Orderbook-based electricity price forecasting with neural networks

Simon Schnürch, Andreas Wagner Banff, Sep. 2019

Fraunhofer Institute for Industrial Mathematics ITWM Department for Financial Mathematics Kaiserslautern Germany

© Fraunhofer ITWM

Orderbook-based electricity price forecasting with neural networks

- German Day-Ahead Market
- Orderbook-based forecasting method
- Application of neural networks

I am interested in applications of financial mathematics and data science in (energy) industry

- Fraunhofer Society: between university and industry, 27000 people, > 70 research institutes
- Fraunhofer Institute for Industrial Mathematics ITWM is the world-biggest research institute for industrial mathematics (32 Mio. EUR budget, 280+ people)
- financed by about 50 % through industrial projects
- close connection to Technical University of Kaiserslautern (Germany)
- Financial Mathematics Department (20+ people)
- financial mathematics and data science applications in finance, energy, and other industries

Ask questions

© Fraunhofer ITWM

We adress the forecast of electricity prices using orderbooks and neural networks

Orderbook-based electricity price forecasting with neural networks

- Focus on German EPEX Day-Ahead market
- orderbook-based forecasting methods show good performance
- calibration is complicated
- simplification using machine learning possible?

Research questions:

- How can orderbooks from electricity markets be included in machine learning algorithms?
- How can orderbook-based spot price forecasts be improved using machine learning?

Germany has 105 GW installed wind and solar capacity, share of renewables on total production is above 45 %

Net installed electricity generation capacity in Germany in 2019

https://www.energy-charts.de/

Prices are set by conventional generation, renewable infeed decides how much conventional production is needed

https://www.energy-charts.de/

Prices are seasonal, spiky and may become negative

There is one price for each delivery hour

© Fraunhofer ITWM

Each price results from an auction and is the intersection of the bid (purchase)- and ask (sell) curve

ITWM

2018-06-25 Stunde 12

There is a wide range of approaches to price forecasting in literature

© Fraunhofer ITWM

Our forecast is based on orderbooks of the previous day and forecasts on renewable infeed

renewable

+

price forecast

© Fraunhofer ITWM

We transform the bid/ask curves to a merit-order and price-inelastic demand

3000 -Preis [EUR / MWh] 1000 -Purchase Sell 0 -J. 30000 40000 50000 20000 60000 kumuliertes Volumen [MWh]

2018-06-25 Stunde 12

We shift renewable volumes at the corresponding price levels according to forecasts

- Merit-order is shifted according to forecasts
- New intersection with (inelastic) demand
- Forecast results from the new intersection
- Finding the price levels is a lot of statistical (data-analysis) work
- Simplify with supervised learning? Our approach

We want to replace the manual shifting of the merit order by neural networks

Steps:

- 1. find a suitable representation of the orderbook
- 2. set up feature vector
- 3. define network architecture and find optimal hyper parameters

© Fraunhofer ITWM

Feature vector contains merit order curve and fundamental data for reference and forecast day

Components of feature vector

- Merit-order curve is seperated into about 80 price intervals (based on constant volume intervals)
- inelastic demand
- calender information:
 - transform hour and month on a cyrcle

$$\left\{\begin{array}{c} \sin\\ \cos\end{array}\right\} \left(\frac{2*\pi*h_i}{24}\right)$$

year, type-of-day (One-hot encoding)Forecast data of wind- and photovoltaic infeed

reference day orderbook (80 price intervals,demand)

Fundamentals reference (calendar, wind, PV)

Fundamentals forecast (calendar, wind, PV)

Using cross-validation we optimize architecture and hyperparameters

- **d**ata set: 1.2.2015 to 30.9.2018 (= 32.111 hours)
- test data from 6.1.2018

- parameters under consideration/optimization
 - architecture: LSTM or FFNN
 - forecast 1 price / forecast 24 prices (whole day)
 - number of layers and neurons / layer
 - activating function
 - optimizier
 - Drop-out
 - reducing dimension of feature vector (random forest, PCA)

	std.test.error	test.error 🔺	train.error 🌼	nnactivation	nnbatch_sizê	nndropout_prob	nnepochŝ	$nn_n_hidde\hat{n}$	nnoptimizer	$nn_output_activatio\hat{n}$
116	1.999204e-04	0.0005749586	0.0003554792	tanh	256	[0, 0.1]	100	[10, 10, 10]	Adam	linear
43	8.817970e-05	0.0005763444	0.0003048862	tanh	128	[0, 0.1]	100	[10, 10, 10]	rmsprop	linear
61	2.600061e-04	0.0006019773	0.0003539623	tanh	128	[0, 0.2]	50	[10, 10, 10]	rmsprop	linear
142	2.221261e-04	0.0006031170	0.0003740133	tanh	256	[0, 0.2]	100	[25, 25, 25]	Adam	linear
115	1.559292e-04	0.0006094105	0.0003885659	tanh	256	[0, 0.1]	100	[10, 10, 10]	rmsprop	linear
71	1.719773e-04	0.0006186637	0.0002602797	tanh	128	[0, 0.2]	100	[50, 25, 10]	rmsprop	linear
118	2.121828e-04	0.0006271222	0.0003318525	tanh	256	[0, 0.1]	100	[25, 25, 25]	Adam	linear
310	2.012744e-04	0.0006336037	0.0005558937	linear	128	[0, 0]	100	[25, 25, 25]	Adam	linear
68	2.024666e-04	0.0006342373	0.0002978133	tanh	128	[0, 0.2]	100	[10, 10, 10]	Adam	linear
352	2.082766e-04	0.0006364834	0.0005374449	linear	128	[0, 0.2]	50	[25, 25, 25]	Adam	linear
360	2.307997e-04	0.0006405951	0.0005364056	linear	128	[0, 0.2]	100	[50, 25, 10]	Adam	linear
95	1.294804e-04	0.0006448784	0.0002820392	tanh	256	[0, 0]	100	[50, 25, 10]	rmsprop	linear
135	2.323990e-04	0.0006449217	0.0004849614	tanh	256	[0, 0.2]	50	[25, 25, 25]	rmsprop	linear
336	2.038787e-04	0.0006452603	0.0005272062	linear	128	[0, 0.1]	100	[50, 25, 10]	Adam	linear
326	2.438585e-04	0.0006455844	0.0005359410	linear	128	[0, 0.1]	50	[10, 10, 10]	Adam	linear
212	7.747586e-05	0.0006455875	0.0003129788	relu	128	[0, 0.2]	100	[10, 10, 10]	Adam	linear
402	2.691034e-04	0.0006513953	0.0005570466	linear	256	[0, 0.1]	50	[50, 25, 10]	Adam	linear
308	2.009271e-04	0.0006517306	0.0005398851	linear	128	[0, 0]	100	[10, 10, 10]	Adam	linear
65	2.725988e-04	0.0006533027	0.0003529057	tanh	128	[0, 0.2]	50	[50, 25, 10]	rmsprop	linear
302	2.063677e-04	0.0006533203	0.0005426409	linear	128	[0, 0]	50	[10, 10, 10]	Adam	linear
408	2.144154e-04	0.0006541339	0.0005503601	linear	256	[0, 0.1]	100	[50, 25, 10]	Adam	linear
406	2.057292e-04	0.0006547971	0.0005412881	linear	256	[0, 0.1]	100	[25, 25, 25]	Adam	linear

Out-of-sample results are competitive to other methods in literature

Method	RMSE	FFNN CV6 72
reference day	12.68	
random forest	11.92	
FFNN: [5,5,5]	9.59	
FFNN feature reduction: $[25]*25$	9.41	
FFNN Keles et al. 2016 architecture	14.87	∑ ²⁵ -
FFNN Lago et al 2018 architecture	21.05	
EXAA	5.23	prediction
Results on other datasets for comparison		
Conejo et al. 2005	10.72	
Keles et al .2016	9.53	-25 -
Ziel et al. 2015	6.46	
		Sep 11 Sep 18 Zeit [2017]

Orderbook features can also be used to get insights for classical bid-curve forecasting

- random forests
- target: wind infeed
- results show, at which price levels wind infeed is bid into the market

Feature Importance (Random Forest, Gini)

Rang	Feature
1	[-80,-79)
2	[-76,-75)
3	[-70,-71)
4	[-71,-70)
5	[-81,-80)
6	[-65, -64)

Results are competitive, but still involve a lot of HI (human intelligence)

Key Learnings:

- Orderbooks can be used in ML-algorithms using the volume-discretisation
- Reducing the dimension of the feature vector generally improved results
- Definition of feature vector and search for the best NN needs significant ressources
- There cannot be enough data

Future work:

- Use load forecasts and a modified selection of reference day
- Train network to generate hourly price forward curves
- Include market coupling: include other markets' bid curves (France, Netherland, ...)
- Apply to the DE-market (German / Austria market split in Oct-2018)

- bid-curve based models
 - Ziel, Steinert 2016: Electricity price forecasting using sale and purchase curves: The X-Model, Energy Economics, 59, 435-454
 - Carmona, Coulon 2014: A survey of commodity markets and structural models for electricity prices, Quantitative Energy Finance, 41-83
 - Wagner 2014: Residual demand modeling and application to electricity pricing, The Energy Journal, 45-73
 - Forecasting (surveys)
 - Aggarwal et al 2009: Electricity price forecasting in deregulated markets: A review and evaluation
 - Weron 2014: Electricity price forecasting: A review of the state-of-the-art with a look into the future, International Journal of forecasting, 30(4), 1030-1081.
 - Ziel, Weron 2018: Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks, Energy Economics, 70, 396-42
- Forecasting (other methods)

- Nogales et al 2002: Forecasting Next-Day Electricity Prices by Time Series Models, IEEE Transactions on power systems, 17(2)
- Conejo et al 2005: Day-Ahead Electricity Price Forecasting Using the Wavelet Transform and ARIMA Models, IEEE transactions on power systems, 20(2)
- Lora et al 2007: Electricity Market Price Forecasting Based on Weighted Nearest Neighbors Techniques, IEEE Transactions on Power Systems, 22(3)
- Forecasting (ML)
- Chen et al 2012: Electricity Price Forecasting With Extreme Learning Machine and Bootstrapping, IEEE Transactions on Power Systems, 27(4)
- Mosbah, El-Hawary 2016: Hourly Electricity Price Forecasting for the Next Month Using Multilayer Neural Network, Canadian Journal of Electrical and Computer Engineering, 39(4), 283-291
- Keles et al 2016: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks, Applied energy, 162, 218-230

- Lago et al 2018: Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms, Applied Energy, 221, 386-405
- Marcjasz et al 2018: On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks, International Journal of Forecasting (in press)

© Fraunhofer ITWM

Backup

© Fraunhofer ITWM

Wind infeed lowers spot prices ...

© Fraunhofer ITWM

... solar does the same

© Fraunhofer ITWM