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Introduction

It is interesting to obtain a natural correspondence between objects in differential

geometry and objects in algebraic geometry.

Theorem (rough statement)

Differential Geometry Algebraic Geometry

Periodic monopoles ←→ Additive difference modules

(Difference modules on C)

Doubly periodic monopoles ←→ Multiplicative difference modules
(

q-Difference modules,

Difference modules on C∗

)

Triply periodic monopoles ←→ Elliptic difference modules
(

Difference modules

on elliptic curves

)



Monopoles

M : an oriented 3-dimensional Riemannian manifold

(E,h) : a vector bundle with a Hermitian metric on M

∇ : a unitary connection of (E,h)

φ : an anti-Hermitian endomorphism of E (called Higgs field)

Definition (E,h,∇,φ) is called monopole on M if

F(∇) = ∗∇φ (Bogomolny equation).

Here, ∗ denote the Hodge star operator.

Let Γ be a discrete subgroup of R3. Set MΓ := R3/Γ with ∑dxi dxi.

In this talk, we are interested in monopoles on MΓ \Z (Z: finite subset).

Periodic monopole ⇐⇒ Γ≃ Z

Doubly periodic monopole ⇐⇒ Γ≃ Z2

Triply periodic monopole ⇐⇒ Γ≃ Z3.



Difference modules

Let R be a commutative algebra over C. Let Φ∗ be an automorphism of R,

i.e., Φ∗ : R−→ R, C-linear isomorphism, Φ∗( f1 f2) = Φ∗( f1)Φ
∗( f2) (∀ fi ∈ R).

Definition A difference module over (R,Φ∗) is an R-module VVV equipped

with a C-linear isomorphism Φ∗VVV : VVV −→VVV such that

Φ∗VVV ( f s) = Φ∗( f )Φ∗VVV (s) (∀ f ∈ R, ∀s ∈VVV ).

additive difference modules ⇐⇒ R = C(y), Φ∗( f )(y) = f (y+α) (α ∈ C)

Φ∗ is induced by the automorphism Φ : C−→ C, Φ(y) = y+α.

multiplicative difference modules ⇐⇒ R = C(y), Φ∗( f )(y) = f (qy) (q ∈C∗)

Φ∗ is induced by the automorphism Φ : C∗ −→C∗, Φ(y) = qy.

elliptic difference modules ⇐⇒ R is the field of meromorphic functions on

an elliptic curve C, and Φ∗ is induced by Φ : C −→C, Φ(y) = y+α (α ∈C).



Theorem (rough statement)

Differential Geometry Algebraic Geometry

Periodic monopoles ←→ Additive difference modules

Doubly periodic monopoles ←→ Multiplicative difference modules

Triply periodic monopoles ←→ Elliptic difference modules

We need to impose the asymptotic condition to monopoles, and we should enhance

difference modules with parabolic structure and stability condition.

Non-abelian Hodge theory for harmonic bundles on Riemann surfaces.

(Higgs bundles ←→ harmonic bundles ←→ flat bundles)

Classification of monopoles by algebraic data.



Previous works on classification of monopoles

Donaldson, Hitchin

SU(2)-monopoles on R3

(L2-curvature)
←→ P1 −→ P1 holomorphic

Hurtubise, Murray, Jarvis

G-monopoles on R3 ←→ P1 −→ flag varieties holomorphic



Let Σ be a compact Riemann surface.

Norbury

Singular monopoles

on {0≤ t ≤ 1}×Σ

(boundary condition)

←→ Holomorphic bundles on Σ

with Hecke modifications

(Recently, it was generalized to the Higgs case by He-Walpuski.)

Charbonneau-Hurtubise

Singular monopoles

on S1×Σ
←→

Holomorphic bundles on Σ

with a meromorphic auto.

and Hecke modifications

(stability condition)

We recall more details of the theorem of Charbonneau-Hurtubise.



Review of the theorem of Charbonneau-Hurtubise

S1 := R/Z with the standard metric dt dt.

Σ: a compact Riemann surface with a Kähler metric.

Z: a finite subset of S1×Σ. (Assume Z∩ ({0}×Σ) = /0 for simplicity.)

We consider a monopole (E,h,∇,φ) on (S1×Σ)\Z.

Condition Each P ∈ Z is Dirac type singularity of (E,h,∇,φ),

i.e., for a neighbourhood UP of P in S1×Σ,

(E,h,∇,φ)|UP\{P} ∼
(

a direct sum of

Dirac monopoles

)



The induced differential operators

We obtain ∇
0,1
|Σ : E −→ E⊗Ω

0,1
Σ induced by

∇ : E −→ E⊗
(

Ω1
S1 ⊗C⊕Ω0,1

Σ ⊕Ω1,0
Σ

)

.

We also set ∂t := ∇t −
√
−1φ .

Key lemma [∂t ,∇
0,1
|Σ ] = 0 (∵ Bogomolny equation)



The induced holomorphic vector bundles

We obtain the vector bundle E0 := E|{0}×Σ on Σ with the holomorphic

structure ∇
0,1
|Σ .

More generally, for any 0≤ t ≤ 1, we obtain the vector bundle

Et := E|({t}×Σ)\Z with the holomorphic structure ∇
0,1
|Σ on ({t}×Σ)\Z.

E1 = E0. (Recall S1 = R/Z.)

Notation

Let E t denote the sheaf of holomorphic sections of (Et ,∇0,1
|Σ ).

For a finite subset S⊂ Σ, let E t(∗S) denote the sheaf of

meromorphic sections of E t , which may have poles along S.



Scattering map (1)

Take 0≤ t1 < t2 ≤ 1.

If Z∩ ({t1 ≤ t ≤ t2}×Σ) = /0, we obtain the isomorphism F t2,t1 : Et1 ≃ Et2 as

the parallel transport with respect to ∂t .

Proposition F t2,t1 is holomorphic (∵ [∂t ,∇
0,1
|Σ ] = 0), i.e., F t2,t1 : E t1 ≃ E t2 .



Scattering map (2)

Suppose Z∩ ({t1 ≤ t ≤ t2}×Σ) = Z∩ ({t0}×Σ) =: Dt0 6= /0 (t1 < t0 < t2). We obtain the

holomorphic isomorphism F t2,t1 : E
t1
|Σ\Dt0

≃ E
t2
|Σ\Dt0

.

Proposition

F t2,t1 is meromorphic at Dt0 , i.e., F t2,t1 : E t1(∗Dt0)≃ E t2(∗Dt0).

(∵ Dirac type singularity)

For any Q ∈ Dt0 , we obtain a Hecke modification,

i.e., there are two lattices of the stalk E t1(∗D)Q ≃ E t2(∗D)Q

E
t1
Q ⊂ E

t1(∗D)Q ≃ E
t2(∗D)Q ⊃ E

t2
Q .



Algebraic data associated to monopoles on S1×Σ

From (E,h,∇,φ), we obtain (E ,F,{tQ,i},{LQ,i}).

a holomorphic vector bundle E := E 0 on Σ

an automorphism F of E (∗D) by setting D as the image of Z by S1×Σ −→ Σ:

E (∗D) = E
0(∗D)

F1,0

≃ E
1(∗D) = E

0(∗D) = E (∗D).

a sequence 0≤ tQ,1 < · · ·< tQ,m(Q) < 1 for Q ∈ D by

Z∩ (S1×{Q}) = {(tQ,i,Q)}.

lattices LQ,i (i = 0, . . . ,m(Q)) of E (∗D)Q:

We set LQ,0 = LQ,m(Q) := EQ, and

LQ,i := E
t
Q ⊂ E

t(∗D)Q ≃ E
0(∗D)Q = E (∗D)Q (tQ,i < t < tQ,i+1)



Degree of subobjects of algebraic data

Suppose that (E ,F,{tQ,i},{LQ,i}) is given (not necessarily induced by a monopole).

Let E ′ ⊂ E be a non-zero holomorphic subbundle such that F(E ′(∗D)) = E ′(∗D).

We obtain lattices L ′
Q,i (i = 0, . . . ,m(Q)) of E ′(∗D)Q by setting

L
′

Q,i := LQ,i∩E
′(∗D)Q in E (∗D)Q.

Definition (degree)

deg(E ′;F,{tQ,i},{LQ,i}) := deg(E ′)+ ∑
Q∈D

m(Q)

∑
i=1

(1− tQ,i)deg
(

L
′
Q,i,L

′
Q,i−1

)

Here, we put

deg(L ′
Q,i,L

′
Q,i−1) := dimC

(

L
′
Q,i

/

(L ′
Q,i∩L

′
Q,i−1)

)

−dimC

(

L
′
Q,i−1

/

(L ′
Q,i∩L

′
Q,i−1)

)

.

Remark ∃ a naturally induced family of holomorphic vector bundles (E ′)t , and

deg(E ′,F,{tQ,i},{LQ,i}) =
∫ 1

0
deg(E ′)t dt.



Stability condition

Definition Suppose that deg(E ;F,{tQ,i},{LQ,i}) = 0 (for simplicity).

(E ,F,{tQ,i},{LQ,i}) is stable if

deg(E ′;F,{tQ,i},{LQ,i})< 0

for any non-zero subbundle E ′ ( E such that F(E ′(∗D)) = E ′(∗D).

(E ,F,{tQ,i},{LQ,i}) is polystable if it is a direct sum of stable objects of

degree 0, i.e.,

(E ,F,{tQ,i},{LQ,i}) =
⊕

j

(E j,Fj,{tQ,i},{L j,Q,i})

such that (E j,Fj,{tQ,i},{L j,Q,i}) are stable of degree 0.



Theorem (Charbonneau-Hurtubise)

If (E ,F,{tQ,i},{LQ,i}) is induced by a monopole with Dirac singularity on

(S1×Σ)\Z, then (E ,F,{tQ,i},{LQ,i}) is polystable of degree 0.

The above correspondence induces an equivalence

(

monopoles on (S1×Σ)\Z

(Dirac type singularity)

)

←→











holomorphic vector bundles E on Σ

with an automorphism F at D

and lattices {LQ,i}
(polystable w.r.t. {tQ,i}Q∈D)











(D and {tQ,i} are determined by Z.)

Remark Let K(Σ) denote the field of meromorphic functions on Σ.

VVV = {meromorphic sections of E on Σ}

is naturally a finite dimensional K(Σ)-vector space with an automorphism F.

We may regard (VVV ,F) as a difference module over (K(Σ), id).

The tuple (E ,{tQ,i},{LQ,i}) is regarded as a parabolic structure of (VVV ,F).



Equivalence for periodic monopoles (product case)

Periodic monopoles of GCK-type

Let Γ be a non-trivial discrete subgroup of R3 with Γ≃ Z. Let Z be a finite

subset of MΓ = (R3/Γ).

Definition A monopole (E,h,∇,φ) on MΓ \Z is called of GCK-type (gener-

alized Cherkis-Kapustin type) if

each P ∈ Z is Dirac type singularity of (E,h,∇,φ),

|φP|= O
(

logd(P,P0)
)

and |F(∇)P| −→ 0 as P goes to infinity.

Remark We can prove that a monopole of GCK type satisfies much stronger

condition at infinity.



Product case

Assume Γ = {(n,0) |n ∈ Z} ⊂ R×C≃ R3 (isometry).

We obtain an isometry MΓ ≃ S1×C.

First, we shall explain what kind of algebraic objects appear in this

product case. For simplicity, we assume Z∩ ({0}×C) = /0.

Remark There are different isometries R3 ≃ Rt0 ×Cβ0
such that Γ 6⊂ R×{0},

from which we obtain different equivalences between monopoles and algebraic

objects (explained later).



Preliminary

Everything goes similarly on C.

We obtain the operators ∂E,t = ∇t −
√
−1φ and ∂E,w = ∇w of E.

For 0≤ t ≤ 1, we obtain holomorphic vector bundles on ({t}×C)\Z ⊂ C :

E
t =
(

E|({t}×C)\Z ,∇w

)

In particular, we set E := E 0 = E 1.

Let D denote the image of Z by the projection MΓ = S1×C−→ C. Then, ∂E,t

induces

F : E (∗D) = E
0(∗D)≃ E

1(∗D) = E (∗D)

We also obtain tuples of numbers 0≤ tQ,1 < · · ·< tQ,m(Q) < 1 and lattices LQ,i

(i = 0, . . . ,m(Q)) for Q ∈ D.

Remark However, (E ,F,{tQ,i},{LQ,i}) is transcendental object on C. We would

like to extend it to an algebraic object on P1 by using h.



Acceptability

Theorem (E t ,ht := h|{t}×C) is acceptable, i.e.,

∣

∣

∣
F(∇ht )

∣

∣

∣

ht
= O

( dwdw

|w|2(log |w|)2

)

Here, ∇ht denotes the Chern connection of (E t ,ht), and F(∇ht ) denotes

the curvature.

Remark We may apply a general theory to extend acceptable bundles on

C to a filtered bundle on (P,∞) (Cornalba-Griffiths, Simpson).



Extension of acceptable bundles to filtered bundles

For any a ∈ R, E t on C\Dt extends to the sheaf PaE
t on P1 \Dt as follows.

For any neighbourhood U ⊂ P1 of ∞,

PaE
t(U) =

{

s ∈ E
t(U \{∞})

∣

∣

∣ |s|h = O(|w|a+ε) ∀ε > 0
}

.

We obtain an increasing sequence of OP1\Dt
-modules P∗E t =

(

PaE
t |a ∈ R

)

.

We also set PE t =
⋃

a∈RPaE
t .

Theorem (Cornalba-Griffiths, Simpson) PaE
t are locally free OP1\Dt

-modules.

(∵ (E t ,ht) is acceptable.)

Hence, PE t is a locally free OP1\Dt
(∗∞)-module.

Remark This kind of increasing sequence P∗E t is called a filtered bundle on (P1 \Dt ,∞).

Lemma The automorphism F of E 0(∗D) induces an automorphism F of

PE 0(∗D). (But, not necessarily, F(PaE
0(∗D))⊂PaE

0(∗D).)



The associated difference module with parabolic structure in the product case

We obtain a finite dimensional C(w)-vector space VVV :

VVV = H0
(

P1,PE
0
)

⊗C[w]C(w).

It is equipped with the C(w)-linear automorphism F. We regard (VVV ,F) as a

difference module on (C(w), idC(w)). It is equipped with the parabolic structure

a filtered bundle P∗E = P∗E 0 on (P1,∞)

a sequence {tQ,i}Q∈D

lattices LQ,i of PE (∗D)Q.

Remark We need to clarify the compatibility condition of F and P∗E (similar to the

case of wild harmonic bundles).



Eigenvalues of F at ∞

We may regard the stalk PE∞ of the sheaf PE at ∞ as a finite dimensional vector

space over C({w−1}).

C({w−1}) =
{

convergent Laurent power series of w−1
}

= OP1(∗∞)∞.

The vector space PE∞ is equipped with the C({w−1})-linear automorphism F.

Sp(F) :=
{

eigenvalue of F
}



Unramified case If Sp(F)⊂C({w−1}), ∃ the generalized eigen decomposition:

PE∞ =
⊕

α∈Sp(F)

Eα .

Each α ∈ Sp(F) is expressed as

α = w−ω(α)β (α)
(

1+
∞

∑
j=1

γ j(α)w− j
)

(ω(α) ∈ Z, β (α) ∈ C∗, γ j(α) ∈ C.)

The equivalence relation ∼ on Sp(F): α1 ∼ α2⇔ ω(α1) = ω(α2), β (α1) = β (α2).

For [α] ∈ Sp(F)/∼, we define ω([α]) := ω(α) and β ([α]) := β (α). We also set

E[α ] =
⊕

α1∼α Eα1
. We obtain the decomposition

PE∞ =
⊕

Sp(F)/∼
E[α ].

Compatibility condition

PaE∞ =
⊕

(

PaE∞∩E[α ]

)

for any a ∈ R.
(

wω([α ])β ([α])−1F− idE[α]

)

(PaE∞∩E[α ])⊂ w−1PaE∞∩E[α ] for any a ∈ R.



Ramified case

∃ℓ such that

Sp(F)⊂ C({w−1/ℓ})

∃ the generalized eigen decomposition:

P
(ℓ)

E∞ := PE∞⊗C({w−1})C({w−1/ℓ}) =
⊕

α∈Sp(F)

Eα .

Each α ∈ Sp(F) is expressed as

α = w−ω(α) ·β(α) ·
(

1+
∞

∑
j=1

γ j/ℓ(α)w− j/ℓ
)

(ω(α)∈Q, β(α) ∈ C∗, γ j/ℓ(α) ∈ C.)

We define the equivalence relation on Sp(F) by

α1 ∼ α2⇐⇒ ω(α1) = ω(α2), β(α1) = β(α2), γ j/ℓ(α1) = γ j/ℓ(α2) (1≤ j < ℓ).

For [α ] ∈ Sp(F)/∼, we define ω([α ]) := ω(α), β([α ]) := β(α) and γ j/ℓ([α ]) := γ j/ℓ(α) (1≤ j < ℓ).

We set E[α] =
⊕

α1∼α Eα . We obtain the decomposition

P
(ℓ)

E∞ =
⊕

Sp(F)/∼
E[α].



There exists the natural filtration of P(ℓ)E∞:

P
(ℓ)
a E∞ := ∑

ℓb+n≤a

w−n/ℓ
PbE∞⊗C{w−1}C{w−1/ℓ}

Here, C{w−1} denotes the ring of the convergent power series of w−1.

Compatibility condition

P
(ℓ)
a E∞ =

⊕

(

P
(ℓ)
a E∞ ∩E[α]

)

for any a ∈ R.
(

wω([α])β([α ])−1F− (1+∑ℓ−1
j=1 γ j/ℓ([α ])w− j/ℓ) idE[α]

)

P
(ℓ)
a E∞ ∩E[α] ⊂ w−1P

(ℓ)
a E∞ ∩E[α]

for any a ∈ R.

Remark This type of compatibility condition is standard in the study of wild harmonic bundles,

and it should be useful for the classification.



Degree and stability condition

Let 0 6=VVV ′ ⊂VVV be a C(w)-subspace such that F(VVV ′) =VVV ′.

OP1(∗∞)-submodule PE ′ ⊂PE such that H0(P1,PE ′) =VVV ′∩H0(P1,PE ).

lattices L ′
Q,i = PE ′(∗D)Q ∩LQ,i (Q ∈ D, 0≤ i≤ m(Q)).

filtration PaE
′ = PaE ∩PE ′.

decomposition P(ℓ)E ′∞ =
⊕

[α ]∈Sp(F)

(

E[α ]∩P(ℓ)E ′∞
)

.

Definition

deg
(

VVV ′;P∗E ,F,{tQ,i},{LQ,i}
)

:= deg(P0E
′)− ∑

−1<a≤0

adimC

(

PaE
′/P<aE

′
)

+ ∑
Q∈D

m(Q)

∑
i=1

(1− ti)deg(L ′
Q,i,L

′
Q,i−1)+ ∑

[α ]∈Sp(F)/∼

ω([α])

2
rank

(

P
(e)

E
′ ∩E[α ]

)

(1)

We define stability and polystability conditions for (VVV ,F ;P∗E ,{tQ,i},{LQ,i}) by using

the degree in the standard way.



Equivalence in the product case

Theorem

If (VVV ,F;P∗E ,{tQ,i},{LQ,i}) is induced by a monopole of GCK-type on

MΓ \Z, then the compatibility condition is satisfied, and

(VVV ,F ;P∗E ,{tQ,i},{LQ,i}) is polystable of degree 0.

This correspondence induces an equivalence

(

Singular monopoles

on MΓ of GCK-type

)

←→







Difference modules over (C(w), id)

with parabolic structure

(compatible, polystable, degree 0)







Remark It can be generalized from S1×C to S1× (Σ\S) such that Σ\S around Q

(Q ∈ S) are isometric to
{

w ∈ C
∣

∣ |w|> R
}

.



Example 1

Take a finite set S⊂ C and ℓ : S−→ Z>0. Assume ∃a0 ∈ S such that ℓ(a0) odd.

Consider P(y) = ∏a∈S(y−a)ℓ(a) ∈ C(y).

We set VVV := C(y)e1⊕C(y)e2 with a C(y)-linear automorphism Φ∗VVV :

Φ∗VVV (e1,e2) = (e1,e2)

(

0 P(y)

1 0

)

Let PE be the locally free OP1(∗∞)-module induced by C[y]e1⊕C[y]e2.

Take any (ta)a∈S ∈ {0 ≤ x < 1}S. Set Z := {(ta,a) |a ∈ S} ⊂ S1×C.

Proposition

degy(P) even: Monopoles of GCK-type on (S1×C)\Z inducing (VVV ,Φ∗VVV ,PE )

are naturally parameterized by R.

degy(P) odd: There uniquely exists a monopole of GCK-type on (S1×C)\Z

which induces (VVV ,Φ∗VVV ,PE ).



If VVV ′ is a C(y)-subspace of VVV such that Φ∗VVV (VVV
′) =VVV ′, then VVV ′ is VVV or 0. Hence,

the stability condition is trivially satisfied in this case.

It is enough to classify P∗E over PE satisfying the compatibility condition with Φ∗VVV
and the degree 0 condition (an easy algebraic problem).

If deg(P) is even, (PE∞,Φ
∗
VVV ) is unramified. The compatibility condition implies

P∗E∞ = (P∗E∞∩E[α1])⊕ (P∗E∞∩E[α2]).

The filtrations (P∗E∞∩E[αi]) are determined by numbers di (i = 1,2). The

degree 0 condition implies d1 +d2 +∑a∈S(1− ta)ℓ(a). (We choose appropriate

frames of E[αi].)

If deg(P) is odd, (PE∞,Φ
∗
VVV ) is ramified at infinity. The compatibility condition

implies

P
(2)
∗ E∞ = (P

(2)
∗ E∞∩E[α ])⊕ (P

(2)
∗ E∞∩E[−α ]).

By the Galois action, the filtrations P
(2)
∗ E∞∩E[α ] and P

(2)
∗ E∞∩E[−α ] are

determined by a number d. By the degree 0 condition, d is uniquely

determined.



Example 2

Take a polynomial Q(y) ∈ C[y]. Consider VVV =C(y)e1⊕C(y)e2 with the automorphism

Φ∗(e1,e2) = (e1,e2)

(

0 1

−1 Q

)

.

Let PE be the OP1(∗∞)-module induced by C[y]e1⊕C[e2].

Proposition

Monopoles of GCK-type on S1×C inducing (VVV ,Φ∗,PE ) are naturally parame-

terized by R.



Equivalence for periodic monopoles (non-product case)

We explained the case Γ⊂ R×{0}⊂ R×C under R3 ≃ R×C. There are

many isometry R3 ≃ R×C (parameterized by P1).

It is natural to expect to obtain additive difference modules in the case

Γ 6⊂ R×{0}.



A coordinate system

Let λ be any complex number.

We introduce a coordinate system (t0,β0) on Rt ×Cw:

(t0,β0) =
1

1+ |λ |2
(

(1−|λ |2)t +2Im(λw), w+2
√
−1λ t +λ 2w

)

∈ R×C.

dt0 dt0 +dβ0 dβ 0 = dt dt +dwdw.

Γ is described as

Γ =

{

n

1+ |λ |2
(

1−|λ |2,2
√
−1λ

)∣

∣

∣
n ∈ Z

}

We set ∂E,t0 := ∇t0 −
√
−1φ and ∂

E,β 0
:= ∇

β 0
. Then, [∂E,t0 ,∂E,β 0

] = 0.

We obtain the holomorphic vector bundles (E|({t0}×Cβ0
)\Z ,∇β 0

). There exist

meromorphic isomorphisms

(E|{t0}×(Cβ0
\D(t0,t ′0))

,∇
β 0
)≃ (E|{t ′0}×(Cβ0

\D(t0,t ′0))
,∇

β 0
) (∃D(t0, t

′
0)⊂ C,finite)



If |λ | 6= 1, we set

T (λ ) :=
1−|λ |2
1+ |λ |2 .

∂E,t0 induces a meromorphic isomorphism

E|{0}×Cβ0
(∗D)≃ E|{T(λ )}×Cβ0

(∗D). (∃D⊂ C, finite)

For the automorphism Φ0 : C−→ C defined by

Φ0(β0) = β0 +
2
√
−1λ

1+ |λ |2 ,

we have the natural identification Φ∗0E|{T (λ )}×C = E|{0}×C.

Remark It is natural to expect to obtain difference modules by using these

isomorphisms (it could be done in some cases), but....

we do not obtain a difference module in the case |λ |= 1, i.e., T (λ ) = 0.

in general, (E|{t0}×Cβ0
,∇

β 0
) with h|{t0}×Cβ0

is not acceptable. It is not clear

how to extend (E|{t0}×Cβ0
,∇

β 0
) to a meromorphic object on P1.



Another coordinate system

We introduce another coordinate system (t1,β1):

(t1,β1) =
(

t0 + Im(λβ0), (1+ |λ |2)β0

)

=
(

t + Im(λw), w+2
√
−1λ t +λ 2w

)

.

Γ is described as Γ =
{

n ·
(

1, 2
√
−1λ

)

∣

∣

∣
n ∈ Z

}

.

Remark Rt1 ×{0} and {0}×Cβ1
are not orthogonal if λ 6= 0.

Note that

∂t1 = ∂t0 , ∂
β 1

=
λ

1+ |λ |2
1

2
√
−1

∂t0 +
1

1+ |λ |2 ∂
β 0
.

Lemma We define the differential operators acting on E:

∂E,t1 := ∂E,t0 , ∂
E,β 1

:=
λ

1+ |λ |2
1

2
√
−1

∂E,t0 +
1

1+ |λ |2 ∂
E,β 0

.

Then, ∂E,t1 and ∂
E,β1

are commutative.

Remark It is more systematic to consider mini-holomorphic bundles on mini-complex

manifolds. (t0,β0) and (t1,β1) determines the same mini-complex structure.



Theorem The holomorphic bundle E t1 =
(

E|{t1}×Cβ1
,∂

E,β1

)

with the metric

h|{t1}×Cβ1
is acceptable. In particular, it extends to a filtered bundle P∗E t1 on

(P1,{∞}).

We obtain the meromorphic isomorphism induced by ∂E,t1 .

PE
0(∗D)≃PE

1(∗D) (∃D⊂ C finite)

For the automorphism Φ1 : C−→ C defined by Φ1(β1) = β1 +2
√
−1λ , we have

Φ∗1
(

P∗E 1
)

= P∗E 0.

VVV := H0(P1,PE 0)⊗C[β1]C(β1).

The above two isomorphisms induce a C-linear automorphism Φ∗VVV on VVV , and

(VVV ,Φ∗VVV ) is a difference module over (C(β1),Φ
∗
1).

The singularity at Z and the filtered bundle P∗E 0 determine a parabolic

structure on this difference module VVV .

Remark To formulate a compatibility condition of Φ∗VVV and the filtration P∗E 0,

we can use the classification of formal difference modules due to Turrittin.



Equivalence in the non-product case

The degree and the stability condition for (VVV ,F,P∗E ,{tQ,i},{LQ,i}) are defined as

before.

Theorem

(

Singular monopoles

on MΓ of GCK-type

)

←→







Difference modules over (C(β1),Φ
∗
1)

with parabolic structure

(compatible, polystable, degree 0)









Asymptotic behaviour of periodic monopoles of GCK-type

We set U(R) := {|w|> R}.
Let (E,h,∇,φ) be a monopole on S1×U(R) satisfying the GCK-condition.

For any positive integer ℓ, let ϕℓ : S1×U(R)ℓ −→ S1×U(R) be the covering

induced by w1/ℓ 7−→ (w1/ℓ)ℓ.

Theorem For an appropriate positive integer ℓ,

ϕ−1
ℓ (E,h,∇,φ) ∼

⊕

i

(Eni,ℓ,hni,ℓ,∇ni,ℓ,φni,ℓ)⊗Hit32(Vi,∂Vi
,θVi

,hVi
).

Remark (Eni
,hni

,∇ni
,φni

) and Hit32(Vi,∂Vi
,θVi

,hVi
) are almost determined by

P∗E∞ with the induced difference operator Φ∗1.



Typical examples (1)

By w = re
√
−1θ , we obtain the isometry (set S1

2π :=R/2πZ):

S1× (C\{0}) ≃ (S1
2π ×S1×R>0,r

2dθ dθ +dt dt +dr dr), (t,w) 7−→ (θ , t,r)

A line bundle Ln on S1
2π ×S1 with c1(L) = n has a Hermitian metric hLn

and a

unitary connection ∇Ln
such that F(∇Ln

) =−n
√
−1dθ dt.

Let p : S1
2π ×S1×R>0 −→ S1

2π ×S1 be the projection. We set

(En,hn,∇n) := p∗(Ln,hLn
,∇Ln

).

Let φn be the Higgs field defined by φn =−n
√
−1logr.

(En,hn,∇n,φn) is a monopole on S1
2π ×S1×R>0 satisfying the

GCK-condition at infinity.

We can compute (P∗E∞,Φ
∗
1) explicitly.

(For example, if λ = 0, the induced automorphism F is the multiplication

of βwn (|β |= 1), where β depends on the choice of ∇Ln
.)



Similarly, by setting S2πℓ = R/(2πℓZ), let Ln,ℓ be a line bundle on S1
2πℓ×S1 with a

metric hLn,ℓ
and a unitary connection ∇Ln,ℓ

such that F(∇Ln,ℓ
) =− n

ℓ

√
−1dθ dt.

Let pℓ : S1
2πℓ×S1×R>0 −→ S1

2πℓ×S1 be the projection. We set

(En,ℓ,hn,ℓ,∇n,ℓ) = p∗ℓ (Ln,ℓ,hn,ℓ,∇n,ℓ).

Let φn,ℓ be the Higgs field defined by φn,ℓ =− n
ℓ

√
−1logr.

(En,ℓ,hn,ℓ,∇n,ℓ,φn,ℓ) is a monopole on S1
2πℓ×S1×R>0 satisfying the GCK

condition at infinity.

We can calculate the associated algebraic objects.



Typical examples (2)

Let (V,∂V ,θ ,hV ) be a harmonic bundle on U(R), i.e., (V,∂V ) is a holomorphic vector

bundle, θ = f dw ∈ End(V )⊗Ω1, and hV is a Hermitian metric of V , satisfying the

Hitchin equation

F(∇hV
)+ [θ ,θ †

hV
] = 0.

Let pw : S1×U(R)−→U(R) be the projection. We obtain the vector bundle with a

Hermitian metric (E,h) = p−1
w (V,hV ) with the connection and the Higgs field

∇ = p∗w(∇h)−
√
−1p∗w( f + f

†
h
)dt, φ = p∗w( f − f

†
h
).

Hit32(V,∂V ,hV ,θ ) := (E,h,∇,φ) is a monopole on S1×U(R).

Hit32(V,∂V ,hV ,θ ) satisfies the desired asymptotic condition if and only if

the eigenvalues of f are bounded.

We can compute the associated holomorphic objects explicitly.

(For example, if λ = 0, the induced automorphism F is exp(2 f ).)



More generally, let U(R)ℓ −→U(R) be the ℓ-th covering map induced by

w1/ℓ 7−→ (w1/ℓ)ℓ.

A harmonic bundle (E,∂ E ,θ ,h) on U(R)ℓ induces a monopole

Hit32(E,∂ E ,θ ,h) on S1×U(R)ℓ.

Let f be determined by θ = f dw = f d
(

(w1/ℓ)ℓ
)

.

Hit32(E,∂ E ,θ ,h) satisfies the GCK-condition at infinity if and only if the

eigenvalues of f are bounded.



Approximation

Let (E,h,∇,φ) be a monopole on S1×U(R) satisfying the GCK-condition. Let

ϕℓ : S1×U(R)ℓ −→ S1×U(R) be the covering induced by w1/ℓ 7−→ (w1/ℓ)ℓ.

Theorem For an appropriate positive integer ℓ,

ϕ−1
ℓ (E,h,∇,φ)∼

⊕

i

(Eni,ℓ,hni,ℓ,∇ni,ℓ,φni,ℓ)⊗Hit32(Vi,∂Vi
,θVi

,hVi
).

Corollary For F(∇) = F(∇)wwdwdw + F(∇)w,tdwdt + F(∇)w,tdwdt, we obtain the

stronger curvature decay

|F(∇)ww|h = O
(

|w|−2(log |w|)−2
)

,

|F(∇)wt |h = O
(

|w|−1
)

,

|F(∇)wt |h = O
(

|w|−1
)

.



The doubly periodic case and the triply periodic case

Doubly periodic case Γ⊂ {0}×C ⊂ R×C such that rankΓ = 2. Take any complex number λ .

Take a generator µ1,µ2 ∈ Γ such that (i) λ 6=±
√
−1µ1|µ1|−1, (ii) Im(µ2/µ1)> 0. We set

qλ := exp
(

2π
√
−1

µ2 +λ 2µ2

µ1 +λ 2µ1

)

.

Theorem There exists an equivalence between monopoles on MΓ with finite Dirac type

singularity satisfying an asymptotic condition at infinity and multiplicative difference modules

with parabolic structure (compatible, polystable, degree 0).

(The action C∗ −→ C∗ is induced by y 7−→ qλ y)

Triply periodic case Suppose rankΓ = 3. We take a generator ei = (ai,αi) of Γ⊂ R×C such

that (i) the frame e1,e2 ,e3 is compatible with the orientation, (ii) α1,α2 generates a lattice C,

(iii) Im(α2/α1)> 0. We set C = C/Z〈α1,α2〉.

Theorem (essentially Charbonneau-Hurtubise, Kontsevich-Soibelman) There exists an equiv-

alence between monopoles of (R×C/Γ) with finite Dirac type singularity and difference

modules on C with parabolic structure (polystable, degree 0).

(The action C −→C is induced by z 7−→ z+α3.)
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