Monopoles and difference modules

Takuro Mochizuki

RIMS, Kyoto University

2021 February



Introduction

It is interesting to obtain a natural correspondence between objects in differential
geometry and objects in algebraic geometry.

4 Theorem (rough statement) )

Differential Geometry Algebraic Geometry

Periodic monopoles «— Additive difference modules

(Difference modules on C)

Doubly periodic monopoles <— Multiplicative difference modules
g-Difference modules,
Difference modules on C*

Triply periodic monopoles <+— Elliptic difference modules
Difference modules
on elliptic curves




Monopoles
M : an oriented 3-dimensional Riemannian manifold
(E,h) : a vector bundle with a Hermitian metric on M
V : a unitary connection of (E,h)
¢ : an anti-Hermitian endomorphism of E (called Higgs field)

Definition (E,h,V,¢) is called monopole on M if
F(V)=%V¢  (Bogomolny equation).

Here, * denote the Hodge star operator.

Let I be a discrete subgroup of R3. Set ./t :=R?/T" with Y dx;dx;.
In this talk, we are interested in monopoles on .71\ Z (Z: finite subset).

@ Periodic monopole <—= T"~ 7
@ Doubly periodic monopole <= T ~ 7

® Triply periodic monopole <= T ~73.



Difference modules
Let R be a commutative algebra over C. Let ®* be an automorphism of R,
i.e., ® : R — R, C-linear isomorphism, ®*(f; f2) = ®*(f1)P*(f2) (Vfi €R).

Definition A difference module over (R,®*) is an R-module V equipped
with a C-linear isomorphism @y, : V —: V such that

By (f5) = D" ())By(s) (Vf R, Vs V).

@ additive difference modules <= R = C(y), ®*(f)(y) = f(y+ a) (a € C)
®* js induced by the automorphism ® :C — C, ®(y) =y+ «.

@ multiplicative difference modules <= R = C(y), ®*(f)(y) = f(qy) (g € C*)
®* s induced by the automorphism ® : C* — C*, ®(y) = gqy.

@ elliptic difference modules <= R is the field of meromorphic functions on
an elliptic curve C, and ®* is induced by ®:C — C, ®(y) =y+a (¢ €C).



p
Theorem (rough statement)

Differential Geometry Algebraic Geometry
Periodic monopoles «— Additive difference modules
Doubly periodic monopoles <— Multiplicative difference modules

Triply periodic monopoles <+—  Elliptic difference modules

We need to impose the asymptotic condition to monopoles, and we should enhance

difference modules with parabolic structure and stability condition.

@ Non-abelian Hodge theory for harmonic bundles on Riemann surfaces.

(Higgs bundles «<— harmonic bundles +— flat bundles)

@ Classification of monopoles by algebraic data.




Previous works on classification of monopoles

P
Donaldson, Hitchin

SU(2)-monopoles on R3
(L?-curvature)

Hurtubise, Murray, Jarvis

G-monopoles on R  +—

<+ P! — P! holomorphic

P! — flag varieties holomorphic




Let ¥ be a compact Riemann surface.

Norbury

Singular monopoles
on {0<r<1}xX
(boundary condition)

Holomorphic bundles on £
with Hecke modifications

(Recently, it was generalized to the Higgs case by He-Walpuski.)
\

-

Charbonneau-Hurtubise

Singular monopoles
on S xX

\

Holomorphic bundles on £

with a meromorphic auto.

and Hecke modifications
(stability condition)

We recall more details of the theorem

of Charbonneau-Hurtubise.




Review of the theorem of Charbonneau-Hurtubise

@ S':=R/Z with the standard metric ddt.
@ X: a compact Riemann surface with a Kahler metric.

@ Z: a finite subset of S' x X. (Assume ZN ({0} x £) = 0 for simplicity.)

We consider a monopole (E,/,V,¢) on (S' xX)\ Z.

Condition Each P € Z is Dirac type singularity of (E,h,V,9),
i.e., for a neighbourhood Up of P in ' x £,

(E7h7vv¢)‘UP\{P} ~ < a direct sum of )

Dirac monopoles




The induced differential operators

We obtain V' : E— E© Q" induced by

VIE—E® QL eCoa) o).

We also set d, :=V, —/—1¢.

Key lemma [8,,V?il] =0 (.- Bogomolny equation)




The induced holomorphic vector bundles

@ We obtain the vector bundle E° := E ) x on X with the holomorphic
structure V?il.
@ More generally, for any 0 <7 < 1, we obtain the vector bundle

E' := E|{s)xx)\z With the holomorphic structure V‘Oil on ({t} xX)\Z.

o E' =E° (Recall S'=R/Z.)

Notation

@ Let &' denote the sheaf of holomorphic sections of (E’,V?il).

@ For a finite subset S C X, let &’(xS) denote the sheaf of
meromorphic sections of &7, which may have poles along S.




Scattering map (1)
Take 0 <1 < <1.

If ZN({# <t <15} xX)=0, we obtain the isomorphism F/l : E'' ~E" as
the parallel transport with respect to o,.

Proposition F™2'! is holomorphic (. [8,,V‘0)51] =0), i.e., F21 : &1 ~ &,




Scattering map (2)

Suppose ZN({t; <t <t} xE)=ZN{to} xL) =Dy, #0 (t; <19 <t;). We obtain the
s H tt . h ~ Fh2

holomorphic isomorphism F21 'E\E\DIO ~ EIZ\DIO'

Proposition
F2!' is meromorphic at Dy, i.e., F2!" : &1 (xDy)) ~ & (xDy,).
(.- Dirac type singularity)

For any Q € D,,, we obtain a Hecke modification,
i.e., there are two lattices of the stalk &' (xD)g ~ &(xD)g

é’é‘ c & (xD)g ~ éa’z(*D)Q D (%2



Algebraic data associated to monopoles on S' x

From (E,h,V,¢), we obtain (&, F {1p;},{-%0,}).

@ a holomorphic vector bundle & := &% on T

@ an automorphism F of &(xD) by setting D as the image of Z by §! xZ — X:
0 EY o 0
&(xD) = &7 (xD) ~ &' (xD) = & (xD) = & (xD).
® asequence 0 <ig) < <tp,) <1 for Q€D by
zn(s' x {0}) = {(10., 0)}-

@ lattices Zp; (i=0,...,m(Q)) of &(xD)gp:
We set 2 o = £ () = 60, and

XQ.’,' = éaé C Lg)t(*D)Q o~ cg’o(*D)Q = éa(*D)Q (IQ.’,' <t < IQ7,'+1)



Degree of subobjects of algebraic data
Suppose that (&,F, {1g},{-%p,i}) is given (not necessarily induced by a monopole).
Let & C & be a non-zero holomorphic subbundle such that F(&'(xD)) = &'(xD).

We obtain lattices Zél (i=0,...,m(Q)) of & (*D)y by setting

Lhi=ZLiNE (xD)g in &(xD)g.

p
Definition (degree)
/ ! m(Q) ! /
deg(&";F {tg.i}.{Zp.i}) :=deg(&") + Z Z (1 _’Q,i)deg(ng,i:gQ,iq)
Q€D i=1
Here, we put

deg(Lh s L) i=dime (Lh/ (LN L)) —dime (L1 /(Loi0 Lgin))-

\\

Remark 3 a naturally induced family of holomorphic vector bundles (£'), and

deg(&",F,{tg, },{%.i}) / deg(&")!



Stability condition

4 Definition Suppose that deg(&:F,{tp;},{%p.i}) = 0 (for simplicity).
] ((ga,F, {Z‘QJ},{ZQJ‘}) is stable if
deg(&"sF, {191}, {-%p}) <0

for any non-zero subbundle &’ C & such that F(&'(xD)) = &'(xD).
@ (&,F,{t9i},{%p.i}) is polystable if it is a direct sum of stable objects of

degree 0, i.e.,

(&, F {19}, {%o,i}) = @(é‘}'fia {to.i}:{<)0:})
J

such that (&},F;,{1gi}.{-Zj0,}) are stable of degree 0.




p
Theorem (Charbonneau-Hurtubise)
o If (&,F {tg,i},{£p,}) is induced by a monopole with Dirac singularity on
(S' xX)\Z, then (&,F,{tg,},{%p.}) is polystable of degree 0.

@ The above correspondence induces an equivalence

holomorphic vector bundles & on L
( monopoles on (S' xX)\Z ) PN with an automorphism F at D
(Dirac type singularity) and lattices {Zp i}
(polystable w.r.t. {tgi}ocp)

(D and {tp;} are determined by Z.)

Remark Let R(X) denote the field of meromorphic functions on X.
V = {meromorphic sections of & on X}

is naturally a finite dimensional £(X)-vector space with an automorphism F.
We may regard (V,F) as a difference module over (R(X),id).
The tuple (&,{tg,i},{ZLp,i}) is regarded as a parabolic structure of (V,F).



Equivalence for periodic monopoles (product case)

Periodic monopoles of GCK-type
Let I be a non-trivial discrete subgroup of R? with I'~Z. Let Z be a finite
subset of ./ = (R3/T).

Definition A monopole (E,h,V,¢) on .Zr\Z is called of GCK-type (gener-
alized Cherkis-Kapustin type) if

@ each P € Z is Dirac type singularity of (E,h,V,¢),

o |¢p| = O(logd(P,Py)) and |F(V)p| — 0 as P goes to infinity.

Remark We can prove that a monopole of GCK type satisfies much stronger
condition at infinity.



Product case
Assume I'={(n,0)|n € Z} CR x C~R> (isometry).
We obtain an isometry ./~ S' x C.

First, we shall explain what kind of algebraic objects appear in this
product case. For simplicity, we assume ZN ({0} x C) =0.

Remark  There are different isometries R? ~ R, x Cp, such that T ¢ R x {0},
from which we obtain different equivalences between monopoles and algebraic
objects (explained later).



Preliminary
Everything goes similarly on C.

@ We obtain the operators dg, =V; —/—1¢ and Jg 3 = Vi of E.

@ For 0 <t <1, we obtain holomorphic vector bundles on ({t} xC)\Z C C:
&' = (Eqxenz Vw)

In particular, we set & := &0 = &1,
@ Let D denote the image of Z by the projection .# = S! x C — C. Then, OE
induces
F: &(xD) = &%(xD) ~ &' (xD) = &(+D)
® We also obtain tuples of numbers 0 <1g | <+ <ig o) <1 and lattices £ ;
(i=0,...,m(Q)) for Q € D.

Remark However, (&,F,{tp},{-Zp,}) is transcendental object on C. We would
like to extend it to an algebraic object on P! by using /.




Acceptability

-

Theorem (&', := hyy;xc) is acceptable, i.e.,

dwdw
v = (T ogi?)

Here, V;: denotes the Chern connection of (£",/'), and F(V,/) denotes
the curvature.

F(Vi)

Remark We may apply a general theory to extend acceptable bundles on
C to a filtered bundle on (P,e) (Cornalba-Griffiths, Simpson).



Extension of acceptable bundles to filtered bundles
For any a € R, & on C\ D, extends to the sheaf #,&" on P'\ D, as follows.

@ For any neighbourhood U C P! of o,

28" (U) = {s € 8" WU\ {=}) | Isls = O(w|***) ve > 0.

We obtain an increasing sequence of Jpi\p -modules P& = (P,6"|a eR).
We also set P& = J,cp Pad’.

Theorem (Cornalba-Griffiths, Simpson) 7,6" are locally free Opi\, -modules.
(.- (&",h") is acceptable.)
Hence, &' is a locally free Opi\p, (+0)-module.

Remark This kind of increasing sequence 2.&" is called a filtered bundle on (P'\ Dy, ).

Lemma The automorphism F of &°(xD) induces an automorphism F of
2&°(xD). (But, not necessarily, F(22,6°(xD)) c 2,6°(xD).)




The associated difference module with parabolic structure in the product case
We obtain a finite dimensional C(w)-vector space V:

vV =H(P', 28°) ®¢, C(w).
It is equipped with the C(w)-linear automorphism F. We regard (V,F) as a
difference module on (C(w),id¢(,)). It is equipped with the parabolic structure
@ a filtered bundle Z.,& = 2,.&° on (P!, )

@ a sequence {tg;}oecp
© lattices £p; of P& (xD)g.

Remark We need to clarify the compatibility condition of F and Z.& (similar to the
case of wild harmonic bundles).




Eigenvalues of F at «
We may regard the stalk Z&.. of the sheaf & at « as a finite dimensional vector

space over C({w™'}).
C({w™'}) = {convergent Laurent power series of w™!} = Opi (+0)co.

The vector space &, is equipped with the C({w™!})-linear automorphism F.

Sp(F) := {eigenvalue of F}



Unramified case If Sp(F) C C({w™'}), 3 the generalized eigen decomposition:

PEn= P Ea.
aeSp(F)

Each a € Sp(F) is expressed as

a=w @B (a) (1 n i yj(a)wﬂ') (o(a) € Z, B(a) € C*, (o) € C.)
j=1

The equivalence relation ~ on Sp(F): o) ~ o < o(a) = w(0p), B(ar) = B(0).

For [a] € Sp(F)/ ~, we define o([]) := o(a) and B([a]) := B(ct). We also set
Ejg) = @a~a Ea,- We obtain the decomposition

PEa= P Eg
Sp(F)/~

Compatibility condition
O Pyl =@(Pu6NEpy ) for any a € R.

° (ww([“])ﬁ([a])*lF—idE[a])(WagmﬂE{a]) C wilyaél,ﬁE[a] for any a € R.




Ramified case
3¢ such that
Sp(F) c C({w™"/})

3 the generalized eigen decomposition:

PO = Py CW ) = P Ea
aeSp(F)

Each o € Sp(F) is expressed as
a=w @ B(a) (1+ ¥ (0w /) (@(@)€Q, B(@) € T, yy(a) €C.)
j=1

We define the equivalence relation on Sp(F) by
o~ = o) = o(a), Blar) =B(0), V() =7Yy(or) (1< <L)

For [a] € Sp(F)/ ~, we define w([a]) := o(a), B([a]) := B(a) and ¥;/([a]) :=7;/0(r) (1 <j<L).
We set Ejy) = @y, ~o Ea- We obtain the decomposition

V6. = P Eq

Sp(F)/~



There exists the natural filtration of 20 &,

:@y)(g}w = Z an/k Py, ®C{w*l} C{W—l/k}

lb+n<a

Here, C{w~!} denotes the ring of the convergent power series of w~!

Compatibility condition
o #V¢, @( O, m]E[a]> for any a € R.

o (weleh B((a])'F - (1+ X} vyye(lal)w i) ide,, ) 2 6Bl w210 6 0E
for any a € R.

Remark This type of compatibility condition is standard in the study of wild harmonic bundles,
and it should be useful for the classification.



Degree and stability condition
Let 04V’ CV be a C(w)-subspace such that F(V') =V'.

Opi (¥0)-submodule Z&' € P& such that HO(P!, 2&") =V'NHO (P!, 2&).
lattices %), = P& (xD)oNZp; (Q€D,0<i<m(Q)).
filtration 2,8 = P,6NPE.
decomposition 2()&., = Dlajesp(F) (E[a] n (@([)é‘f,ﬁ,).

e N

Definition

deg(V'; 2.6, F {19} {Lpi}) :=deg( P&’ ) — ), adimc(gzaé”/gz@éa’)

—1<a<0

(o)
+ ) ) (I-n)deg( L, Loi)+ ) oda))
oep =1 (a]eSpF) [~

ank(2) 6 NE) (1)

\

We define stability and polystability conditions for (V,F; 2.8 {tp},{%p.i}) by using
the degree in the standard way.



Equivalence in the product case

p
Theorem

o If (V.F. 2.8 {tg,},{£p,}) is induced by a monopole of GCK-type on
M1\ Z, then the compatibility condition is satisfied, and
(V,F; 2.6 {10,i},{%p.,i}) is polystable of degree 0.

@ This correspondence induces an equivalence

with parabolic structure

( Singular monopoles
(compatible, polystable, degree 0)

Difference modules over (C(w),id)
on ./t of GCK-type )

N

Remark It can be generalized from S' x C to S' x (£\S) such that £\ S around Q
(Q €5) are isometric to {w € C||w| >R}.



Example 1

Take a finite set SC C and (: S — Z~(o. Assume Jag € S such that ¢(ap) odd.
Consider P(y) =[T,es(y—a)"@ € C(y).

We set V := C(y)e; @C(y)ez with a C(y)-linear automorphism &y:

B (er,e2) = (e1.e2) ( G )

Let &¢& be the locally free Opi(xco)-module induced by Clyle; & C[yle;.
Take any (t,)ues € {0 <x < 1}5. Set Z:= {(ty,a)|a € S} C $' x C.

Proposition
deg,(P) even: Monopoles of GCK-type on ($! x C)\ Z inducing (V,®}, 2&)
are naturally parameterized by R.

deg,(P) odd: There uniquely exists a monopole of GCK-type on (S'xC)\z
which induces (V, &y, 76).




If V' is a C(y)-subspace of V such that ®};(V') =V’, then V' is V or 0. Hence,
the stability condition is trivially satisfied in this case.

It is enough to classify 2,8 over Z& satisfying the compatibility condition with @y,
and the degree 0 condition (an easy algebraic problem).

© If deg(P) is even, (P&, Py ) is unramified. The compatibility condition implies
P = (@*goo ﬂ]E[a]]) (O] (@*éaoo O]E[az]).

The filtrations (7.6 NE(y)) are determined by numbers d; (i=1,2). The
degree 0 condition implies d| +dy + Y ,c5(1 —14)¢(a). (We choose appropriate
frames of E(;.)

@ If deg(P) is odd, (P&, Dy;) is ramified at infinity. The compatibility condition
implies
2 2 2
P&, = (PP 6NE ) & (PP 6 NELy).

By the Galois action, the filtrations (@f)é"wﬂE[a] and %ﬁz)é‘;mE[,a] are
determined by a number d. By the degree 0 condition, d is uniquely
determined.



Example 2
Take a polynomial Q(y) € C[y]. Consider V = C(y)e; & C(y)er with the automorphism

¢*(e1,e2)_(e17ez)< _Ol ; )

Let Z& be the Opi(x)-module induced by C[y|e; ® Cles].

Proposition
Monopoles of GCK-type on S' x C inducing (V,®*, #&) are naturally parame-
terized by R.




Equivalence for periodic monopoles (non-product case)

We explained the case I' C R x {0} C R x C under R* ~ R x C. There are
many isometry R3 ~ R x C (parameterized by P').

It is natural to expect to obtain additive difference modules in the case
I'Z R x{0}.



A coordinate system
Let A be any complex number.
We introduce a coordinate system (y, §y) on R; x C,,:

_ 1 2 — — 2
(10, Bo) = m(u—w )t +2Im(AW), w+2v/—TAr + A w) eRxC.

® digdty+dBodB = dtdt +dwdw.

@ I is described as

{1+M|2< AR, 2F1)‘nez}

® We set dgy, :=V,,—v/—1¢ and aE-Eo = VEU. Then, [Jg 4,9, Eo] =0.

@ We obtain the holomorphic vector bundles (EK{’O}X(CBU)\Z’VEO)' There exist
meromorphic isomorphisms

(Bt} (Ch\Dl0f))» VB, ) == (Bl (o \D(10.1)) VB, (3D(10,19) C C, finite)



If [A] # 1, we set

_1-]AP
TR)=

JEg 1, induces a meromorphic isomorphism
EHO}XC[}O (*D) ~ E|{T(7L)}><(Cﬁo (*D) (HD cC, finite)
For the automorphism @ : C — C defined by

2/ =14

@ (Bo) = o+ ma

we have the natural identification ®GE (7 (2)yxc = EjjoyxC-

s N

Remark 1t is natural to expect to obtain difference modules by using these
isomorphisms (it could be done in some cases), but....

@ we do not obtain a difference module in the case |A| =1, i.e., T(A)=0.

@ in general, (EHZU}XCBO7VEU) with hj,yxcy, is not acceptable. It is not clear

how to extend (E\{IU}XC/;O ’VE ) to a meromorphic object on P'.
0




Another coordinate system
We introduce another coordinate system (¢,f):

(t1,B1) = (to+Im(ABo), (1+[A1*)Bo) = (¢t +Im(AW), w+2v—1At +A%W).

I is described as I' = {n (1,2v=12) ‘n € Z}.

Remark R, x {0} and {0} x Cg, are not orthogonal if A # 0.

Note that Y | .
O, + oz

I =0, Iy R

B T IR 2y =0

Lemma We define the differential operators acting on E:

PR S S W S
EB, "~ 1+M|22 /—1 E 1o 1+|M2 E By’

aE,T] = aE,T(] )

Then, dg;, and QEB are commutative.
B M1

Remark It is more systematic to consider mini-holomorphic bundles on mini-complex

manifolds. (ty,Bp) and (f1, ;) determines the same mini-complex structure.



Theorem The holomorphic bundle &£ = (El{tl}xcﬁl7aE-El) with the metric
h\{r,}xcﬁl is acceptable. In particular, it extends to a filtered bundle Z.&" on

(P!, {=o}).-

We obtain the meromorphic isomorphism induced by Jg ;.
P& (xD) ~ P& (+D) (3D C C finite)
For the automorphism @®; : C — C defined by ®(8;) = ; +2v/—1A, we have
o} (2.6") = 2.6°.
o V:=H"(P', 2£% ®¢ip C(B1)-

@ The above two isomorphisms induce a C-linear automorphism @y on V, and
(V,®dy) is a difference module over (C(B;), 7).

@ The singularity at Z and the filtered bundle 2,£° determine a parabolic
structure on this difference module V.

Remark To formulate a compatibility condition of @y, and the filtration P2.&9,
we can use the classification of formal difference modules due to Turrittin.




Equivalence in the non-product case
The degree and the stability condition for (V.F, 2.8, {tp},{-Zp,:}) are defined as

before.

Theorem

with parabolic structure

(compatible, polystable, degree 0)

Singular monopoles
on /1 of GCK-type

) Difference modules over (C(B;),®7)




Asymptotic behaviour of periodic monopoles of GCK-type

We set U(R) := {|w| > R}.
Let (E,n,V,¢$) be a monopole on S' x U(R) satisfying the GCK-condition.

For any positive integer /, let ¢;: S' x U(R); — S' x U(R) be the covering
induced by w!'/! — (w!/%)L.

Theorem For an appropriate positive integer /,

0, "(E,1,V,0) ~ @ (Ent, g0, Vi, Oni0) @HIG (V;, v, By, ).

1

Remark  (Ep;,hn,, V., 0;) and Hit3(V;, dv., Oy, hy,) are almost determined by
P, 6w with the induced difference operator ®j.



Typical examples (1)
By w=re¥ 1%, we obtain the isometry (set Si_ :=R/27Z):

U (C\{0}) =~ (83, x S' x Rw0,2dOdO +dtdr +drdr), (t,w)— (0,1,r)

n has a Hermitian metric /;, and a

) =—nv/—1d0dt.

Let p: S%n x ST xRyg —> S%n x S be the projection. We set

A line bundle L, on S} _xS! with ¢;(L)
unitary connection V; such that F(V;,

(Erhhrhvn) = p*(Ln7th7VLn)'

Let ¢, be the Higgs field defined by ¢, = —nv/—1logr.

® (Ey,hn,Vy,¢,) is a monopole on S} x S' x R. satisfying the
GCK-condition at infinity.

@ We can compute (.., D7) explicitly.
(For example, if A =0, the induced automorphism F is the multiplication
of Bw" (|B| =1), where 8 depends on the choice of Vv, .)




Similarly, by setting S, = R/(27¢Z), let L, be a line bundle on S}_, x S! with a
metric /7, , and a unitary connection V; , such that F(V,, )= —7v—1d0d:.

Let p;:Si., xS' xR-o— S}, x S! be the projection. We set
(En,(’,v hn,/fv Vn/f) = pz (Ln.,(’,v hn,/fv Vn,/f)~

Let ¢, be the Higgs field defined by ¢, , = —7+/—1logr.

® (En¢,hne, Ve, 0n0) is a monopole on Sén[ x S! x Ry satisfying the GCK
condition at infinity.

@ We can calculate the associated algebraic objects.




Typical examples (2)
Let (V,dv,0,hy) be a harmonic bundle on U(R), i.e., (V,dv) is a holomorphic vector
bundle, 6 = fdw € End(V) ®Q!, and hy is a Hermitian metric of V, satisfying the
Hitchin equation

F(Vy,)+10,6) ] =0.
Let p,, :S! x U(R) — U(R) be the projection. We obtain the vector bundle with a
Hermitian metric (E, ) = p;,' (V,hy) with the connection and the Higgs field

V= pi(Vi) = V=1pl(f+ £, ¢ =pi(f— £

Qo Hitg(V,gv,hV,G) := (E,h,V,9) is a monopole on S' x U(R).

Qo Hitg(V,gv,hV,G) satisfies the desired asymptotic condition if and only if
the eigenvalues of f are bounded.

@ We can compute the associated holomorphic objects explicitly.

(For example, if A =0, the induced automorphism F is exp(2f).)




More generally, let U(R), — U(R) be the ¢-th covering map induced by
wl/t (Wl/é)ﬂ_

@ A harmonic bundle (E,dg,6,h) on U(R), induces a monopole
Hit3 (E,dE,0,h) on S' x U(R);.

@ Let f be determined by 6 = fdw = fd((w'/*)").
Hit% (E,df,0,h) satisfies the GCK-condition at infinity if and only if the
eigenvalues of f are bounded.




Approximation
Let (E,h,V,¢) be a monopole on S! x U(R) satisfying the GCK-condition. Let
@ :S' xU(R); — S' x U(R) be the covering induced by w!/‘ — (w!/t)’,

Theorem For an appropriate positive integer /,

(P(Tl (E>h>v> (P) ~ @(Eni,/,>hn[,1’,>vn[,(/,: ¢ni,/,) ®Hlt%(vl>§VL7 GVNhV,)

1

N

p
Corollary For F(V) = F(V),wdwdw + F(V),,;dwdt + F (V)y;dwdt, we obtain the
stronger curvature decay

[F(V)usln = O (w2 (1og w]) ).

[F(V)weln =0(w|™"),
|F(V)wieln =0(w™").




The doubly periodic case and the triply periodic case

Doubly periodic case I' C {0} x C C R x C such that rank[" =2. Take any complex number 1.
Take a generator i, €I such that (i) X # £v/—1u | |~", (i) Im(pa /1) > 0. We set

Theorem There exists an equivalence between monopoles on ./t with finite Dirac type
singularity satisfying an asymptotic condition at infinity and multiplicative difference modules
with parabolic structure (compatible, polystable, degree 0).

(The action C* — C* is induced by y —> q%y)

Triply periodic case Suppose rankI' = 3. We take a generator ¢; = (a;,0;) of I' C R x C such
that (i) the frame e;,ez,e3 is compatible with the orientation, (ii) oy, 0, generates a lattice C,
(III) Im(OCQ/OCl) > 0. We set C = C/Z<O{1,0{2>.

Theorem (essentially Charbonneau-Hurtubise, Kontsevich-Soibelman) There exists an equiv-
alence between monopoles of (R x C/T'") with finite Dirac type singularity and difference
modules on C with parabolic structure (polystable, degree 0).

(The action C — C is induced by z+— z+ 03.)
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