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BPS monopoles
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BPS monopoles

¢ R - su(2), Ac Q'(R®) ®su(2),
dA=d+[A ], FA=dA+AAA
die = «FA
N =
|®| = 1—Z+O(r yasr — oo
N > N = = # zeros of ® = degree of ., = Chern number of
eigenbundle of ¢, = “charge”.

Monopoles minimise E = 1 [oq [d?®|2 + |FA]2.

: . A iN 0] dr .
t Hooft, Polyakov 1974: «+F” ~ (0 —iN) 5.2 in gauge where
¢ is diagonal = magnetic pole of charge 27N in U(1) gauge

theory.



The search for monopoles continues. . .

THE MOEDALEXPERIMENT AT THE LHC

Holy grail of particle physics?



o = (coth(2r) — %) (@]

1 2r
A= 5(1_sinh(2r)> QdQ
Q = éiaj

Spherically symmetric, N = 1.
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The set of all charge N monopoles modulo gauge

transformations forms a manifold My of dimension 4N — 1.
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transformations forms a manifold My of dimension 4N — 1.
Natural Riemannian metric:

|(6A, 60) 2 = /3 |0AL| + [o0t|2
R

where | indicates projection orthogonal to gauge orbit.
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The set of all charge N monopoles modulo gauge
transformations forms a manifold My of dimension 4N — 1.

Natural Riemannian metric:
6A50)2 = [ 15A%]+ 502
R3

where | indicates projection orthogonal to gauge orbit.
(There is a circle bundle over My with a hyperkahler metric).

E =] [is [d?®[2 + |[FA]2 is the static energy of a (dynamical)
Lagrangian field theory.

Geodesics on My approximate low-energy dynamics of this
field theory.

= =1 = = DA



Minitwistor space = {oriented lines in R3} = TS? = TCP'.
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Minitwistor space = {oriented lines in R®} = TS? = TCP"

A line L with coordinate s € R is called spectral if

2 dA +ivv =0
has a solution v : L — C? that decays as s — +oc.
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Spectral curves

Minitwistor space = {oriented lines in R3} = TS? = TCP'.

A line L with coordinate s € R is called spectral if
2 dA +ivv =0
has a solution v : L — C? that decays as s — +oo.

The spectral curve of a monopole is the set of all spectral lines.
It is an algebraic variety S ¢ TCP'.



My, is in bijection with the set of irreducible curves S c TCP' of
the form

N+ e () 4. +an(¢) =0
for polynomials a; of degree 2i, satsifying:

1. S is invariant under the antipodal map;

2. L2 s trivialand L'(N — 1) is real on S;
3. HO(S,LS(N—-2))=0for0 < s < 2.

exp(—8n/().

Here LS — TCP' is the line bundle with transition function
NB S has genus (N — 1)2.
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the form

N e () + . +an(() =0
for polynomials a; of degree 2i, satsifying:

1. S is invariant under the antipodal map;
2. L2 s trivialand L'(N — 1) is real on S;
3. HO(S,LS(N—-2))=0for0 < s < 2.

Here LS — TCP! is the line bundle with transition function

exp(—sn/().
NB S has genus (N — 1)2.
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Spectral curves

Theorem (Hitchin 1982)

My, is in bijection with the set of irreducible curves S ¢ TCP' of
the form
N, . N—1 _
4 a(Q)+...+an(() =0
for polynomials a; of degree 2i, satsifying:

1. S is invariant under the antipodal map;
2. L2 s trivialand L'(N — 1) is real on S;
8. H(S,LS(N—-2))=0for0 <s<?2.

Here LS — TCP! is the line bundle with transition function
exp(—sn/().
NB S has genus (N — 1)2.

Hard to recover monopole from S...but can easily recover ¢
st.d=1—¢+ O(e ) (Hurtubise 1985).



Ty, T2, T3 : (—1,1) — u(N) are called Nahm data if:
dT; 1

d_sl = §€ijk[Tj, Tk]

R:I:
Ti(s) =

i
= I3 _S+O(1)ass—>i1.
Here Ry, Ry, Ry define N-dimensional irreps of su(2)




Ty, T2, T3 : (—1,1) — u(N) are called Nahm data if:
dT; 1

d_sl = §5ijk[Tja Tk]

R:I:
Ti(s) =

i
= I3 _S+O(1)ass—>i1.
Here Ry, Ry, Ry define N-dimensional irreps of su(2)

Nahm data — monopole:



Nahm transform

Ty, To, T3 : (—1,1) — u(N) are called Nahm data if:
dT; 1

d4s - §5ijk[Tj7 Tk]
R*
Ti(s) jE1_erO(1)ass—>j:1.

Here Ry, Ry, Ry define N-dimensional irreps of su(2).
Nahm data — monopole: for x € R3 let

[ {v:[—1,1] —»cNec?: 3:_()(]-1,\,—i7'/)®aj v}.
Then E — R3 is a rank 2 vector bundle. If Ais the induced
connection and ¢ : E — E is the orthogonal projection of the

operator v(s) — isv(s) then (A, ) is a monopole.



Nahm transform

Ty, To, T3 : (—1,1) — u(N) are called Nahm data if:

dT; 1
disl = §5ijk[Tj7 Tk]
R+
; _ I
Ti(s) = jE1_erO(1)ass—>j:1.

Here Ry, Ry, Ry define N-dimensional irreps of su(2).

» Nahm data — monopoles is a bijection (Hitchin 1983)
» Implementing this requires integration
» The spectral curve S ¢ TCP' can be written in coordinates
(¢,m):
det(Ty +iTo — 2iTa¢ + (T4 —iT2)¢2 +n1y) =0



Charge 2 monopoles

Up to translations and rotations, the spectral curve of a
2-monopole is (Hurtubise 1983):

"+ — (C4+2(k2 k)2 +1)+1) =0.

kel0,1)isa parameter; k'=v1—-k? K=K(k)isa
complete elliptic integral of the 1st kind.
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Charge 2 monopoles

Up to translations and rotations, the spectral curve of a
2-monopole is (Hurtubise 1983):

"+ — (C‘4+2(k2 K22 +1)+1) =0.
kel0,1)isa parameter; k'=v1—-k? K=K(k)isa
complete elliptic integral of the 1st kind.

The associated Nahm data are known explicitly: T; = fi(s) (no
sum) with

,sn(Ks)
cn(Ks)’

, 1
cn(Ks)

f3(s) =

What about the associated monopole?



The axially symmetric 2-monopole

When k = 0 the monopole has axial symmetry about the
Xo-axis. Ward (1981) obtained:

16r
16r2 4 72
272 cos p(sin p — pcos p)
p(m? cos? p — 16r?)

where p = /72 /4 — 4r2.

|®| = |tanh(2r) — on the xo-axis

o = 1+

in the xq, x3-plane



The axially symmetric 2-monopole

When k = 0 the monopole has axial symmetry about the
Xo-axis. Ward (1981) obtained:
16r

16r2 + 72

272 cos p(sin p — pcos p)
p(m? cos? p — 16r?)

where p = \/m2/4 — 4r2. This yields a formula for

& = 1(|d*®? + |FAP?) at x = 0 using the identity & = —1A[®[2:

8
Elx=o = —(n* — 8)°

|®| = |tanh(2r) — on the xo-axis

o = 1+

in the xq, x3-plane

Method: construct an associated holomorphic bundle over
TCP' using the Ax-ansatz.



Constructing the general 2-monopole (k € [0, 1))

» The Ag-ansatz (1981-1983): Corrigan, Fairlie, Goddard,
Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani,
Singh.

» Forgacs, Horvath, Palla (1980-1983): Ernst equation and
Backlund transformations. Later used to make first video of
2-monopole scattering.

» Nahm approach: Brown, Prasad, Panagopoulos 1982: |®|
on a portion of an axis
Ercolani, Sinha 1989 (Baker-Akhiezer functions)
Houghton, Manton, Roméao 2000



Constructing the general 2-monopole (k € [0, 1))

» The Ag-ansatz (1981-1983): Corrigan, Fairlie, Goddard,
Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani,
Singh.

» Forgacs, Horvath, Palla (1980-1983): Ernst equation and
Backlund transformations. Later used to make first video of
2-monopole scattering.

» Nahm approach: Brown, Prasad, Panagopoulos 1982: |®|
on a portion of an axis
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Houghton, Manton, Roméao 2000

® has zeros (approximately) at (+kK/2,0,0)?



case k = 0.

Braden—Enolski (2019) obtained an explicit formula for ¢ in the
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New formulae for the 2-monopole

Braden—Enolski (2019) obtained an explicit formula for ¢ in the
case k = 0.

In the general case (k € [0, 1)) they have explicit formulae on all
three coordinate axes.



New formulae for the 2-monopole

Braden—Enolski (2019) obtained an explicit formula for ¢ in the
case k = 0.

In the general case (k € [0, 1)) they have explicit formulae on all
three coordinate axes.

This leads to:
32

2
TR k?(K2k'" + E? — 4EK + 2K? 4 k?) — 2(E — K)?
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New formulae for the 2-monopole

Braden—Enolski (2019) obtained an explicit formula for ¢ in the
case k = 0.

In the general case (k € [0, 1)) they have explicit formulae on all
three coordinate axes.

This leads to:
P
Elhco = o2 [K2(K2K? 4+ B2 — 4EK + 2K2 + k2) — 2(E — K)?
k8k/2K4

The zeros of ¢ are not at (+kK /2,0, 0).



Given a monopole, construct R : CP' — CP' as follows:

1. Let L c RS be the half-line starting at 0 defined by ¢ € CP'.

2. Let v : L — C2 be a non-zero solution to %_IdAV —ov=0
that decays as r — oo

3. v(0) € C?\ {0} determines a point R(¢) € CP'.
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Given a monopole, construct R : CP' — CP' as follows:

1. Let L c RS be the half-line starting at 0 defined by ¢ € CP'.
2. Let v: L — C? be a non-zero solution to %JdAV —ov=0
that decays as r — oo

3. v(0) € C?\ {0} determines a point R(¢) € CP'.

The map (A, ®) — R is a bijection from My, to the space of

degree N rational maps CP' — CP', modulo rotations of the
target CP'.

[cf. rational maps of Donaldson (1984) and Hurtubise (1985)].

u]
o)
1l
n
it

DEE



Rational maps

Given a monopole, construct R : CP' — CP' as follows:

1. Let L c RS be the half-line starting at 0 defined by ¢ € CP'.

2. Let v: L — C? be a non-zero solution to %_ldAV —ov=0
that decays as r —

3. v(0) € C?\ {0} determines a point R(¢) € CP',

Theorem (Jarvis (2000))

The map (A, ®) — R is a bijection from My to the space of
degree N rational maps CP' — CP', modulo rotations of the
target CP'.

[cf. rational maps of Donaldson (1984) and Hurtubise (1985)].

Jarvis’ construction allows classification of monopoles invariant
under subgroups I' ¢ SO(3) (Houghton—Manton—Sutcliffe
1998). Much easier than working with spectral curves
(Hitchin—Manton—Murray 1995).



Platonic monopoles

Houghton—Sutcliffe 1996: solve Nahm equation explicitly, construct
monopole numerically

3 2ir® 4 8 4
P ey CC* 1) nt o (P 14 1 1)
7]5 26|' (<8+ 14C4+ 1) ’] 7 7219?_71' 18 (CH 7 11<6 C)



Bolognesi conjecture (2006): the “smallest” charge N is
approximately spherical, with

o] ~ 1-8 r>Ny2
0

r<nNj/2
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Bolognesi conjecture (2006): the “smallest” charge N is
approximately spherical, with

o] ~ 1-8 r>Ny2
0] r<nNj/2

Let (A, ®) be a monopole and Q. = {|®| < ¢} c R3. Then

diam(Q.) > %

Here diam(Q2) ;= inf{d € R : Q C By2}.

Taubes also constructs monopoles that come close to
saturating the bound.
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Bolognesi conjecture (2006): the “smallest” charge N is
approximately spherical, with

o] ~ 1-8 r>Ny2
0] r<nNj/2

Let (A, ®) be a monopole and Q. = {|®| < ¢} c R3. Then

N
diam(Q) > 7.

Here diam(Q2) ;= inf{d € R : Q C By2}.
Taubes also constructs monopoles that come close to
saturating the bound.

Other ways to measure the size of a monopole?

[m] [ =
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The easiest boundary condition to understand is with maximal
symmetry breaking: Stab(®.,) = T" C G.
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Simple gauge groups G

The easiest boundary condition to understand is with maximal
symmetry breaking: Stab(®.,) = T" C G.

Spectral curve construction (Hurtubise—Murray 1990): curves in
TCP' 5 nodes in Dynkin diagram of G. Intersections « lines
in Dynkin diagram.
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Nahm transform for classical groups only (Hurtubise—Murray

1989). For SU(n), get Nahm equations on intervals <> nodes,
with gluing at ends « lines.
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Simple gauge groups G

The easiest boundary condition to understand is with maximal
symmetry breaking: Stab(®.,) = T" C G.

Nahm transform for classical groups only (Hurtubise—Murray
1989). For SU(n), get Nahm equations on intervals <+ nodes,
with gluing at ends « lines.

O

Q
O

Y A}
A} /

—~
~L
—~

SO(n), Sp(n) work by folding Dynkin diagrams.

Nahm transform for non-maximal symmetry breaking: work in
progress (Charbonneau—Nagy)

Nahm transform for non-classical groups unknown (but see
Shnir—Zhilin 2015).



Monopoles with gauge group LG are instantons on R® x S'
(Garland—Murray 1988), a.k.a. “calorons” (Gross, Pisarski,
Yaffe 1983).
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Loop groups

Monopoles with gauge group LG are instantons on R3 x S
(Garland—Murray 1988), a.k.a. “calorons” (Gross, Pisarski,
Yaffe 1983).

Nahm transform for LSU(n) (Nye—Singer). This is a bijection for
n = 2 (Charbonneau—Hurtubise) (uses spectral curve)



Loop groups

Monopoles with gauge group LG are instantons on R3 x S
(Garland—Murray 1988), a.k.a. “calorons” (Gross, Pisarski,
Yaffe 1983).

Nahm transform for LSU(n) (Nye—Singer). This is a bijection for
n = 2 (Charbonneau—Hurtubise) (uses spectral curve)

Explicit (1,1)-calorons (Harrington-Shepard 1978; Kraan—van
Baal, Lee—Lu 1998)

Classification of charge (N, N) SU(2) calorons with cyclic
symmetry (Cork 2018) — involves automorphisms of Dynkin
diagram.



Monopoles on R? x S (“monopole chains”)

Nahm transform relates monopoles on

R? x S' to Hitchin’s equations on a cylinder
(Cherkis—Kapustin 2001) and parabolic
Higgs bundles (Harland 2020).

3 N distinct charge N monopoles on
R? x S with Zyn symmetry (Harland 2020).

Dynamics: Maldonado—Ward 2013




Monopoles on R x T2 “monowalls”

Nahm transform: monowalls ++ monowalls (Cherkis—Ward
2012).

Nahm transform part of a SL(2, Z) action on moduli spaces of
monowalls.

Perturbative explicit solution involving é-functions.




Monopoles on H? are also integrable (Atiyah 1984).
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Monopoles on H? are also integrable (Atiyah 1984).
Boundary condition |¢| — v > 0; scalar curvature —1/R?
vR is dimensionless.
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Hyperbolic monopoles

Monopoles on H? are also integrable (Atiyah 1984).

Boundary condition |®| — v > 0; scalar curvature —1/R?.
VR is dimensionless.
Spectral curves are defined for all vR > 0 (Murray—Singer

1996). Minitwistor space = space of geodesics in H® =
CP' x CP'\ A.
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monopoles of charge 3 and 4 (Norbury—Romao 2005).
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Hyperbolic monopoles

Monopoles on H? are also integrable (Atiyah 1984).

Boundary condition |®| — v > 0; scalar curvature —1/R?.
VR is dimensionless.

Spectral curves are defined for all vR > 0 (Murray—Singer
1996). Minitwistor space = space of geodesics in H® =
CP' x CP'\ A.

Spectral curves known for all 2-monopoles and for platonic
monopoles of charge 3 and 4 (Norbury—Romao 2005).

If vR € %N hyperbolic monopoles = circle-invariant instantons
on R*, because

R*\R2~H® x S'.
— there is a discrete Nahm equation, derived from the
ADHM construction (Braam—Austin 1990, Murray—Singer 2000).

Discrete Nahm data known for 2-monopole, but not platonic
monopoles.



VR = %: hyperbolic monopoles constructed from harmonic
functions on R* (Manton—Sutcliffe 2014):
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Some monopoles are more integrable than others

VR = %: hyperbolic monopoles constructed from harmonic
functions on R* (Manton—Sutcliffe 2014):

N =2axial (r=x%+x2+x5 <1, p=x2+x3):
o = r2(1+r2)2 — p2(1 + r42) 4 %p4
((1+r2)2 — p?)
N = 11 icosahedral, along x3-axis:
x§(25x3§3 + 20x§ — 218x3 + 20x3 + 25)2
(75x10 + 55x8 — 2x8 — 2x3 + 55x2 + 75)2

o2 =
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Further explicit solutions with vR = } exploit ADHM and
R*\ 82 ~ HS x S'.



Some monopoles are more integrable than others

VR = %: hyperbolic monopoles constructed from harmonic
functions on R* (Manton—Sutcliffe 2014):

N =2axial (r=x%+x2+x5 <1, p=x2+x3):
o = r2(1+r2)2 — p2(1 + r42) 4 %p4
((1+r2)2 — p?)
N = 11 icosahedral, along x3-axis:
x§(25x3§3 + 20x§ — 218x3 + 20x3 + 25)2
(75x10 + 55x8 — 2x8 — 2x3 + 55x2 + 75)2

o2 =

Further explicit solutions with vR = } exploit ADHM and
R*\ 82 ~ HS x S'.

These approaches also yield spectral curves
(Bolognesi—Cockburn—Sutcliffe 2015, Sutcliffe 2020), e.qg. for
dodecahedral 7-monopole.
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