25 interesting problems on χ

Vaidy Sivaraman Mississippi State University

New perspectives in coloring and structure March 15-20 2020

ヘロト ヘアト ヘビト ヘビト

ъ

Vaidy Sivaraman Mississippi State University 25 interesting problems on χ

Graphs - finite and simple $\chi(G)$ - chromatic number of G $\omega(G)$ - clique number of G h(G) - Hadwiger number of G $\tau(G)$ - number of spanning trees of GHole - induced cycle of length at least 4 H-free - not containing H as an induced subgraph \mathcal{H} -free - H-free for every $H \in \mathcal{H}$

ヘロト 人間 ト ヘヨト ヘヨト

æ

PROBLEM 1. Graphs without induced cycles of length divisible by 3 are 4-colorable.

PROBLEM 1. Graphs without induced cycles of length divisible by 3 are 4-colorable. Bonamy, Charbit and Thomasse proved that such graphs are *c*-colorable for some large c.

イロト 不得 とくほと くほとう

∃ <2 <</p>

PROBLEM 1. Graphs without induced cycles of length divisible by 3 are 4-colorable. Bonamy, Charbit and Thomasse proved that such graphs are *c*-colorable for some large *c*.

What is the structure of such graphs?

・ロト ・ 理 ト ・ ヨ ト ・

∃ <2 <</p>

PROBLEM 2. Graphs without induced subdivision of K_4 are 4-colorable.

PROBLEM 2. Graphs without induced subdivision of K_4 are 4-colorable. Le proved that such graphs are 24-colorable.

ヘロト 人間 とくほとく ほとう

PROBLEM 2. Graphs without induced subdivision of K_4 are 4-colorable. Le proved that such graphs are 24-colorable. What is the structure of such graphs?

イロト 不得 とくほと くほとう

∃ <2 <</p>

PROBLEM 3. Graphs without induced cycles of length $3, 4, 7, 9, 11, \cdots$ are 3-colorable.

PROBLEM 3. Graphs without induced cycles of length $3, 4, 7, 9, 11, \cdots$ are 3-colorable. Xu-Yu-Zha proved that such graphs are 4-colorable.

PROBLEM 3. Graphs without induced cycles of length $3, 4, 7, 9, 11, \cdots$ are 3-colorable. Xu-Yu-Zha proved that such graphs are 4-colorable. What is the structure of such graphs?

PROBLEM 4. Graphs without induced cycles of length 3, 7, 9, 11, · · · are 4-colorable.

PROBLEM 4. Graphs without induced cycles of length $3, 7, 9, 11, \cdots$ are 4-colorable. Chudnovsky-Scott-Seymour proved that such graphs are 82000-colorable.

PROBLEM 4. Graphs without induced cycles of length $3, 7, 9, 11, \cdots$ are 4-colorable. Chudnovsky-Scott-Seymour proved that such graphs are 82000-colorable. What is the structure of such graphs?

(ロ) (同) (目) (日) (日) (の)

PROBLEM 5. The vertex set of an even-hole-free graph can be partitioned into two perfect sets.

PROBLEM 5. The vertex set of an even-hole-free graph can be partitioned into two perfect sets.

Chudnovsky-Seymour proved that every even-hole-free graph has a simplicial vertex.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 5. The vertex set of an even-hole-free graph can be partitioned into two perfect sets.

Chudnovsky-Seymour proved that every even-hole-free graph has a simplicial vertex. What is the optimal χ -bounding function for the class?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 6. $z(G) \leq h(G)$.

PROBLEM 6. $z(G) \leq h(G)$.

z(G) is the cochromatic number of G, the smallest k such that V(G) can be partitioned into k sets, each of which is either a clique or a stable set.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 6. $z(G) \leq h(G)$.

z(G) is the cochromatic number of G, the smallest k such that V(G) can be partitioned into k sets, each of which is either a clique or a stable set. This is a weakening of Hadwiger's equipature sizes z(G) < z(G)

This is a weakening of Hadwiger's conjecture since $z(G) \le \chi(G)$.

PROBLEM 7. For every tree *T*, the class of (T, C_4) -free graphs is polynomially χ -bounded.

PROBLEM 7. For every tree *T*, the class of (T, C_4) -free graphs is polynomially χ -bounded. Rodl proved that the class is χ -bounded.

PROBLEM 7. For every tree *T*, the class of (T, C_4) -free graphs is polynomially χ -bounded.

Rodl proved that the class is χ -bounded.

Determining the structure of such graphs for some specific small *T* would be interesting. For example, $T = P_7$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 8. Conjecture: $\tau \ge \chi^{\chi-2}$

PROBLEM 8. Conjecture: $\tau \ge \chi^{\chi-2}$ Cayley's 1889 theorem: $\tau(K_n) = n^{n-2}$.

PROBLEM 8. Conjecture: $\tau \ge \chi^{\chi^{-2}}$ Cayley's 1889 theorem: $\tau(K_n) = n^{n-2}$. τ enjoys the Deletion-contraction property: $\tau(G) = \tau(G/e) + \tau(G \setminus e)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 8. Conjecture: $\tau \ge \chi^{\chi^{-2}}$ Cayley's 1889 theorem: $\tau(K_n) = n^{n-2}$. τ enjoys the Deletion-contraction property: $\tau(G) = \tau(G/e) + \tau(G \setminus e)$. Hence the inequality is a consequence of Hadwiger's conjecture.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROBLEM 9. Conjecture: If G is (P_5, C_5) -free, then $\chi \leq \omega^2$.

PROBLEM 9. Conjecture: If *G* is (P_5 , C_5)-free, then $\chi \le \omega^2$. Chudnovsky-Sivaraman proved the bound $\chi \le 2^{\omega-1}$.

PROBLEM 9. Conjecture: If *G* is (P_5 , C_5)-free, then $\chi \le \omega^2$. Chudnovsky-Sivaraman proved the bound $\chi \le 2^{\omega-1}$.

PROBLEM 9. Conjecture: If *G* is (P_5 , C_5)-free, then $\chi \le \omega^2$. Chudnovsky-Sivaraman proved the bound $\chi \le 2^{\omega-1}$.

PROBLEM 10. Conjecture: Every 7-chromatic graph contains either a path, cycle or clique on 5 vertices as an induced subgraph.

ヘロト 人間 とくほとく ほとう

∃ <2 <</p>

PROBLEM 11. What is the optimal χ -bounding function for the class of graphs whose complements have girth at least 6?

ヘロト 人間 とくほとく ほとう

PROBLEM 11. What is the optimal χ -bounding function for the class of graphs whose complements have girth at least 6? Such graphs are $2K_2$ -free, hence quadratically χ -bounded

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 12. Is the class of (*fork*, C_5 , C_6 · · ·)-free graphs polynomially χ -bounded?

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

PROBLEM 12. Is the class of (*fork*, C_5 , $C_6 \cdots$)-free graphs polynomially χ -bounded? χ -boundedness of the class of fork-free graphs is known but polynomial χ -boundedness is open.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 12. Is the class of (*fork*, C_5 , $C_6 \cdots$)-free graphs polynomially χ -bounded? χ -boundedness of the class of fork-free graphs is known but polynomial χ -boundedness is open.

Similarly, χ -boundedness of the class of graphs without holes of length at least 5 is known but polynomial χ -boundedness is open.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

PROBLEM 12. Is the class of (*fork*, C_5 , $C_6 \cdots$)-free graphs polynomially χ -bounded? χ -boundedness of the class of fork-free graphs is known but polynomial χ -boundedness is open.

Similarly, χ -boundedness of the class of graphs without holes of length at least 5 is known but polynomial χ -boundedness is open.

Structure/construction/decomposition for such graphs would be very interesting.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

PROBLEM 13. If G is (C_3, C_4, C_5) -free, then $h(G) \ge \chi(G)$.

PROBLEM 13. If *G* is (C_3, C_4, C_5) -free, then $h(G) \ge \chi(G)$. Kuhn-Osthus proved: If *G* is $(C_3, C_4, C_5, \dots, C_{27})$ -free, then $h(G) \ge \chi(G)$.

◆ロ▶ ◆■▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

PROBLEM 14. For every tree *T*, the class of (T, C_3, C_5) -free graphs has bounded χ .

PROBLEM 15. Conjecture: $\chi \leq \omega^{l-1}$.

PROBLEM 15. Conjecture: $\chi \leq \omega^{l-1}$. Here *l* is the length of a longest induced path in *G*.

PROBLEM 16. If neither *G* nor \overline{G} contains a K_t -minor, then $\chi(G) \leq t - 1$.

PROBLEM 17. The only 6-chromatic graph with the property that deleting the ends of any edge results in a 4-chromatic graph is K_6 .

ヘロト 人間 とくほとく ほとう

₹ 990

PROBLEM 17. The only 6-chromatic graph with the property that deleting the ends of any edge results in a 4-chromatic graph is K_6 . This is the first open case of the so-called Lovasz' double-critical graph conjecture.

ヘロト 人間 とくほとくほとう

PROBLEM 18. The class of $(P_6, \overline{P_6})$ -free graphs is polynomially χ -bounded.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

PROBLEM 18. The class of $(P_6, \overline{P_6})$ -free graphs is polynomially χ -bounded. The class of $(P_5, \overline{P_5})$ -free graphs is χ -bounded by f(x) = x + 1.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 19. For every *t*, the class of (P_t, C_4) -free graphs is linearly χ -bounded.

PROBLEM 20. For every *t*, the class of (P_t, C_5) -free graphs is polynomially χ -bounded.

PROBLEM 21. Let *G* be a graph such that $\chi(H) \le \omega(H) + 2$ for every induced subgraph *H* of *G*. Then $h(G) \ge \chi(G)$.

PROBLEM 21. Let *G* be a graph such that $\chi(H) \le \omega(H) + 2$ for every induced subgraph *H* of *G*. Then $h(G) \ge \chi(G)$.

More generally: Fix a positive integer k. Let G be a graph such that $\chi(H) \le \omega(H) + k$ for every induced subgraph H of G. Then $h(G) \ge \chi(G)$.

PROBLEM 21. Let *G* be a graph such that $\chi(H) \le \omega(H) + 2$ for every induced subgraph *H* of *G*. Then $h(G) \ge \chi(G)$.

More generally: Fix a positive integer k. Let G be a graph such that $\chi(H) \le \omega(H) + k$ for every induced subgraph H of G. Then $h(G) \ge \chi(G)$.

Proving for all k is proving Hadwiger's conjecture. What is the largest value of k for which this approach looks promising?

イロト イポト イヨト イヨト 一臣

PROBLEM 22. For $t \ge 7$, (P_t, C_3) -free graphs have chromatic number at most t - 3.

PROBLEM 22. For $t \ge 7$, (P_t, C_3) -free graphs have chromatic number at most t - 3. Gyarfas proved that (P_t, C_3) -free graphs have chromatic number at most t - 2.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

PROBLEM 23. For every tree *T*, the class of (T, C_3, C_5) -free graphs has bounded χ .

PROBLEM 23. For every tree *T*, the class of (T, C_3, C_5) -free graphs has bounded χ . Gyarfas, Szemeredi, Tuza proved that the class of (T, C_3, C_4) -free graphs has bounded χ .

PROBLEM 24. For every *t*, the class of $(P_t, \overline{P_5})$ -free graphs is polynomially χ -bounded.

PROBLEM 25. The class of graphs not containing an induced cycle of length a power of a prime has bounded χ .

ヘロト 人間 とくほとくほとう

PROBLEM 25. The class of graphs not containing an induced cycle of length a power of a prime has bounded χ .

Hopefully this should be easier than just excluding prime lengths which is also open.

イロト イポト イヨト イヨト

THANKS FOR YOUR ATTENTION.

Vaidy Sivaraman Mississippi State University 25 interesting problems on χ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □