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BPS monopoles

Φ : R3 → su(2), A ∈ Ω1(R3)⊗ su(2),
dA = d + [A, ·], F A = dA + A ∧ A.

dAΦ = ∗F A

|Φ| = 1− N
2r

+ O(r−2) as r →∞

N 3 N = = # zeros of Φ = degree of Φ∞ = Chern number of
eigenbundle of Φ∞ = “charge”.

Monopoles minimise E = 1
2

∫
R3 |dAΦ|2 + |F A|2.

’t Hooft, Polyakov 1974: ∗F A ≈
(

iN 0
0 −iN

)
dr
2r2 in gauge where

Φ is diagonal =⇒ magnetic pole of charge 2πN in U(1) gauge
theory.
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The search for monopoles continues. . .

Holy grail of particle physics?



The Prasad-Sommerfield solution (1975)

Φ =

(
coth(2r)− 1

2r

)
Q

A =
1
2

(
1− 2r

sinh(2r)

)
QdQ

Q =
xj

r
iσj

Spherically symmetric, N = 1.



Moduli spaces

Theorem (Taubes (1980s))

The set of all charge N monopoles modulo gauge
transformations forms a manifold MN of dimension 4N − 1.

Natural Riemannian metric:

|(δA, δΦ)|2 =

∫
R3
|δA⊥|+ |δΦ⊥|2

where ⊥ indicates projection orthogonal to gauge orbit.

(There is a circle bundle over MN with a hyperkähler metric).

E = 1
2

∫
R3 |dAΦ|2 + |F A|2 is the static energy of a (dynamical)

Lagrangian field theory.

Theorem (Stuart (1994))

Geodesics on MN approximate low-energy dynamics of this
field theory.
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Spectral curves

Minitwistor space = {oriented lines in R3} = TS2 = TCP1.

A line L with coordinate s ∈ R is called spectral if
∂
∂sy dAv + iΦv = 0

has a solution v : L→ C2 that decays as s → ±∞.

The spectral curve of a monopole is the set of all spectral lines.
It is an algebraic variety S ⊂ TCP1.
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Spectral curves

Theorem (Hitchin 1982)

MN is in bijection with the set of irreducible curves S ⊂ TCP1 of
the form

ηN + ηN−1a1(ζ) + . . .+ aN(ζ) = 0
for polynomials ai of degree 2i , satsifying:

1. S is invariant under the antipodal map;
2. L2 is trivial and L1(N − 1) is real on S;
3. H0(S,Ls(N − 2)) = 0 for 0 < s < 2.

Here Ls → TCP1 is the line bundle with transition function
exp(−sη/ζ).

NB S has genus (N − 1)2.

Hard to recover monopole from S. . . but can easily recover φ
s.t. Φ = 1− φ+ O(e−εr ) (Hurtubise 1985).
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Nahm transform

T1,T2,T3 : (−1,1)→ u(N) are called Nahm data if:
dTi

ds
=

1
2
εijk [Tj ,Tk ]

Ti(s) =
R±i
±1− s

+ O(1) as s → ±1.

Here R±1 ,R
±
2 ,R

±
3 define N-dimensional irreps of su(2).

Nahm data→ monopole: for x ∈ R3 let

Ex =

{
v : [−1,1]→ CN ⊗ C2 :

dv
ds

= (xj1N − iTj)⊗ σj v
}
.

Then E → R3 is a rank 2 vector bundle. If A is the induced
connection and Φ : E → E is the orthogonal projection of the
operator v(s)→ isv(s) then (A,Φ) is a monopole.
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Nahm transform

T1,T2,T3 : (−1,1)→ u(N) are called Nahm data if:
dTi

ds
=

1
2
εijk [Tj ,Tk ]

Ti(s) =
R±i
±1− s

+ O(1) as s → ±1.

Here R±1 ,R
±
2 ,R

±
3 define N-dimensional irreps of su(2).

I Nahm data→ monopoles is a bijection (Hitchin 1983)
I Implementing this requires integration
I The spectral curve S ⊂ TCP1 can be written in coordinates

(ζ, η):

det(T1 + iT2 − 2iT3ζ + (T1 − iT2)ζ2 + η1N) = 0



Charge 2 monopoles

Up to translations and rotations, the spectral curve of a
2-monopole is (Hurtubise 1983):

η2 +
K 2

4
(
ζ4 + 2(k2 − k ′2)ζ2 + 1) + 1

)
= 0.

k ∈ [0,1) is a parameter; k ′ =
√

1− k2; K = K (k) is a
complete elliptic integral of the 1st kind.

The associated Nahm data are known explicitly: Tj =
σj
2i fj(s) (no

sum) with

f1(s) = K
dn(Ks)

cn(Ks)
, f2(s) = Kk ′

sn(Ks)

cn(Ks)
, f3(s) = Kk ′

1
cn(Ks)

.

What about the associated monopole?
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The axially symmetric 2-monopole

When k = 0 the monopole has axial symmetry about the
x2-axis. Ward (1981) obtained:

|Φ| =

∣∣∣∣tanh(2r)− 16r
16r2 + π2

∣∣∣∣ on the x2-axis

|Φ| = 1 +
2π2 cos ρ(sin ρ− ρ cos ρ)

ρ(π2 cos2 ρ− 16r2)
in the x1, x3-plane

where ρ =
√
π2/4− 4r2.

This yields a formula for
E = 1

2(|dAΦ|2 + |F A|2) at x = 0 using the identity E = −1
24|Φ|

2:

E|x=0 =
8
π4 (π2 − 8)2

Method: construct an associated holomorphic bundle over
TCP1 using the Ak -ansatz.
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Constructing the general 2-monopole (k ∈ [0,1))

I The Ak -ansatz (1981–1983): Corrigan, Fairlie, Goddard,
Yates, Prasad, Rossi, Brown, O Raifeartaigh, Rouhani,
Singh.

I Forgács, Horváth, Palla (1980–1983): Ernst equation and
Bäcklund transformations. Later used to make first video of
2-monopole scattering.

I Nahm approach: Brown, Prasad, Panagopoulos 1982: |Φ|
on a portion of an axis
Ercolani, Sinha 1989 (Baker-Akhiezer functions)
Houghton, Manton, Romão 2000

Φ has zeros (approximately) at (±kK/2,0,0)?
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New formulae for the 2-monopole

Braden–Enolski (2019) obtained an explicit formula for Φ in the
case k = 0.

In the general case (k ∈ [0,1)) they have explicit formulae on all
three coordinate axes.

This leads to:

E|x=0 =
32

k8k ′2K 4

[
k2(K 2k ′2 + E2 − 4EK + 2K 2 + k2)− 2(E − K )2

]2

The zeros of Φ are not at (±kK/2,0,0).
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Rational maps

Given a monopole, construct R : CP1 → CP1 as follows:

1. Let L ⊂ R3 be the half-line starting at 0 defined by ζ ∈ CP1.
2. Let v : L→ C2 be a non-zero solution to ∂

∂r ydAv − Φv = 0
that decays as r →∞

3. v(0) ∈ C2 \ {0} determines a point R(ζ) ∈ CP1.
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The map (A,Φ) 7→ R is a bijection from MN to the space of
degree N rational maps CP1 → CP1, modulo rotations of the
target CP1.

[cf. rational maps of Donaldson (1984) and Hurtubise (1985)].

Jarvis’ construction allows classification of monopoles invariant
under subgroups Γ ⊂ SO(3) (Houghton–Manton–Sutcliffe
1998). Much easier than working with spectral curves
(Hitchin–Manton–Murray 1995).
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Platonic monopoles

Houghton–Sutcliffe 1996: solve Nahm equation explicitly, construct
monopole numerically

η3 − 2iπ6

3
9
2 Γ( 2

3 )9
ζ(ζ4 − 1) η4 + 3π6

28Γ( 3
4 )8 (ζ8 + 14ζ4 + 1)

η5 − 3π6

26Γ( 3
4 )8 (ζ8 + 14ζ4 + 1)η η7 − 16π12

729Γ( 2
3 )18 (ζ11 − 11ζ6 − ζ)



Magnetic bags

Bolognesi conjecture (2006): the “smallest” charge N is
approximately spherical, with

|Φ| ≈

{
1− N

2r r ≥ N/2
0 r ≤ N/2

Theorem (Taubes)

Let (A,Φ) be a monopole and Ωε = {|Φ| < ε} ⊂ R3. Then

diam(Ωε) >
N

1− ε
.

Here diam(Ω) := inf{d ∈ R : Ω ⊂ Bd/2}.
Taubes also constructs monopoles that come close to
saturating the bound.

Other ways to measure the size of a monopole?
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Simple gauge groups G

The easiest boundary condition to understand is with maximal
symmetry breaking: Stab(Φ∞) = T r ⊂ G.

Spectral curve construction (Hurtubise–Murray 1990): curves in
TCP1 ↔ nodes in Dynkin diagram of G. Intersections↔ lines
in Dynkin diagram.
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Nahm transform for classical groups only (Hurtubise–Murray
1989). For SU(n), get Nahm equations on intervals↔ nodes,
with gluing at ends↔ lines.

SO(n), Sp(n) work by folding Dynkin diagrams.

Nahm transform for non-maximal symmetry breaking: work in
progress (Charbonneau–Nagy)
Nahm transform for non-classical groups unknown (but see
Shnir–Zhilin 2015).
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Nahm transform for non-classical groups unknown (but see
Shnir–Zhilin 2015).



Loop groups

Monopoles with gauge group LG are instantons on R3 × S1

(Garland–Murray 1988), a.k.a. “calorons” (Gross, Pisarski,
Yaffe 1983).

Nahm transform for LSU(n) (Nye–Singer). This is a bijection for
n = 2 (Charbonneau–Hurtubise) (uses spectral curve)

Explicit (1,1)-calorons (Harrington-Shepard 1978; Kraan–van
Baal, Lee–Lu 1998)

Classification of charge (N,N) SU(2) calorons with cyclic
symmetry (Cork 2018) – involves automorphisms of Dynkin
diagram.



Loop groups

Monopoles with gauge group LG are instantons on R3 × S1

(Garland–Murray 1988), a.k.a. “calorons” (Gross, Pisarski,
Yaffe 1983).

Nahm transform for LSU(n) (Nye–Singer). This is a bijection for
n = 2 (Charbonneau–Hurtubise) (uses spectral curve)

Explicit (1,1)-calorons (Harrington-Shepard 1978; Kraan–van
Baal, Lee–Lu 1998)

Classification of charge (N,N) SU(2) calorons with cyclic
symmetry (Cork 2018) – involves automorphisms of Dynkin
diagram.



Loop groups

Monopoles with gauge group LG are instantons on R3 × S1

(Garland–Murray 1988), a.k.a. “calorons” (Gross, Pisarski,
Yaffe 1983).

Nahm transform for LSU(n) (Nye–Singer). This is a bijection for
n = 2 (Charbonneau–Hurtubise) (uses spectral curve)

Explicit (1,1)-calorons (Harrington-Shepard 1978; Kraan–van
Baal, Lee–Lu 1998)

Classification of charge (N,N) SU(2) calorons with cyclic
symmetry (Cork 2018) – involves automorphisms of Dynkin
diagram.



Monopoles on R2 × S1 (“monopole chains”)

Nahm transform relates monopoles on
R2 × S1 to Hitchin’s equations on a cylinder
(Cherkis–Kapustin 2001) and parabolic
Higgs bundles (Harland 2020).

∃ N distinct charge N monopoles on
R2 × S1 with Z2N symmetry (Harland 2020).

Dynamics: Maldonado–Ward 2013



Monopoles on R× T 2 “monowalls”

Nahm transform: monowalls↔ monowalls (Cherkis–Ward
2012).

Nahm transform part of a SL(2,Z) action on moduli spaces of
monowalls.

Perturbative explicit solution involving θ-functions.



Hyperbolic monopoles

Monopoles on H3 are also integrable (Atiyah 1984).

Boundary condition |Φ| → v > 0; scalar curvature −1/R2.
vR is dimensionless.

Spectral curves are defined for all vR > 0 (Murray–Singer
1996). Minitwistor space = space of geodesics in H3 =
CP1 × CP1 \∆.

Spectral curves known for all 2-monopoles and for platonic
monopoles of charge 3 and 4 (Norbury–Romão 2005).

If vR ∈ 1
2N hyperbolic monopoles = circle-invariant instantons

on R4, because
R4 \ R2 ' H3 × S1.

=⇒ there is a discrete Nahm equation, derived from the
ADHM construction (Braam–Austin 1990, Murray–Singer 2000).

Discrete Nahm data known for 2-monopole, but not platonic
monopoles.
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Some monopoles are more integrable than others

vR = 1
2 : hyperbolic monopoles constructed from harmonic

functions on R4 (Manton–Sutcliffe 2014):

N = 2 axial (r = x2
1 + x2

2 + x2
3 < 1, ρ = x2

1 + x2
2 ):

|Φ|2 =
r2(1 + r2)2 − ρ2(1 + r4) + 1

4ρ
4(

(1 + r2)2 − ρ2
)2

N = 11 icosahedral, along x3-axis:

|Φ|2 =
x2

3 (25x8
3 + 20x6

3 − 218x4
3 + 20x2

3 + 25)2

(75x10
3 + 55x8

3 − 2x6
3 − 2x4

3 + 55x2
3 + 75)2

.

Further explicit solutions with vR = 1
2 exploit ADHM and

R4 \ S2 ' H3 × S1.

These approaches also yield spectral curves
(Bolognesi–Cockburn–Sutcliffe 2015, Sutcliffe 2020), e.g. for
dodecahedral 7-monopole.
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