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Orderbook-based electricity price forecasting with neural networks

German Day-Ahead Market

Orderbook-based forecasting method

Application of neural networks
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I am interested in applications of �nancial mathematics and data science in (energy)
industry

Fraunhofer Society: between university and industry,

27000 people, > 70 research institutes

Fraunhofer Institute for Industrial Mathematics ITWM

is the world-biggest research institute for industrial

mathematics (32 Mio. EUR budget, 280+ people)

�nanced by about 50 % through industrial projects

close connection to Technical University of

Kaiserslautern (Germany)

Financial Mathematics Department (20+ people)

�nancial mathematics and data science applications in

�nance, energy, and other industries
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Ask questions
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We adress the forecast of electricitiy prices using orderbooks and neural networks

Orderbook-based electricity price forecasting with neural networks
Focus on German EPEX Day-Ahead market

orderbook-based forecasting methods show good performance

calibration is complicated

simpli�cation using machine learning possible?

Research questions:
How can orderbooks from electricity markets be included in machine learning algorithms?

How can orderbook-based spot price forecasts be improved using machine learning?
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Germany has 105 GW installed wind and solar capacity, share of renewables on total
production is above 45 %

https://www.energy-charts.de/
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Prices are set by conventional generation, renewable infeed decides how much conventional
production is needed

https://www.energy-charts.de/
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Prices are seasonal, spiky and may become negative
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There is one price for each delivery hour
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Each price results from an auction and is the intersection of the bid (purchase)- and ask
(sell) curve
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There is a wide range of approaches to price forecasting in literature

Di�erent approaches

fundamental time-series

mixed-integer optimization

commercial models (Pöyry, Energy

Brainpool), research institutes

(HEMF Uni Duisburg-Essen, EWI

Uni Köln, Fraunhofer ISI, ...)

bid-curve based, ARIMAX

W. (2014), Ziel, Steinert (2016),

Carmona, Coulon (2014)

SARIMA, NN, reference-day

method

Weron (2014, 2018), Nogales (2002),

Conejo (2005), Lora (2007)
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Our forecast is based on orderbooks of the previous day and forecasts on renewable infeed

orderbook
+

renewable
infeed
forecast

=
price forecast
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We transform the bid/ask curves to a merit-order and price-inelastic demand
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We shift renewable volumes at the corresponding price levels according to forecasts

Merit-order is shifted according to forecasts

New intersection with (inelastic) demand

Forecast results from the new intersection

Finding the price levels is a lot of statistical

(data-analysis) work

Simplify with supervised learning? Our approach
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We want to replace the manual shifting of the merit order by neural networks

Steps:
1. �nd a suitable representation of the orderbook

2. set up feature vector

3. de�ne network architecture and �nd optimal hyper parameters
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Feature vector contains merit order curve and fundamental data for reference and forecast
day

Components of feature vector
Merit-order curve is seperated into about 80

price intervals (based on constant volume

intervals)

inelastic demand

calender information:

transform hour and month on a cyrcle sin
cos


(

2∗π∗hi
24

)

year, type-of-day (One-hot encoding)

Forecast data of wind- and photovoltaic

infeed Figure from Ziel, Steinert 2016
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Using cross-validation we optimize architecture and hyperparameters

data set: 1.2.2015 to 30.9.2018 (= 32.111 hours)

test data from 6.1.2018

parameters under consideration/optimization

architecture: LSTM or FFNN

forecast 1 price / forecast 24 prices (whole day)

number of layers and neurons / layer

activating function

optimizier

Drop-out

reducing dimension of feature vector (random forest, PCA)
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Out-of-sample results are competitive to other methods in literature

Method RMSE

reference day 12.68

random forest 11.92

FFNN: [5,5,5] 9.59

FFNN feature reduction: [25]*25 9.41

FFNN Keles et al. 2016 architecture 14.87

FFNN Lago et al.. 2018 architecture 21.05

EXAA 5.23

Results on other datasets for comparison

Conejo et al. 2005 10.72

Keles et al .2016 9.53

Ziel et al. 2015 6.46
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Orderbook features can also be used to get insights for classical bid-curve forecasting

random forests

target: wind infeed

results show, at which price levels wind
infeed is bid into the market

Feature Importance

(Random Forest, Gini)

Rang Feature

1 [-80,-79)

2 [-76,-75)

3 [-70,-71)

4 [-71,-70)

5 [-81,-80)

6 [-65,-64)

... ...
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Results are competitive, but still involve a lot of HI (human intelligence)

Key Learnings:
Orderbooks can be used in ML-algorithms using the volume-discretisation

Reducing the dimension of the feature vector generally improved results

De�nition of feature vector and search for the best NN needs signi�cant ressources

There cannot be enough data

Future work:
Use load forecasts and a modi�ed selection of reference day

Train network to generate hourly price forward curves

Include market coupling: include other markets' bid curves (France, Netherland, ...)

Apply to the DE-market (German / Austria market split in Oct-2018)
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Backup
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Wind infeed lowers spot prices ...
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... solar does the same
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