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This talk is in part motivated by some conversations with

F. A. Grünbaum (Berkeley) and L. Velázquez (Zaragoza), regarding

the recurrence problem in (closed and open) quantum settings. At

some point we began discussing the mean hitting time problem.



We are motivated by certain elements coming from the classical

theory of Markov chains, noting that coined unitary quantum walks

are not a “perfect fit” into such context.

Moreover, we seldom

have that a simple adaptation of a classical proof gives us a result

in quantum dynamics.

In this talk I discuss some points in the open quantum case, and

something else.
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1 Open quantum walks

2 The mean hitting time formula (classical and quantum)

3 Generalized inverses and another formula

4 Open question: the unitary case



Open quantum walks

Let

Dn;k = {ρ = [ρ1 · · · ρn]T : ρi ∈ Mk(C), ρi ≥ 0,
n∑

i=1

Tr(ρi ) = 1}

where ρi ≥ 0 means ρi is positive semidefinite. We say n the

number of vertices and k the internal degree of freedom. Let

Φij(·) = Bij · B†ij , Bij ∈ Mk(C), i = 1, . . . , n

Φi (ρ) :=
n∑

j=1

Φij(ρj), ρ ∈ Dn;k
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Φij(·) = Bij · B†ij , Bij ∈ Mk(C), Φi (ρ) :=
n∑

j=1

Φij(ρj), ρ ∈ Dn;k

and let

T (ρ) =


Φ11 · · · Φ1n

Φ21 · · · Φ2n

...
. . .

...

Φn1 · · · Φnn

 ·

ρ1

ρ2

...

ρn

 :=


Φ1(ρ)

Φ2(ρ)
...

Φn(ρ)

 , ρ ∈ Dn;k

We assume trace preservation, that is,

Tr
( n∑

i=1

Φi (ρ)
)

= Tr(ρ), j = 1, . . . , n, ρ ∈ Dn;k

We say T is an open quantum walk (OQW) on n vertices and

internal degree of freedom k .
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OQWs were defined by [S. Attal et al. JSP (2011)] and are a

particular case of the so-called quantum Markov chains [S. Gudder,

JMP (2008)]. This provides a versatile formalism for studying

quantum dynamics on graphs.

Question: given a quantum particle, can we talk about the

time of first visit to some vertex?
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1. When we refer to the position of the particle, it is implicit that

we are considering a monitoring procedure:

we inspect whether

the particle has been found at some chosen vertex. If the answer is

positive, the experiment is over. Otherwise the particle is in the

subspace given by the complement of the vertex inspected, the

walk continues and we repeat the process. Several authors discuss

this reasoning in the setting of unitary quantum walks. In the more

general case of linear contractions on a Banach space this is

discussed in [Grünbaum, Velázquez, Adv. Math. (2017)].
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2. In this talk we only consider the statistics of iterative quantum

trajectories, meaning that we are summing square moduli of

amplitudes (traces) associated with individual paths.

This is in

contrast to the case of unitary quantum random walks, for which

one usually calculates probabilities via the square modulus of a

sum of amplitudes.
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We define the following quantities for an OQW starting at state ρ:

πr (ρ→ j) = probability of reaching vertex j for the first time in r steps.

π(ρ→ j) = probability of ever reaching vertex j .

τ(ρ→ j) = expected time of first visit to vertex j .

Let Pj be the projection matrix on vertex j and let Qj = I− Pj be

its complement. This projection is such that if ρ is an OQW

density then

Pj

(∑
i

ρi ⊗ |i〉〈i |
)

= ρj ⊗ |j〉〈j |

So

πr (ρ→ j) = Tr(PjT (QjT )r−1ρ)
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We introduce the following matrix-valued generating functions,

Gij(z) =
∑
n≥1

PiT (QiT )n−1Pjz
n−1 = PiT (I − zQiT )−1Pj , z ∈ D

where D = {z ∈ C : |z | < 1}.

Then we can write

π(ρj → i) = Tr(ĥijρj), ĥij :=

 limx↑1 Gij(x) if i 6= j

I if i = j
(1)

τ(ρi → i) = Tr(r̂iρi ), r̂i := lim
x↑1

d

dx
xGii (x) (2)

τ(ρj → i) = Tr(k̂ijρj), k̂ij := lim
x↑1

d

dx
xGij(x), if i 6= j (3)
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Finally, define the matrices of operators

H =


ĥ11 · · · ĥ1n

ĥ21 · · · ĥ2n

...
. . .

...

ĥn1 · · · ĥnn

 , K =


k̂11 · · · k̂1n

k̂21 · · · k̂2n

...
. . .

...

k̂n1 · · · k̂nn

 , D =


r̂1 0 · · · 0

0 r̂2 0
...

...
...

. . .
...

0 0 · · · r̂n


These will play a central role in the description of hitting time

formulae.



Mean hitting time formula

The classical setting: given a graph and transition probabilities

between its vertices, what is the mean time for a walker to reach

vertex j for the first time, given that it has started at vertex i? If

Tj is the time of first visit to vertex j , and Pi (Tj = t) the

probability that Tj = t,

Ei (Tj) =
∑
t

tPi (Tj = t)

Can we avoid using the definition in order to calculate Ei (Tj)?
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Ei (Tj) =
∑
t

tPi (Tj = t)

We can use the fundamental matrix associated with a finite ergodic

(irreducible and aperiodic) Markov chain with stochastic matrix P,

Z = (I − P + Ω)−1, Ω = lim
m→∞

Pm

Then we have that

Ei (Tj) =
Zjj − Zij

πj

where π = (πi ) denotes the unique fixed probability associated

with the walk. This is the mean hitting time formula.
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Z = (I − P + Ω)−1, Ω = lim
n→∞

Pn, Ei (Tj) =
Zjj − Zij

πj

In the classical setting the origin of Z comes from the notion of a

potential matrix

W =
∞∑
n=0

T n

so each entry of W counts the mean number of visits to a

particular vertex given some initial position, noting that we only

consider pairs of vertices (i , j) for which i , j are transient (in the

other situations we obtain null or infinite entries).
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Ei (Tj) =
Zjj − Zij

πj
, Z = (I − P + Ω)−1

On the other hand, it turns out that in the irreducible case we can

make a proper modification of W , namely replace T n with T n−Ω.

We ask: is there a quantum version of such hitting time

formula?
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Ei (Tj) =
Zjj − Zij

πj
, Z = (I − P + Ω)−1

First mean hitting time formula. Let T be an ergodic OQW

acting on a finite graph with n ≥ 2 vertices and let D denote the

block diagonal matrix with block diagonal entries given by the

operators k̂ii , i = 1, . . . , n.

a) The mean hitting time for the walk to reach vertex i , beginning

at vertex j with initial density ρj concentrated in vertex j is given

by

Tr(k̂ijρj) = Tr(k̂ii (Ẑii − Ẑij)ρj)
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a) Tr(k̂ijρj) = Tr(k̂ii (Ẑii − Ẑij)ρj)

b) (Random Target Lemma). If D is invertible and there is c scalar

such that Tr(k̂iiγ) = cTr(γ), all i vertex, γ ∈ Mn(C), then for

every density ρ,

Tr[(D−1K )ijρ] = Tr[(Ẑii − Ẑij)ρ]

As a consequence,

t�(ρ) :=
∑
i

Tr[(D−1K )ijρ] =
[∑

i

Tr(Ẑiiρ)
]
− 1

In particular, such quantity does not depend on j .



Tr(k̂ijρj) = Tr(k̂ii (Ẑii − Ẑij)ρj)

Informally, the meaning of the theorem is: the mean hitting time

from j to i is an information which can be extracted from the mean

return time to i if we know the fundamental matrix of the walk.

An element of the proof: study the iterates of T (which

converge to Ω in the ergodic case) in terms of matrix

representations.
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The iterates of an ergodic chain.

A brief analysis shows that

the limit OQW is of the form

T̂m → Ω̂ = |π〉〈eI nk |, |π〉, |eI nk 〉 :=


vec(Ik)

vec(Ik)
...

vec(Ik)

 ∈ Cnk2

as m→∞, where π is the unique stationary state for T and

Ik ∈ Mk(C) is the order k identity matrix. For instance, if

n = k = 2, write

π = π1⊗|1〉〈1|+π2⊗|2〉〈2| =

π11 π12

π21 π22

⊗|1〉〈1|+
π33 π34

π43 π44

⊗|2〉〈2|
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Another ingredient of the proof: conditioning on the first step.

For a classical walk starting at vertex j , consider the mean time of

first visit to vertex i , i 6= j : take the mean number of steps

required given the outcome of the first step, multiply by the

probability that this outcome occurs, and add. If the first step is to

i , the mean number of steps required equals 1 and if it is to some

other vertex, say l , the mean number of steps required is kil plus 1

for the step already taken,

kij = pij +
∑
l 6=i

(kil + 1)plj = 1 +
∑
l 6=i

kilplj , ri = 1 +
∑
l

kilpli

where ri is the mean time of first return to i .
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For instance, in the case n = 3, we have
r1 k12 k13

k21 r2 k23

k31 k32 r3

 =


1 1 1

1 1 1

1 1 1

+


0 k12 k13

k21 0 k23

k31 k32 0



p11 p12 p13

p21 p22 p23

p31 p32 p33



=⇒ K = D + (K −D) = E + (K −D)P =⇒ E = K − (K −D)P

where E denotes the matrix with all entries equal to 1 and D

denotes the diagonal matrix with nonzero entries equal to ri .
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E = K − (K − D)P

Now we turn to the case of OQWs. For ρj density concentrated on

vertex j we obtain in a similar way as in the classical case that

kij(ρj) = 1 +
∑
l 6=i

kil

( BljρjB
†
lj

Tr(BljρjB
†
lj)

)
Tr(BljρjB

†
lj)

where traces appear on the right with the purpose of making

explicit the probabilistic reasoning. Then

kij(ρj) = 1 +
∑
l 6=i

kil(BljρjB
†
lj) =⇒ kij(ρj)−

∑
l 6=i

kil(BljρjB
†
lj) = 1
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kij(ρj)−
∑
l 6=i

kil(BljρjB
†
lj) = 1

We want to “replace” the stochastic matrix P with the CP map T

describing the OQW, so by considering operator K , define

L := K − (K − D)T

This seems to define an open quantum version of the equation

E = K − (K − D)P obtained previously. In the classical case we

know that L = E . However, in the OQW case, L (its matrix

representation) does not have all entries equal to 1 in general.
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L := K − (K − D)T

Nevertheless, we have the crucial fact that for every density ρj

concentrated on a vertex j ,

Tr(L̂ijρj) = 1, ∀i

where L̂ij is the operator corresponding to the (i , j)-th block matrix

representation appearing in L̂.

This will be essential to our discussion on generalized inverses as

well.
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Usually one can obtain several generalized inverses, but by

imposing additional conditions one may have uniqueness.
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Theorem. Let T be an irreducible OQW on a finite graph with

stationary density π. Let |t〉, |u〉 ∈ Cn be such that 〈eI |t〉 6= 0 and

〈u|π〉 6= 0. Then I − T + |t〉〈u| is invertible and its inverse is a

g -inverse of I − T .

Corollary. Under the above conditions any g -inverse G0 of I − T

can be written in one of the following forms:

a) G0 = (I − T + |t〉〈u|)−1 + H
|t〉〈eI |
〈eI |t〉

+
|π〉〈u|
〈u|π〉

H − |π〉〈u|H|t〉〈eI |
〈u|π〉〈eI |t〉

b) G0 = (I − T + |t〉〈u|)−1 +
|π〉〈u|
〈u|π〉

F + G
|t〉〈eI |
〈eI |t〉

c) G0 = (I − T + |t〉〈u|)−1 + |π〉〈f |+ |g〉〈eI |

where f , g are arbitrary vectors, F ,G ,H are arbitrary matrices.
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G0 = (I − T + |t〉〈u|)−1 + |π〉〈f |+ |g〉〈eI |

Set 〈f |, |g〉 to be the null vector, |t〉 = |π〉 and 〈u| = 〈eI |, so we

immediately obtain:

Corollary. Let T be an irreducible OQW on a finite graph with

stationary density π and let Ω = |π〉〈eI |. Then

Z = (I − T + Ω)−1

is a generalized inverse of I − T (fundamental matrix of T ).
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Going back to the question of obtaining hitting time formulae,

what can we do with an arbitrary generalized inverse?

Inspired by a

very interesting result [J. J. Hunter, Lin. Alg. Appl. 45:157-198

(1982)], we are able to prove the following:
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Hunter’s formula for OQWs.

Let T be an ergodic OQW on a

finite graph with n ≥ 2 vertices and internal degree k ≥ 2, let π be

its stationary density and Ω its limit map. Let K = (k̂ij) denote

the matrix of mean hitting time operators to vertices i = 1, . . . , n,

D = Kd = diag(k̂11, . . . , k̂nn), G be any g -inverse of I − T and let

E denote the block matrix for which each block equals the identity

of order k2.

a) The mean hitting time for the walk to reach vertex i , beginning

at vertex j with initial density ρj is given by

Tr(k̂ijρj) = Tr
([

D
(

ΩG − (ΩG )dE + I − G + GdE
)]

ij
ρj

)
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b) By setting G = (I − T + |u〉〈eI |)−1 + |f 〉〈eI |, with |f 〉 arbitrary

and |u〉 such that 〈u|π〉 6= 0, we have that for every vertex i and

initial density ρj on vertex j ,

Tr(k̂ijρj) = Tr
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D
(
I − G + GdE

)]
ij
ρj

)
.

Informally, the meaning of the theorem is: the mean time of first

visit from j to i is an information which can be extracted from the

mean return time to vertices if we have knowledge of any

generalized inverse of I − T .
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Example. Let

B11 = B22 =

a √
1− a2

0 0

 , B12 = B21 =

 0 0

−
√

1− a2 a

 , 0 < a < 1

and for b :=
√

1− a2, define the OQW on 2 vertices

T̂ :=

[B11] [B12]

[B21] [B22]

 =



a2 ab ab b2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 b2 −ab −ab a2

0 0 0 0 a2 ab ab b2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b2 −ab −ab a2 0 0 0 0





B11 = B22 =

a √
1− a2

0 0

 , B12 = B21 =

 0 0

−
√

1− a2 a


0 < a < 1, b =

√
1− a2

It is a simple matter to show that T is ergodic and unital. Also

Ω̂ = |π〉〈eI | =

Ω11 Ω11

Ω11 Ω11

 , Ω11 =
1

4


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1





ĥ11 = ĥ22 =


a2 ab ab b2

0 0 0 0

0 0 0 0

b2 −ab −ab a2

 , ĥ12 = ĥ21 =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 1



k̂11 = k̂22 =


a2 ab ab b2

0 0 0 0

0 0 0 0

3b2 −3ab −3ab 3a2

 , k̂12 = k̂21 =


0 0 0 0

0 0 0 0

0 0 0 0

1
b2

a
b

a
b 2


From this we obtain that for every density and vertex the hitting

probability equals 1, as expected, since this OQW is irreducible.
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1
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ρ11 + 2ρ22 +

2a

b
Re(ρ12)
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The block matrix representation of the fundamental matrix is the

order 8 matrix

Ẑ = (Î − T̂ + Ω̂)−1 =

Ẑ11 Ẑ12

Ẑ21 Ẑ22



=



5
8b2

3a
4b

3a
4b − 4a2−3

8b2 − 4a2−1
8b2 − a

4b − a
4b − 1

8b2

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

− 1
8b2 − a

4b − a
4b − 4a2−5

8b2 − 4a2−3
8b2 − a

4b − a
4b

1
8b2

− 4a2−1
8b2 − a

4b − a
4b − 1

8b2
5

8b2
3a
4b

3a
4b − 4a2−3

8b2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

− 4a2−3
8b2 − a

4b − a
4b

1
8b2 − 1

8b2 − a
4b − a

4b − 4a2−5
8b2





With such Z we have, by the MHTF,

k̂11(Ẑ11 − Ẑ12)

=


a2 ab ab b2

0 0 0 0

0 0 0 0

3b2 −3ab −3ab 3a2




1+a2

2b2
a
b

a
b

1
2

0 1 0 0

0 0 1 0

− 1
2 0 0 1

2

 =


3a2−1

2b2
a
b

a
b

1
2

0 0 0 0

0 0 0 0

3
2 0 0 3

2



Therefore for ρ = (ρij)i ,j=1,2 density on vertex 2,

vec−1[k̂11(Ẑ11 − Ẑ12)vec(ρ)] =

 3a2−1
2b2 ρ11 + ρ22

2 + 2a
b Re(ρ12) 0

0 3
2


from which we obtain Tr(k̂12ρ), as expected. Hunter’s formula is

also verified, by choosing any g -inverse.



With such Z we have, by the MHTF,
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Open question

Classical Open Quantum

MHTF I EiTj =
Zjj−Zij

πj
Tr[k̂ijρj ] = Tr[k̂ii (Ẑii − Ẑij)ρj ]

MHTF I∗ πjEiTj = Zjj − Zij Tr[(D−1K )jiρi ] = Tr[(Ẑii − Ẑij)ρi ]

MHTF II EπTj =
Zjj

πj
Tr[Kjπ] = Tr[(DZ )jjFjπ]

Hunter EiTj = [D(I − G + GdE )]ij Tr[k̂ijρj ] = Tr([D(I − G + GdE )]ijρj)

Question: is there a mean hitting time formula for the

unitary case?
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Tr[k̂ijρj ] = Tr[k̂ii (Ẑii − Ẑij)ρj ]

We may break the problem into two parts:

1. Representations. What is an appropriate matrix representation

for the unitary case? The block matrix representation works just

fine for the case of CP maps describing the statistics of quantum

trajectories (individual path counting). But: should the unitary

problem also be examined via a matrix approach, or should

something else be employed?
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Tr[k̂ijρj ] = Tr[k̂ii (Ẑii − Ẑij)ρj ]

2. Time of first visit to a vertex or a state.

Just as in the

recurrence problem for unitary walks (and OQWs as well) we can

also talk about the mean time of first visit to some pure state. The

visit to a vertex concerns, on the other hand, the hitting time to a

subspace, which on its turn leads to a convenient block matrix

structure in the proof of the theorem. What happens in the case of

hitting times to states? This seems to be related to part 1 stated

before.
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F. A. Grünbaum, L. Velázquez, A. H. Werner, R. F. Werner.

Recurrence for Discrete Time Unitary Evolutions. Comm. Math.

Phys. 320, 543-569 (2013).

which on its turn has influenced the work

C. F. L. Open quantum random walks and the mean hitting time

formula. Quant. Inf. Comp. Vol. 17, No. 1&2 (2017) 79-105.

and
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F. A. Grünbaum, L. Velázquez. A generalization of Schur

functions: applications to Nevanlinna functions, orthogonal

polynomials, random walks and unitary and open quantum walks.

Adv. Math. 326 (2018) 352-464.



A main motivation for pursuing this set of problems comes from
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Thank you!


