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Setting

- (M, g) is a compact Riemannian manifold with boundary oM.
- SM = {(x,v) € TM : |v| = 1} is the unit sphere bundle with
boundary 9(SM).

0+(SM) = {(x,v) € O(SM) : £(v,v) <0}, where v is the
the outer unit normal vector.

- We will assume OM is strictly convex (positive definite second
fundamental form).
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We let 7(x, v) be the first time when a geodesic starting at (x, v)
leaves M.

Definition. We say (M, g) is non-trapping if 7(x, v) < oo for all
(x,v) € SM.



We let 7(x, v) be the first time when a geodesic starting at (x, v)
leaves M.

Definition. We say (M, g) is non-trapping if 7(x, v) < oo for all
(x,v) € SM.

By Morse theory a non-trapping manifold with strictly convex
boundary is contractible (otherwise it would contain a closed
geodesic).



- Given f € C(M,R) define for (x,v) € 04 SM

7(x,v)
oo /0 F(pen(8)) dt

where 7y, , is the unique geodesic determined by (x, v).
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1. in symmetric geometries (e.g.
homogeneous spaces).

2, . interpret | as a Fourier integral operator,
or I*| as a pseudodifferential operator. Recovery of
singularities, invertibility for generic simple! metrics

or locally for dim(M) > 3

3. for transport PDE

Lstrictly convex ball with no conjugate points



Let ¢ denote the geodesic flow of (M, g) and X the geodesic
vector field on SM, so that X acts on smooth functions on SM by

Xu(x,v) = aatu(tpt(x, 7)) s



Let ¢ denote the geodesic flow of (M, g) and X the geodesic
vector field on SM, so that X acts on smooth functions on SM by

Xu(x,v) = suli(xo V)

15) t=0

(M,3)




If (M, g) is a strictly convex domain in R? with the usual Euclidean
metric we have

X=v-V,=e%9+e %5
= cos@aa + sin 988

X1 X2

where 0 is the angle v makes with the vector 1 = (1,0).



Using the vertical Laplacian A on each fibre S, of SM we get a
decomposition

L2(SM) = @D Hm(SM).

m>0



Using the vertical Laplacian A on each fibre S, of SM we get a
decomposition

L2(SM) = @D Hm(SM).

m>0

Let Qp, := Hm(SM) N C*°. A function u belongs to Qp, iff
Au=m(m+ d—2)u where d = dim M.



Using the vertical Laplacian A on each fibre S, of SM we get a
decomposition

L2(SM) = @D Hm(SM).

m>0

Let Qp, := Hm(SM) N C*°. A function u belongs to Qp, iff
Au=m(m+ d—2)u where d = dim M.

The operator X : C°(SM) — C*°(SM) admits a nice splitting
X =Xy + X_, where Xy : Qp — Q1.
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Let (M, g) be compact with sectional curvature < —k where
k> 0. Let also ¢; = log(l). For any T > 1 and m > 1, one has

e}

T d+4 T
Zemuuuz @D’ 3~ eeronpoxun?

I=m+1
whenever u € C>(SM) (with u|yspy = 0 in the boundary case).

Carleman weights: purely on the frequency side.
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Tensor tomography follows immediately from this.
Consider the transport equation

Xu=fin SM, ulpismy = 0,
where f has finite degree m (i.e. f =0 for | > m+ 1).

The estimate implies directly that u; = 0 for / > m (u has finite
degree m — 1).

The case m = 2 is at the heart of the proof that closed negatively
curved manifolds are spectrally rigid (Guillemin-Kazhdan 1980,
Croke-Sharafutdinov 1998).



Let & : M — C™" be given (matrix attenuation). For
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Let & : M — C™" be given (matrix attenuation). For
f e C(M,C") and (x, v) € 0+ SM define

7(x,v)
()= [ UOF ) de
where U solves
U— Ud(yxn(t)) =0, U(0)=Id.

When n =1, and (M, g) a domain in R?, this reduces to the
classical attenuated X-ray transform.
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Theorem 2 (P-Salo 2018)

Assume (M, g) is a compact simply connected manifold with

strictly convex boundary and of negative sectional curvature. Let
® € C*(M,C"™") be given. If Io(f) =0, then f = 0.

For ® skew-hermitian, this was proved by
Guillarmou-P-Salo-Uhlmann (2016). For simple surfaces this was
done by P-Salo-Uhlmann 2012.

For d >3 and ® this also follows from
P-Salo-Uhlmann-Zhou 2016 using the microlocal techniques from
Uhlmann-Vasy 2016 (M admits a strictly convex function).

For d = 2, Theorem 2 has no competitor. for simple surfaces
and n > 2 (n =1 is due to Salo-Uhlmann 2011).
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If Io(f) =0, then it is standard that there is u € C*°(SM,C")
such that

Xu+du=1Ffe€Qy ulsgsm=0.
Since (®u); = duy, we see using the PDE that
[(Xu)ll < Cllufll, 121,

where C = Hq)HLoo(M)



We input this information into the estimate
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and we take 7 sufficiently large (depending on [|®[[ o (py)) to
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We input this information into the estimate

. (d+4> -
Ze2 |y < S (X2

1=2

and we take 7 sufficiently large (depending on [|®[[ o (py)) to
deduce that u = ug € Q.

Since Xup € Q1, using the PDE again we obtain f = 0 as desired.
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- The weight U produces scattering data.

- This is the map Co : 0+(SM) — GL(n,C) obtained by setting
Co(x,v) = U(T).

- If & is skew-hermitian, U (and hence Co) takes values in the
unitary group U(n).






Problem. Does Cy determine ®?

The map ® — Cg is sometimes called the
. This map is non-linear!
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For n =1, we can write

7(x,Vv)
R = S ( /0 (e (1)) dt)

and knowing Cg is the same as knowing the standard X-ray
transform of the function ®:

But for n > 2 we can no longer do this and the problem becomes
harder.

Early work on this problem by Vertgeim (1992), R. Novikov (2002)
and G. Eskin (2004).



Pseudo-linearization identity (cf. Stefanov-Uhlmann 1998 for lens
rigidity) :
Co ' Cy = ld + g u)(V — @),

where lg(o,v) is an attenuated X-ray transform with matrix
attenuation ©(®, V), an endomorphism on C"*" with pointwise
action

O, V) - U=dU— UV, UeC™



Pseudo-linearization identity (cf. Stefanov-Uhlmann 1998 for lens
rigidity) :
Co ' Cy = ld + g u)(V — @),

where lg(o,v) is an attenuated X-ray transform with matrix
attenuation ©(®, V), an endomorphism on C"*" with pointwise
action

O, V) - U=dU— UV, UeC™

Hence the non-linear problem is solved once we solved the linear
onel
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If ue C>®(SM), there is a splitting (induced by Sasaki metric)

h v
Vsyu=(Xu)X +Vu+  Vu

s—clatEiives v—derivatives

The basic energy identity for P := %X (the ) reads

I1Pul2 = (=X = R)Vu, Vi) + (d — 1)||Xu]]

where R is the Riemann curvature tensor of (M, g).
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Spherical harmonics expansion in v € S, M

(e.9]
u(x,v) = Z u(x, v).
1=0
Pestov energy identity for Pu localizes in frequency.
Multiply frequency localized estimates by suitable weights.

Add up the weighted estimates, use negative curvature of
absorb errors.



