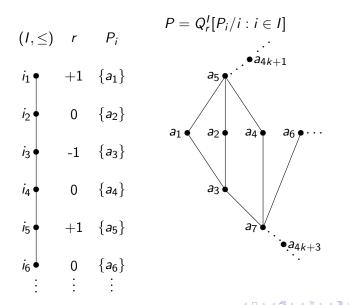
I a chain, $r: I \rightarrow \{-1, 0, +1\}$ a map, $\{(P_i, \leq_i)\}_{i \in I}$ a pairwise disjoint family of non-empty posets. The poset substitution $P = Q_r^I[P_i/i : i \in I]$ is called the *poset labelled* sum of the P_i .

Proposition

A poset substitution $P = Q[P_i/i : i \in I]$ is *NE*-free if and only if *Q* and each P_i are *NE*-free.

Thus, the poset labelled sum of NE-free posets is NE-free.

An Example of Poset Labelled Sum



Dense Mapping

 $r: I \rightarrow \{-1, 0, +1\}$ takes 0 and ± 1 *densely* if the following holds: for i < k there is j with $i < j \le k$ such that $|r(i)| \ne |r(j)|$. For instance, suppose $I = \mathbb{Z}$, r(i) = 0 for i = 2k, r(i) = -1 for i = 4k + 1 and r(i) = +1 for i = 4k + 3.

Theorem

Let P be an NE-free poset with more than one element. Then either

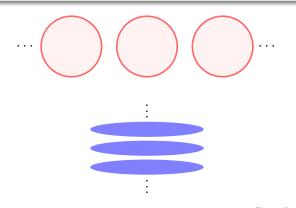
- **1** a direct sum i.e. $P = \bigoplus_i P_i$; or
- 2 a linear sum i.e. $P = +_i P_i$; or
- P = Q^I_r[P_i/i : i ∈ I] where (I, ≤) is a chain with no first element and the P_i are NE-free and r is a mapping on the chain (I, ≤) taking 0 and ±1 densely.

э

・ロト ・四ト ・ヨト ・ヨト

Proposition (1)

If *P* is a countable direct, resp linear, sum of *NE*-free posets, then Sib(P) = 1 or ∞ on condition that this property holds for each component, resp summand, of *P*.



Theorem (2)

Let $P = Q_r^I[P_i/i : i \in I]$ be countable where (I, \leq) is a chain with no first element, the P_i are non-empty NE-free posets and $r : I \to \{-1, 0, +1\}$ takes 0 and ± 1 densely. Then $Sib(P) = 2^{\aleph_0}$.

How to obtain?

P can be represented as $P = \sum C$ where $C = (I, \leq, \ell)$ such that $\ell(i) = (P_i, r(i))$. For each $f \in \{0, 1\}^{\mathbb{N}}$, we construct a labelled chain C_f such that $\sum C \approx \sum C_f$, and it is proven that there are continuum many functions $f \in \{0, 1\}^{\mathbb{N}}$ such that $\sum C_f \ncong \sum C_g$ for $f \neq g$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Abdi)

If P is a countable NE-free poset, then Sib(P) = 1 or ∞ .

Sketch of Proof

We can use induction because embeddability is a well-founded relation by Thomassé's theorem (The class of countable *NE*-free posets is wqo under embeddability).

- If $P = Q_r^I[P_i/i : i \in I]$, then $Sib(P) = 2^{\aleph_0}$ by theorem (2).
- Otherwise, P = ⊕_i P_i or P = +_iP_i. In either case, if P → P_i for some i, then Sib(P) = ∞. If P_i → P strictly, then by Sib(P) = 1 or ∞ by induction hypothesis and proposition (1).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Counterexample to the Bonato-Tardif Conjecture [Claimed by Tateno, Rigorous Exposition by Abdi, Laflamme, Tateno, Woodrow, preprint]

There are locally finite trees having arbitrary finite number of siblings.

Counterexample to Thomassé's Conjecture [Abdi, Laflamme, Tateno, Woodrow, preprint]

June 5, 2022

16 / 18

Tateno's example can be adapted to construct posets contradicting Thomassé's conjecture.

https://arxiv.org/abs/2205.14679

Thomassé's Conjecture for NE-Free Posets

For a countable *NE*-free poset *P*, is it true that Sib(P) = 1 or \aleph_0 or 2^{\aleph_0} ?

Boundaries

For which classes of relations the conjectures of Bonato-Tardif and Thomassé (both the original and the alternate form) are true and for which ones they are false?

Thank You for Your Attention