# Carleman estimates for geodesic X-ray transforms 

Gabriel P. Paternain

Banff, April 16th 2019<br>Joint work with Mikko Salo

## Setting

- $(M, g)$ is a compact Riemannian manifold with boundary $\partial M$.



## Setting

- $(M, g)$ is a compact Riemannian manifold with boundary $\partial M$.
- $S M=\{(x, v) \in T M:|v|=1\}$ is the unit sphere bundle with boundary $\partial(S M)$.



## Setting

- $(M, g)$ is a compact Riemannian manifold with boundary $\partial M$.
- $S M=\{(x, v) \in T M:|v|=1\}$ is the unit sphere bundle with boundary $\partial(S M)$.
- $\partial_{ \pm}(S M)=\{(x, v) \in \partial(S M): \pm\langle v, \nu\rangle \leq 0\}$, where $\nu$ is the the outer unit normal vector.



## Setting

- $(M, g)$ is a compact Riemannian manifold with boundary $\partial M$.
- $S M=\{(x, v) \in T M:|v|=1\}$ is the unit sphere bundle with boundary $\partial(S M)$.
- $\partial_{ \pm}(S M)=\{(x, v) \in \partial(S M): \pm\langle v, \nu\rangle \leq 0\}$, where $\nu$ is the the outer unit normal vector.
- We will assume $\partial M$ is strictly convex (positive definite second fundamental form).


We let $\tau(x, v)$ be the first time when a geodesic starting at $(x, v)$ leaves $M$.

Definition. We say $(M, g)$ is non-trapping if $\tau(x, v)<\infty$ for all $(x, v) \in S M$.

We let $\tau(x, v)$ be the first time when a geodesic starting at $(x, v)$ leaves $M$.

Definition. We say $(M, g)$ is non-trapping if $\tau(x, v)<\infty$ for all $(x, v) \in S M$.

By Morse theory a non-trapping manifold with strictly convex boundary is contractible (otherwise it would contain a closed geodesic).


- Given $f \in C(M, \mathbb{R})$ define for $(x, v) \in \partial_{+} S M$

$$
\operatorname{If}(x, v):=\int_{0}^{\tau(x, v)} f\left(\gamma_{x, v}(t)\right) d t
$$

where $\gamma_{x, v}$ is the unique geodesic determined by $(x, v)$.

Different methodologies for determining $f$ from If:

1. Explicit inversion formulas in symmetric geometries (e.g. homogeneous spaces).
${ }^{1}$ strictly convex ball with no conjugate points

Different methodologies for determining $f$ from If:

1. Explicit inversion formulas in symmetric geometries (e.g. homogeneous spaces).
2. Microlocal analysis: interpret I as a Fourier integral operator, or $I^{*} I$ as a pseudodifferential operator. Recovery of singularities, invertibility for generic simple ${ }^{1}$ metrics (Stefanov-Uhlmann 2005) or locally for $\operatorname{dim}(M) \geq 3$ (Uhlmann-Vasy 2016).
[^0]Different methodologies for determining $f$ from If:

1. Explicit inversion formulas in symmetric geometries (e.g. homogeneous spaces).
2. Microlocal analysis: interpret I as a Fourier integral operator, or $/ * /$ as a pseudodifferential operator. Recovery of singularities, invertibility for generic simple ${ }^{1}$ metrics (Stefanov-Uhlmann 2005) or locally for $\operatorname{dim}(M) \geq 3$ (Uhlmann-Vasy 2016).
3. Energy methods for transport PDE (Mukhometov 1977, Sharafutdinov,..., P-Salo-Uhlmann 2013). Pestov identity.
[^1]Let $\varphi_{t}$ denote the geodesic flow of $(M, g)$ and $X$ the geodesic vector field on $S M$, so that $X$ acts on smooth functions on $S M$ by

$$
X u(x, v)=\left.\frac{\partial}{\partial t} u\left(\varphi_{t}(x, v)\right)\right|_{t=0}
$$

Let $\varphi_{t}$ denote the geodesic flow of $(M, g)$ and $X$ the geodesic vector field on $S M$, so that $X$ acts on smooth functions on $S M$ by

$$
X u(x, v)=\left.\frac{\partial}{\partial t} u\left(\varphi_{t}(x, v)\right)\right|_{t=0}
$$

## ( $M, g$ )



If $(M, g)$ is a strictly convex domain in $\mathbb{R}^{2}$ with the usual Euclidean metric we have

$$
\begin{aligned}
X=v \cdot \nabla_{x} & =e^{i \theta} \partial+e^{-i \theta} \bar{\partial} \\
& =\cos \theta \frac{\partial}{\partial x_{1}}+\sin \theta \frac{\partial}{\partial x_{2}}
\end{aligned}
$$

where $\theta$ is the angle $v$ makes with the vector $e_{1}=(1,0)$.

## Vertical Fourier Analysis

Using the vertical Laplacian $\Delta$ on each fibre $S_{x}$ of $S M$ we get a decomposition

$$
L^{2}(S M)=\bigoplus_{m \geq 0} H_{m}(S M)
$$

## Vertical Fourier Analysis

Using the vertical Laplacian $\Delta$ on each fibre $S_{x}$ of $S M$ we get a decomposition

$$
L^{2}(S M)=\bigoplus_{m \geq 0} H_{m}(S M)
$$

Let $\Omega_{m}:=H_{m}(S M) \cap C^{\infty}$. A function $u$ belongs to $\Omega_{m}$ iff $\Delta u=m(m+d-2) u$ where $d=\operatorname{dim} M$.

## Vertical Fourier Analysis

Using the vertical Laplacian $\Delta$ on each fibre $S_{x}$ of $S M$ we get a decomposition

$$
L^{2}(S M)=\bigoplus_{m \geq 0} H_{m}(S M)
$$

Let $\Omega_{m}:=H_{m}(S M) \cap C^{\infty}$. A function $u$ belongs to $\Omega_{m}$ iff $\Delta u=m(m+d-2) u$ where $d=\operatorname{dim} M$.

The operator $X: C^{\infty}(S M) \rightarrow C^{\infty}(S M)$ admits a nice splitting $X=X_{+}+X_{-}$, where $X_{ \pm}: \Omega_{m} \rightarrow \Omega_{m \pm 1}$.

## The Carleman estimate

Theorem 1 (P-Salo 2018)
Let $(M, g)$ be compact with sectional curvature $\leq-\kappa$ where $\kappa>0$. Let also $\phi_{I}=\log (I)$. For any $\tau \geq 1$ and $m \geq 1$, one has

$$
\sum_{l=m}^{\infty} e^{2 \tau \phi_{l}}\left\|u_{l}\right\|^{2} \leq \frac{(d+4)^{2}}{\kappa \tau} \sum_{l=m+1}^{\infty} e^{2 \tau \phi_{l}}\left\|\left(X_{u}\right)_{l}\right\|^{2}
$$

whenever $u \in C^{\infty}(S M)$ (with $\left.u\right|_{\partial(S M)}=0$ in the boundary case).

## The Carleman estimate

Theorem 1 (P-Salo 2018)
Let $(M, g)$ be compact with sectional curvature $\leq-\kappa$ where $\kappa>0$. Let also $\phi_{I}=\log (I)$. For any $\tau \geq 1$ and $m \geq 1$, one has

$$
\sum_{l=m}^{\infty} e^{2 \tau \phi_{l}}\left\|u_{l}\right\|^{2} \leq \frac{(d+4)^{2}}{\kappa \tau} \sum_{l=m+1}^{\infty} e^{2 \tau \phi_{l}}\left\|(X u)_{l}\right\|^{2}
$$

whenever $u \in C^{\infty}(S M)$ (with $\left.u\right|_{\partial(S M)}=0$ in the boundary case).
Carleman weights: purely on the frequency side.

Tensor tomography follows immediately from this.

Tensor tomography follows immediately from this.
Consider the transport equation

$$
X u=f \text { in } S M,\left.\quad u\right|_{\partial(S M)}=0
$$

where $f$ has finite degree $m$ (i.e. $f_{l}=0$ for $l \geq m+1$ ).

Tensor tomography follows immediately from this.
Consider the transport equation

$$
X u=f \text { in } S M,\left.\quad u\right|_{\partial(S M)}=0
$$

where $f$ has finite degree $m$ (i.e. $f_{l}=0$ for $l \geq m+1$ ).
The estimate implies directly that $u_{I}=0$ for $I \geq m$ ( $u$ has finite degree $m-1$ ).

Tensor tomography follows immediately from this.
Consider the transport equation

$$
X u=f \text { in } S M,\left.\quad u\right|_{\partial(S M)}=0,
$$

where $f$ has finite degree $m$ (i.e. $f_{l}=0$ for $l \geq m+1$ ).
The estimate implies directly that $u_{I}=0$ for $I \geq m$ ( $u$ has finite degree $m-1$ ).

The case $m=2$ is at the heart of the proof that closed negatively curved manifolds are spectrally rigid (Guillemin-Kazhdan 1980, Croke-Sharafutdinov 1998).

## Attenuated X-ray

Let $\Phi: M \rightarrow \mathbb{C}^{n \times n}$ be given (matrix attenuation). For $f \in C\left(M, \mathbb{C}^{n}\right)$ and $(x, v) \in \partial_{+} S M$ define

$$
I_{\Phi}(f)(x, v):=\int_{0}^{\tau(x, v)} U(t) f\left(\gamma_{x, v}(t)\right) d t
$$

where $U$ solves

$$
\dot{U}-U \Phi\left(\gamma_{x, v}(t)\right)=0, \quad U(0)=\mathrm{Id}
$$

## Attenuated X-ray

Let $\Phi: M \rightarrow \mathbb{C}^{n \times n}$ be given (matrix attenuation). For $f \in C\left(M, \mathbb{C}^{n}\right)$ and $(x, v) \in \partial_{+} S M$ define

$$
I_{\Phi}(f)(x, v):=\int_{0}^{\tau(x, v)} U(t) f\left(\gamma_{x, v}(t)\right) d t
$$

where $U$ solves

$$
\dot{U}-U \Phi\left(\gamma_{x, v}(t)\right)=0, \quad U(0)=\mathrm{Id}
$$

When $n=1$, and $(M, g)$ a domain in $\mathbb{R}^{2}$, this reduces to the classical attenuated X -ray transform.

## Injectivity

Theorem 2 (P-Salo 2018)
Assume ( $M, g$ ) is a compact simply connected manifold with strictly convex boundary and of negative sectional curvature. Let $\Phi \in C^{\infty}\left(M, \mathbb{C}^{n \times n}\right)$ be given. If $I_{\Phi}(f)=0$, then $f=0$.

## Injectivity

Theorem 2 (P-Salo 2018)
Assume $(M, g)$ is a compact simply connected manifold with strictly convex boundary and of negative sectional curvature. Let $\Phi \in C^{\infty}\left(M, \mathbb{C}^{n \times n}\right)$ be given. If $I_{\Phi}(f)=0$, then $f=0$.

For $\Phi$ skew-hermitian, this was proved by
Guillarmou-P-Salo-UhImann (2016). For simple surfaces this was done by P-Salo-Uhlmann 2012.

## Injectivity

Theorem 2 (P-Salo 2018)
Assume $(M, g)$ is a compact simply connected manifold with strictly convex boundary and of negative sectional curvature. Let $\phi \in C^{\infty}\left(M, \mathbb{C}^{n \times n}\right)$ be given. If $I_{\Phi}(f)=0$, then $f=0$.

For $\phi$ skew-hermitian, this was proved by Guillarmou-P-Salo-Uhlmann (2016). For simple surfaces this was done by P-Salo-Uhlmann 2012.

For $d \geq 3$ and $\Phi$ arbitrary this also follows from
P-Salo-Uhlmann-Zhou 2016 using the microlocal techniques from Uhlmann-Vasy 2016 ( $M$ admits a strictly convex function).

## Injectivity

Theorem 2 (P-Salo 2018)
Assume $(M, g)$ is a compact simply connected manifold with strictly convex boundary and of negative sectional curvature. Let $\phi \in C^{\infty}\left(M, \mathbb{C}^{n \times n}\right)$ be given. If $I_{\Phi}(f)=0$, then $f=0$.

For $\phi$ skew-hermitian, this was proved by Guillarmou-P-Salo-Uhlmann (2016). For simple surfaces this was done by P-Salo-Uhlmann 2012.

For $d \geq 3$ and $\Phi$ arbitrary this also follows from
P-Salo-Uhlmann-Zhou 2016 using the microlocal techniques from Uhlmann-Vasy 2016 ( $M$ admits a strictly convex function).

For $d=2$, Theorem 2 has no competitor. Open for simple surfaces and $n \geq 2$ ( $n=1$ is due to Salo-Uhlmann 2011).

## How to use the Carleman estimate

If $I_{\Phi}(f)=0$, then it is standard that there is $u \in C^{\infty}\left(S M, \mathbb{C}^{n}\right)$ such that

$$
X u+\Phi u=f \in \Omega_{0},\left.\quad u\right|_{\partial S M}=0 .
$$

## How to use the Carleman estimate

If $I_{\Phi}(f)=0$, then it is standard that there is $u \in C^{\infty}\left(S M, \mathbb{C}^{n}\right)$ such that

$$
X u+\Phi u=f \in \Omega_{0},\left.\quad u\right|_{\partial S M}=0 .
$$

Since $(\Phi u)_{l}=\Phi u_{l}$, we see using the PDE that

$$
\left\|(X u)_{l}\right\| \leq C\left\|u_{l}\right\|, \quad I \geq 1
$$

where $C=\|\Phi\|_{L^{\infty}(M)}$.

We input this information into the estimate

$$
\sum_{l=1}^{\infty} e^{2 \tau \phi_{l}}\left\|u_{l}\right\|^{2} \leq \frac{(d+4)^{2}}{\kappa \tau} \sum_{l=2}^{\infty} e^{2 \tau \phi_{l}}\left\|(X u)_{l}\right\|^{2}
$$

and we take $\tau$ sufficiently large (depending on $\|\Phi\|_{L^{\infty}(M)}$ ) to deduce that $u=u_{0} \in \Omega_{0}$.

We input this information into the estimate

$$
\sum_{l=1}^{\infty} e^{2 \tau \phi_{l}}\left\|u_{l}\right\|^{2} \leq \frac{(d+4)^{2}}{\kappa \tau} \sum_{l=2}^{\infty} e^{2 \tau \phi_{l}}\left\|(X u)_{l}\right\|^{2}
$$

and we take $\tau$ sufficiently large (depending on $\left.\|\Phi\|_{L^{\infty}(M)}\right)$ to deduce that $u=u_{0} \in \Omega_{0}$.

Since $X u_{0} \in \Omega_{1}$, using the PDE again we obtain $f=0$ as desired.

## Scattering data

- The weight $U$ produces scattering data.


## Scattering data

- The weight $U$ produces scattering data.
- This is the map $C_{\Phi}: \partial_{+}(S M) \rightarrow G L(n, \mathbb{C})$ obtained by setting $C_{\phi}(x, v)=U(\tau)$.


## Scattering data

- The weight $U$ produces scattering data.
- This is the map $C_{\Phi}: \partial_{+}(S M) \rightarrow G L(n, \mathbb{C})$ obtained by setting $C_{\Phi}(x, v)=U(\tau)$.
- If $\phi$ is skew-hermitian, $U$ (and hence $C_{\Phi}$ ) takes values in the unitary group $U(n)$.

Problem. Does $C_{\Phi}$ determine $\Phi$ ?

Problem. Does $C_{\Phi}$ determine $\Phi$ ?
The map $\Phi \mapsto C_{\Phi}$ is sometimes called the non-abelian $X$-ray transform of $\Phi$. This map is non-linear!

For $n=1$, we can write

$$
C_{\Phi}(x, v)=\exp \left(\int_{0}^{\tau(x, v)} \Phi\left(\gamma_{x, v}(t)\right) d t\right)
$$

and knowing $C_{\Phi}$ is the same as knowing the standard X -ray transform of the function $\phi$ :

$$
I(\Phi):=\int_{0}^{\tau(x, v)} \Phi\left(\gamma_{x, v}(t)\right) d t
$$

For $n=1$, we can write

$$
C_{\Phi}(x, v)=\exp \left(\int_{0}^{\tau(x, v)} \Phi\left(\gamma_{x, v}(t)\right) d t\right)
$$

and knowing $C_{\Phi}$ is the same as knowing the standard X -ray transform of the function $\phi$ :

$$
I(\Phi):=\int_{0}^{\tau(x, v)} \Phi\left(\gamma_{x, v}(t)\right) d t
$$

But for $n \geq 2$ we can no longer do this and the problem becomes harder.

For $n=1$, we can write

$$
C_{\Phi}(x, v)=\exp \left(\int_{0}^{\tau(x, v)} \Phi\left(\gamma_{x, v}(t)\right) d t\right)
$$

and knowing $C_{\Phi}$ is the same as knowing the standard X -ray transform of the function $\Phi$ :

$$
I(\Phi):=\int_{0}^{\tau(x, v)} \Phi\left(\gamma_{x, v}(t)\right) d t
$$

But for $n \geq 2$ we can no longer do this and the problem becomes harder.

Early work on this problem by Vertgeim (1992), R. Novikov (2002) and G. Eskin (2004).

## Relation between linear and non-linear

Pseudo-linearization identity (cf. Stefanov-UhImann 1998 for lens rigidity) :

$$
C_{\Phi}^{-1} C_{\Psi}=I d+l_{\Theta(\Phi, \Psi)}(\Psi-\Phi)
$$

where $l_{\Theta(\Phi, \Psi)}$ is an attenuated X -ray transform with matrix attenuation $\Theta(\Phi, \Psi)$, an endomorphism on $\mathbb{C}^{n \times n}$ with pointwise action

$$
\Theta(\Phi, \Psi) \cdot U=\Phi U-U \Psi, \quad U \in \mathbb{C}^{n \times n} .
$$

## Relation between linear and non-linear

Pseudo-linearization identity (cf. Stefanov-UhImann 1998 for lens rigidity) :

$$
C_{\Phi}^{-1} C_{\Psi}=I d+l_{\Theta(\Phi, \Psi)}(\Psi-\Phi)
$$

where $l_{\Theta(\Phi, \Psi)}$ is an attenuated X -ray transform with matrix attenuation $\Theta(\Phi, \Psi)$, an endomorphism on $\mathbb{C}^{n \times n}$ with pointwise action

$$
\Theta(\Phi, \Psi) \cdot U=\Phi U-U \Psi, \quad U \in \mathbb{C}^{n \times n} .
$$

Hence the non-linear problem is solved once we solved the linear one!

## Ideas for the Carleman estimate

If $u \in C^{\infty}(S M)$, there is a splitting (induced by Sasaki metric)

$$
\nabla S M u=\underbrace{(X u) X+\stackrel{\mathrm{h}}{\nabla} u}_{x-\text { derivatives }}+\underbrace{\nabla u}_{v-\text { derivatives }} .
$$

## Ideas for the Carleman estimate

If $u \in C^{\infty}(S M)$, there is a splitting (induced by Sasaki metric)

$$
\nabla_{S M} u=\underbrace{(X u) X+\nabla^{\mathrm{h}} u}_{\mathrm{x}-\text { derivatives }}+\underbrace{\nabla \mathrm{v} u}_{\mathrm{v}-\text { derivatives }} .
$$

The basic energy identity for $P:=\stackrel{\mathrm{v}}{\nabla} X$ (the Pestov identity) reads

$$
\|P u\|^{2}=\left(\left(-X^{2}-R\right) \stackrel{\mathrm{v}}{\nabla} u, \stackrel{\mathrm{v}}{\nabla} u\right)+(d-1)\|X u\|^{2}
$$

where $R$ is the Riemann curvature tensor of $(M, g)$.

- Spherical harmonics expansion in $v \in S_{x} M$

$$
u(x, v)=\sum_{l=0}^{\infty} u_{l}(x, v) .
$$

- Spherical harmonics expansion in $v \in S_{x} M$

$$
u(x, v)=\sum_{l=0}^{\infty} u_{l}(x, v)
$$

- Pestov energy identity for Pu localizes in frequency.
- Spherical harmonics expansion in $v \in S_{x} M$

$$
u(x, v)=\sum_{l=0}^{\infty} u_{l}(x, v)
$$

- Pestov energy identity for Pu localizes in frequency.
- Multiply frequency localized estimates by suitable weights.
- Spherical harmonics expansion in $v \in S_{x} M$

$$
u(x, v)=\sum_{l=0}^{\infty} u_{l}(x, v)
$$

- Pestov energy identity for Pu localizes in frequency.
- Multiply frequency localized estimates by suitable weights.
- Add up the weighted estimates, use negative curvature of absorb errors.


[^0]:    ${ }^{1}$ strictly convex ball with no conjugate points

[^1]:    ${ }^{1}$ strictly convex ball with no conjugate points

