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Setting
- (M, g) is a compact Riemannian manifold with boundary ∂M.

- SM = {(x , v) ∈ TM : |v | = 1} is the unit sphere bundle with
boundary ∂(SM).

- ∂±(SM) = {(x , v) ∈ ∂(SM) : ±〈v , ν〉 ≤ 0}, where ν is the
the outer unit normal vector.

- We will assume ∂M is strictly convex (positive definite second
fundamental form).
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We let τ(x , v) be the first time when a geodesic starting at (x , v)
leaves M.

Definition. We say (M, g) is non-trapping if τ(x , v) <∞ for all
(x , v) ∈ SM.

By Morse theory a non-trapping manifold with strictly convex
boundary is contractible (otherwise it would contain a closed
geodesic).
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- Given f ∈ C (M,R) define for (x , v) ∈ ∂+SM

If (x , v) :=

∫ τ(x ,v)

0
f (γx ,v (t)) dt

where γx ,v is the unique geodesic determined by (x , v).



Different methodologies for determining f from If :

1. Explicit inversion formulas in symmetric geometries (e.g.
homogeneous spaces).

2. Microlocal analysis : interpret I as a Fourier integral operator,
or I ∗I as a pseudodifferential operator. Recovery of
singularities, invertibility for generic simple1 metrics
(Stefanov-Uhlmann 2005) or locally for dim(M) ≥ 3
(Uhlmann-Vasy 2016).

3. Energy methods for transport PDE (Mukhometov 1977,
Sharafutdinov,. . . , P-Salo-Uhlmann 2013). Pestov identity.

1strictly convex ball with no conjugate points
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Let ϕt denote the geodesic flow of (M, g) and X the geodesic
vector field on SM, so that X acts on smooth functions on SM by

Xu(x , v) =
∂

∂t
u(ϕt(x , v))

∣∣∣
t=0

.
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If (M, g) is a strictly convex domain in R2 with the usual Euclidean
metric we have

X = v · ∇x = e iθ∂ + e−iθ∂̄

= cos θ
∂

∂x1
+ sin θ

∂

∂x2

where θ is the angle v makes with the vector e1 = (1, 0).



Vertical Fourier Analysis

Using the vertical Laplacian ∆ on each fibre Sx of SM we get a
decomposition

L2(SM) =
⊕
m≥0

Hm(SM).

Let Ωm := Hm(SM) ∩ C∞. A function u belongs to Ωm iff
∆u = m(m + d − 2)u where d = dimM.

The operator X : C∞(SM)→ C∞(SM) admits a nice splitting
X = X+ + X−, where X± : Ωm → Ωm±1.
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The Carleman estimate

Theorem 1 (P-Salo 2018)
Let (M, g) be compact with sectional curvature ≤ −κ where
κ > 0. Let also φl = log(l). For any τ ≥ 1 and m ≥ 1, one has

∞∑
l=m

e2τφl‖ul‖2 ≤
(d + 4)2

κτ

∞∑
l=m+1

e2τφl‖(Xu)l‖2

whenever u ∈ C∞(SM) (with u|∂(SM) = 0 in the boundary case).

Carleman weights: purely on the frequency side.
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Tensor tomography follows immediately from this.

Consider the transport equation

Xu = f in SM, u|∂(SM) = 0,

where f has finite degree m (i.e. fl = 0 for l ≥ m + 1).

The estimate implies directly that ul = 0 for l ≥ m (u has finite
degree m − 1).

The case m = 2 is at the heart of the proof that closed negatively
curved manifolds are spectrally rigid (Guillemin-Kazhdan 1980,
Croke-Sharafutdinov 1998).
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Attenuated X-ray

Let Φ : M → Cn×n be given (matrix attenuation). For
f ∈ C (M,Cn) and (x , v) ∈ ∂+SM define

IΦ(f )(x , v) :=

∫ τ(x ,v)

0
U(t)f (γx ,v (t)) dt,

where U solves

U̇ − UΦ(γx ,v (t)) = 0, U(0) = Id.

When n = 1, and (M, g) a domain in R2, this reduces to the
classical attenuated X-ray transform.
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Injectivity

Theorem 2 (P-Salo 2018)
Assume (M, g) is a compact simply connected manifold with
strictly convex boundary and of negative sectional curvature. Let
Φ ∈ C∞(M,Cn×n) be given. If IΦ(f ) = 0, then f = 0.

For Φ skew-hermitian, this was proved by
Guillarmou-P-Salo-Uhlmann (2016). For simple surfaces this was
done by P-Salo-Uhlmann 2012.

For d ≥ 3 and Φ arbitrary this also follows from
P-Salo-Uhlmann-Zhou 2016 using the microlocal techniques from
Uhlmann-Vasy 2016 (M admits a strictly convex function).

For d = 2, Theorem 2 has no competitor. Open for simple surfaces
and n ≥ 2 (n = 1 is due to Salo-Uhlmann 2011).
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How to use the Carleman estimate

If IΦ(f ) = 0, then it is standard that there is u ∈ C∞(SM,Cn)
such that

Xu + Φu = f ∈ Ω0, u|∂SM = 0.

Since (Φu)l = Φul , we see using the PDE that

‖(Xu)l‖ ≤ C‖ul‖, l ≥ 1,

where C = ‖Φ‖L∞(M).
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∞∑
l=1

e2τφl‖ul‖2 ≤
(d + 4)2

κτ

∞∑
l=2

e2τφl‖(Xu)l‖2

and we take τ sufficiently large (depending on ‖Φ‖L∞(M)) to
deduce that u = u0 ∈ Ω0.

Since Xu0 ∈ Ω1, using the PDE again we obtain f = 0 as desired.
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Scattering data

- The weight U produces scattering data.

- This is the map CΦ : ∂+(SM)→ GL(n,C) obtained by setting
CΦ(x , v) = U(τ).

- If Φ is skew-hermitian, U (and hence CΦ) takes values in the
unitary group U(n).
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For n = 1, we can write

CΦ(x , v) = exp

(∫ τ(x ,v)

0
Φ(γx ,v (t)) dt

)

and knowing CΦ is the same as knowing the standard X-ray
transform of the function Φ:

I (Φ) :=

∫ τ(x ,v)

0
Φ(γx ,v (t)) dt.

But for n ≥ 2 we can no longer do this and the problem becomes
harder.

Early work on this problem by Vertgeim (1992), R. Novikov (2002)
and G. Eskin (2004).
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Relation between linear and non-linear

Pseudo-linearization identity (cf. Stefanov-Uhlmann 1998 for lens
rigidity) :

C−1
Φ CΨ = Id + IΘ(Φ,Ψ)(Ψ− Φ),

where IΘ(Φ,Ψ) is an attenuated X-ray transform with matrix
attenuation Θ(Φ,Ψ), an endomorphism on Cn×n with pointwise
action

Θ(Φ,Ψ) · U = ΦU − UΨ, U ∈ Cn×n.

Hence the non-linear problem is solved once we solved the linear
one!
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Ideas for the Carleman estimate

If u ∈ C∞(SM), there is a splitting (induced by Sasaki metric)

∇SMu = (Xu)X +
h
∇u︸ ︷︷ ︸

x−derivatives

+
v
∇u︸︷︷︸

v−derivatives

.

The basic energy identity for P :=
v
∇X (the Pestov identity) reads

‖Pu‖2 = ((−X 2 − R)
v
∇u,

v
∇u) + (d − 1)‖Xu‖2

where R is the Riemann curvature tensor of (M, g).



Ideas for the Carleman estimate

If u ∈ C∞(SM), there is a splitting (induced by Sasaki metric)

∇SMu = (Xu)X +
h
∇u︸ ︷︷ ︸

x−derivatives

+
v
∇u︸︷︷︸

v−derivatives

.

The basic energy identity for P :=
v
∇X (the Pestov identity) reads

‖Pu‖2 = ((−X 2 − R)
v
∇u,

v
∇u) + (d − 1)‖Xu‖2

where R is the Riemann curvature tensor of (M, g).



- Spherical harmonics expansion in v ∈ SxM

u(x , v) =
∞∑
l=0

ul(x , v).

- Pestov energy identity for Pu localizes in frequency.
- Multiply frequency localized estimates by suitable weights.
- Add up the weighted estimates, use negative curvature of
absorb errors.



- Spherical harmonics expansion in v ∈ SxM

u(x , v) =
∞∑
l=0

ul(x , v).

- Pestov energy identity for Pu localizes in frequency.

- Multiply frequency localized estimates by suitable weights.
- Add up the weighted estimates, use negative curvature of
absorb errors.



- Spherical harmonics expansion in v ∈ SxM

u(x , v) =
∞∑
l=0

ul(x , v).

- Pestov energy identity for Pu localizes in frequency.
- Multiply frequency localized estimates by suitable weights.

- Add up the weighted estimates, use negative curvature of
absorb errors.



- Spherical harmonics expansion in v ∈ SxM

u(x , v) =
∞∑
l=0

ul(x , v).

- Pestov energy identity for Pu localizes in frequency.
- Multiply frequency localized estimates by suitable weights.
- Add up the weighted estimates, use negative curvature of
absorb errors.


