# 25 interesting problems on $\chi$ 

Vaidy Sivaraman<br>Mississippi State University

New perspectives in coloring and structure
March 15-20 2020

## Notions and notations

Graphs - finite and simple
$\chi(G)$ - chromatic number of $G$
$\omega(G)$ - clique number of $G$
$h(G)$ - Hadwiger number of $G$
$\tau(G)$ - number of spanning trees of $G$
Hole - induced cycle of length at least 4
$H$-free - not containing $H$ as an induced subgraph
$\mathcal{H}$-free - $H$-free for every $H \in \mathcal{H}$

PROBLEM 1. Graphs without induced cycles of length divisible by 3 are 4 -colorable.

PROBLEM 1. Graphs without induced cycles of length divisible by 3 are 4-colorable. Bonamy, Charbit and Thomasse proved that such graphs are c-colorable for some large $c$.

PROBLEM 1. Graphs without induced cycles of length divisible by 3 are 4-colorable. Bonamy, Charbit and Thomasse proved that such graphs are c-colorable for some large $c$.
What is the structure of such graphs?

## Problem 2

PROBLEM 2. Graphs without induced subdivision of $K_{4}$ are 4-colorable.

## Problem 2

PROBLEM 2. Graphs without induced subdivision of $K_{4}$ are 4-colorable. Le proved that such graphs are 24-colorable.

## Problem 2

PROBLEM 2. Graphs without induced subdivision of $K_{4}$ are 4-colorable. Le proved that such graphs are 24-colorable. What is the structure of such graphs?

## Problem 3

PROBLEM 3. Graphs without induced cycles of length $3,4,7,9,11, \cdots$ are 3-colorable.

PROBLEM 3. Graphs without induced cycles of length $3,4,7,9,11, \cdots$ are 3-colorable.
Xu-Yu-Zha proved that such graphs are 4-colorable.

PROBLEM 3. Graphs without induced cycles of length $3,4,7,9,11, \cdots$ are 3-colorable.
Xu-Yu-Zha proved that such graphs are 4-colorable.
What is the structure of such graphs?

## Problem 4

PROBLEM 4. Graphs without induced cycles of length $3,7,9,11, \cdots$ are 4 -colorable.

## Problem 4

PROBLEM 4. Graphs without induced cycles of length $3,7,9,11, \cdots$ are 4 -colorable. Chudnovsky-Scott-Seymour proved that such graphs are 82000-colorable.

## Problem 4

PROBLEM 4. Graphs without induced cycles of length $3,7,9,11, \ldots$ are 4-colorable. Chudnovsky-Scott-Seymour proved that such graphs are 82000-colorable. What is the structure of such graphs?

## Problem 5

PROBLEM 5. The vertex set of an even-hole-free graph can be partitioned into two perfect sets.

## Problem 5

PROBLEM 5. The vertex set of an even-hole-free graph can be partitioned into two perfect sets.
Chudnovsky-Seymour proved that every even-hole-free graph has a simplicial vertex.

## Problem 5

PROBLEM 5. The vertex set of an even-hole-free graph can be partitioned into two perfect sets.
Chudnovsky-Seymour proved that every even-hole-free graph has a simplicial vertex. What is the optimal $\chi$-bounding function for the class?

## Problem 6

PROBLEM 6. $z(G) \leq h(G)$.

PROBLEM 6. $z(G) \leq h(G)$.
$z(G)$ is the cochromatic number of $G$, the smallest $k$ such that $V(G)$ can be partitioned into $k$ sets, each of which is either a clique or a stable set.

PROBLEM 6. $z(G) \leq h(G)$.
$z(G)$ is the cochromatic number of $G$, the smallest $k$ such that $V(G)$ can be partitioned into $k$ sets, each of which is either a clique or a stable set.
This is a weakening of Hadwiger's conjecture since $z(G) \leq \chi(G)$.

PROBLEM 7. For every tree $T$, the class of $\left(T, C_{4}\right)$-free graphs is polynomially $\chi$-bounded.

PROBLEM 7. For every tree $T$, the class of ( $T, C_{4}$ )-free graphs is polynomially $\chi$-bounded.
Rodl proved that the class is $\chi$-bounded.

PROBLEM 7. For every tree $T$, the class of ( $T, C_{4}$ )-free graphs is polynomially $\chi$-bounded.
Rodl proved that the class is $\chi$-bounded.
Determining the structure of such graphs for some specific small $T$ would be interesting. For example, $T=P_{7}$.

PROBLEM 8. Conjecture: $\tau \geq \chi^{\chi-2}$

## Problem 8

PROBLEM 8. Conjecture: $\tau \geq \chi^{\chi-2}$
Cayley's 1889 theorem: $\tau\left(K_{n}\right)=n^{n-2}$.

PROBLEM 8. Conjecture: $\tau \geq \chi^{\chi-2}$
Cayley's 1889 theorem: $\tau\left(K_{n}\right)=n^{n-2}$.
$\tau$ enjoys the Deletion-contraction property: $\tau(G)=\tau(G / e)+\tau(G \backslash e)$.

PROBLEM 8. Conjecture: $\tau \geq \chi^{\chi-2}$
Cayley's 1889 theorem: $\tau\left(K_{n}\right)=n^{n-2}$.
$\tau$ enjoys the Deletion-contraction property: $\tau(G)=\tau(G / e)+\tau(G \backslash e)$.
Hence the inequality is a consequence of Hadwiger's conjecture.

## Problem 9

PROBLEM 9. Conjecture: If $G$ is $\left(P_{5}, C_{5}\right)$-free, then $\chi \leq \omega^{2}$.

PROBLEM 9. Conjecture: If $G$ is $\left(P_{5}, C_{5}\right)$-free, then $\chi \leq \omega^{2}$. Chudnovsky-Sivaraman proved the bound $\chi \leq 2^{\omega-1}$.

PROBLEM 9. Conjecture: If $G$ is $\left(P_{5}, C_{5}\right)$-free, then $\chi \leq \omega^{2}$. Chudnovsky-Sivaraman proved the bound $\chi \leq 2^{\omega-1}$.

PROBLEM 9. Conjecture: If $G$ is $\left(P_{5}, C_{5}\right)$-free, then $\chi \leq \omega^{2}$. Chudnovsky-Sivaraman proved the bound $\chi \leq 2^{\omega-1}$.

PROBLEM 10. Conjecture: Every 7-chromatic graph contains either a path, cycle or clique on 5 vertices as an induced subgraph.

PROBLEM 11. What is the optimal $\chi$-bounding function for the class of graphs whose complements have girth at least 6 ?

PROBLEM 11. What is the optimal $\chi$-bounding function for the class of graphs whose complements have girth at least 6 ?
Such graphs are $2 K_{2}$-free, hence quadratically $\chi$-bounded

Fork - the graph obtained by subdividing one of the edges of $K_{1,3}$.
PROBLEM 12. Is the class of (fork, $C_{5}, C_{6} \cdots$ )-free graphs polynomially $\chi$-bounded?

Fork - the graph obtained by subdividing one of the edges of $K_{1,3}$.
PROBLEM 12. Is the class of (fork, $C_{5}, C_{6} \cdots$ )-free graphs polynomially $\chi$-bounded? $\chi$-boundedness of the class of fork-free graphs is known but polynomial $\chi$-boundedness is open.

Fork - the graph obtained by subdividing one of the edges of $K_{1,3}$.
PROBLEM 12. Is the class of (fork, $C_{5}, C_{6} \cdots$ )-free graphs polynomially $\chi$-bounded? $\chi$-boundedness of the class of fork-free graphs is known but polynomial $\chi$-boundedness is open.
Similarly, $\chi$-boundedness of the class of graphs without holes of length at least 5 is known but polynomial $\chi$-boundedness is open.

Fork - the graph obtained by subdividing one of the edges of $K_{1,3}$.
PROBLEM 12. Is the class of (fork, $C_{5}, C_{6} \cdots$ )-free graphs polynomially $\chi$-bounded?
$\chi$-boundedness of the class of fork-free graphs is known but polynomial
$\chi$-boundedness is open.
Similarly, $\chi$-boundedness of the class of graphs without holes of length at least 5 is known but polynomial $\chi$-boundedness is open.
Structure/construction/decomposition for such graphs would be very interesting.

## Problem 13

PROBLEM 13. If $G$ is $\left(C_{3}, C_{4}, C_{5}\right)$-free, then $h(G) \geq \chi(G)$.

PROBLEM 13. If $G$ is $\left(C_{3}, C_{4}, C_{5}\right)$-free, then $h(G) \geq \chi(G)$.
Kuhn-Osthus proved: If $G$ is $\left(C_{3}, C_{4}, C_{5}, \cdots C_{27}\right)$-free, then $h(G) \geq \chi(G)$.

## Problem 14

PROBLEM 14. For every tree $T$, the class of $\left(T, C_{3}, C_{5}\right)$-free graphs has bounded $\chi$.

## Problem 15

PROBLEM 15. Conjecture: $\chi \leq \omega^{I-1}$.

## Problem 15

PROBLEM 15. Conjecture: $\chi \leq \omega^{I-1}$.
Here I is the length of a longest induced path in $G$.

PROBLEM 16. If neither $\mathcal{G}$ nor $\bar{G}$ contains a $K_{t}$-minor, then $\chi(G) \leq t-1$.

PROBLEM 17. The only 6 -chromatic graph with the property that deleting the ends of any edge results in a 4-chromatic graph is $K_{6}$.

PROBLEM 17. The only 6 -chromatic graph with the property that deleting the ends of any edge results in a 4-chromatic graph is $K_{6}$.
This is the first open case of the so-called Lovasz' double-critical graph conjecture.

## Problem 18

PROBLEM 18. The class of $\left(P_{6}, \overline{P_{6}}\right)$-free graphs is polynomially $\chi$-bounded.

PROBLEM 18. The class of ( $P_{6}, \overline{P_{6}}$ )-free graphs is polynomially $\chi$-bounded. The class of $\left(P_{5}, \overline{P_{5}}\right)$-free graphs is $\chi$-bounded by $f(x)=x+1$.

PROBLEM 19. For every $t$, the class of $\left(P_{t}, C_{4}\right)$-free graphs is linearly $\chi$-bounded.

## Problem 20

PROBLEM 20. For every $t$, the class of ( $P_{t}, C_{5}$ )-free graphs is polynomially $\chi$-bounded.

## Problem 21

PROBLEM 21. Let $G$ be a graph such that $\chi(H) \leq \omega(H)+2$ for every induced subgraph $H$ of $G$. Then $h(G) \geq \chi(G)$.

## Problem 21

PROBLEM 21. Let $G$ be a graph such that $\chi(H) \leq \omega(H)+2$ for every induced
subgraph $H$ of $G$. Then $h(G) \geq \chi(G)$.
More generally: Fix a positive integer $k$. Let $G$ be a graph such that $\chi(H) \leq \omega(H)+k$ for every induced subgraph $H$ of $G$. Then $h(G) \geq \chi(G)$.

## Problem 21

PROBLEM 21. Let $G$ be a graph such that $\chi(H) \leq \omega(H)+2$ for every induced
subgraph $H$ of $G$. Then $h(G) \geq \chi(G)$.
More generally: Fix a positive integer $k$. Let $G$ be a graph such that $\chi(H) \leq \omega(H)+k$ for every induced subgraph $H$ of $G$. Then $h(G) \geq \chi(G)$.
Proving for all $k$ is proving Hadwiger's conjecture. What is the largest value of $k$ for which this approach looks promising?

PROBLEM 22. For $t \geq 7,\left(P_{t}, C_{3}\right)$-free graphs have chromatic number at most $t-3$.

PROBLEM 22. For $t \geq 7,\left(P_{t}, C_{3}\right)$-free graphs have chromatic number at most $t-3$. Gyarfas proved that $\left(P_{t}, C_{3}\right)$-free graphs have chromatic number at most $t-2$.

## Problem 23

PROBLEM 23. For every tree $T$, the class of $\left(T, C_{3}, C_{5}\right)$-free graphs has bounded $\chi$.

## Problem 23

PROBLEM 23. For every tree $T$, the class of $\left(T, C_{3}, C_{5}\right)$-free graphs has bounded $\chi$. Gyarfas, Szemeredi, Tuza proved that the class of ( $T, C_{3}, C_{4}$ ) -free graphs has bounded $\chi$.

## Problem 24

PROBLEM 24. For every $t$, the class of $\left(P_{t}, \overline{P_{5}}\right)$-free graphs is polynomially $\chi$-bounded.

## Problem 25

PROBLEM 25. The class of graphs not containing an induced cycle of length a power of a prime has bounded $\chi$.

## Problem 25

PROBLEM 25. The class of graphs not containing an induced cycle of length a power of a prime has bounded $\chi$.
Hopefully this should be easier than just excluding prime lengths which is also open.

THANKS FOR YOUR ATTENTION.

