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Intro Geometry Results Why?

Sending waves through an object (big or small) gives a way of
determining the travel times of waves between points on the
boundary. Question: can we determine from this what is inside the
object?

In this talk we show that in anisotropic elasticity, in the particular
case of transversely isotropic media,

qSH wave travel times ⇒ the tilt of the axis of isotropy as
well as some of the elastic material parameters, and

the qP and qSV travel times conditionally ⇒ a subset of the
remaining parameters, in the sense if some of the remaining
parameters are known, the rest are determined, or if the
remaining parameters satisfy a suitable relation, they are all
determined, under certain non-degeneracy conditions.

We give a precise description of the additional issues, subject
of ongoing work, that need to be resolved for a full treatment.
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The problem addressed in this paper has one of its primary
application in seismic tomography.

In Earth’s interior, the presence of anisotropy has been widely
recognized (Silver, Romanowicz and Wenk,...), including

seismic anisotropy beneath the continents,

anisotropy in the deep interior.

The assumption of transverse isotropy with tilted symmetry axis
has played a dominant role in many studies ranging from Earth’s
sedimentary basins, continental dynamics and subduction, deep
mantle flow and inner core.
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While

the spatially varying symmetry axis of a transversely isotropic
elastic medium can be locally recovered, under certain
geometric conditions,

presently, the full recovery of elastic parameters requires some
interrelationships between them.

Such relationships may be best motivated by considering models
that effectively generate these parameters; these then provide
possible physically, mechanically or geologically based reductions of
independent parameters.
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We work in an invariant setting based on Riemannian geometry
since this enables a conceptually clearer statement.

Let us start by recalling the Riemannian result, recalling that the
boundary distance function corresponds to travel times, and it
determines the lens relation (which also encodes the direction of
geodesics as the enter/exit through the boundary) on simple
manifolds, where the geodesic exponential map is a
diffeomorphism.
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Theorem (Stefanov-Uhlmann-V., 2017)

Suppose n ≥ 3, M compact with boundary, and let g , g̃ be
Riemannian metrics.

Assume that ∂X is strictly convex with respect to both g and g̃ .

Assume also that one has a function x̃ whose level sets are
nondegenerate, strictly concave for g from the superlevel sets, and
{x̃ ≥ 0} ∩ X ⊂ ∂X .

If the lens relations of g and g̃ are the same then there exists a
diffeomorphism ψ fixing ∂X such that g = ψ∗g̃ .

Such x̃ exists e.g. if X is simply connected with non-positive
sectional curvature, or more generally if it has no focal points.
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The RHS has a degenerate level set at the origin, but is covered by
a slightly modified version of the theorem... and then the
assumption holds if X has non-negative curvature! (Paternain,
Salo, Uhlmann, Zhou, 2016).

The result is proved by localization: one only needs strict convexity
of ∂X and constructs x̃ locally.
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Back to elasticity: we have a given background metric g0, which is
typically the Euclidean metric; we denote the dual metric and the
dual metric function by G0.

In general, (linearized) anisotropic elasticity is described by a
system of partial differential operators, i.e. by a matrix of
operators: (ajk(x ,D)).

The principal symbol, which is a tensor (matrix)-valued function
on phase space (position+momentum), i.e. the cotangent bundle,
is obtained by replacing all derivatives D` by the momentum
variables ξ`: (ajk(x , ξ)).
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The principal symbol is non-scalar, i.e. is not a multiple of the
identity map/matrix.

It can be diagonalized; the eigenvalues are the speed of the various
elastic waves.

In isotropic elasticity, there are two kinds of waves, P and S waves,
with:

S waves corresponding (in spatial dimension 3) to a
multiplicity 2

and P waves a simple

eigenvalue.

In anisotropic elasticity typically the S wave eigenspace is broken
up, at least in most parts of phase space.
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In transversely isotropic elasticity there is a preferred axis, with
respect to which the principal symbol is rotationally symmetric
relative to the background metric G0 lifted to phase space.

There are three waves then:

the qP waves, which are the modified P-waves, as well as

the qSV and qSH waves, with these corresponding to the
‘breaking up’ of the S-waves. Here V is vertical, H is
horizontal, and this refers to the polarization when the
anisotropy axis is vertical, in the sense that the H waves are
polarized in the horizontal plane.

Of these, the qSH waves behave much like in isotropic elasticity in
the sense that they are given by the dual metric function of a
Riemannian metric, while the qP and qSV waves have a very
different character.
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One can parameterize transversely isotropic materials via the
material constants a11, a13, a33, a55 and a66, which are functions on
the underlying position space.

In addition, there is an axis of isotropy, which can be encoded by a
vector field, or better yet a one form ω.

The qSH ‘energy function’ (dual metric function) then depends on
a55, a66 > 0 and ω.

Using orthogonal coordinates relative to the metric g0 (with G0 the
dual metric), and aligning the axis of isotropy with the third
coordinate axis, possible at any given point, the wave speed of the
qSH waves is given by a (squared!) Riemannian dual metric

G = GqSH = a66(x)|ξ′|2+a55(x)ξ23 = a66(x)G0+(a55(x)−a66(x))ξ23 .

Isotropic case: a55 = a66 = µ (Lamé parameter).
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Recall

G = GqSH = a66(x)|ξ′|2+a55(x)ξ23 = a66(x)G0+(a55(x)−a66(x))ξ23 .

This, at that point, corresponds to a Riemannian metric

g = gqSH = a66(x)−1 |dx ′|2 + a55(x)−1 dx23

= a66(x)−1g0 + (a55(x)−1 − a66(x)−1) dx23 .

Thus, invariantly it has the form

g = αg0 + (β − α)ω ⊗ ω,

i.e. the metric is a rank one perturbation of a conformal multiple of
the background (say, Euclidean) metric, with α = a−166 , β = a−155

functions on the base manifold.

β − α could be incorporated into ω up to a sign, and g determines
the span of ω if β 6= α: the kernel of ω is well-defined (at any
point in the manifold) as the 2-dimensional subspace of the
tangent space restricted to which g is a constant multiple of g0.
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Under appropriate assumptions, e.g. locally near the strictly convex
boundary, a Riemannian metric, g , can be recovered from its
boundary distance function up to diffeomorphisms, as shown by
Stefanov, Uhlmann and V. (2017).

Thus, if we know the qSH wave travel times, then in fact we know
g above up to diffeomorphisms (which are the identity at the
boundary).

A natural question is whether this arbitrary diffeomorphism
freedom is present in our problem for the qSH wave travel times.

We show that it is not present under an additional condition.
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An important property of a one-form, such as ω, is its integrability,
or more precisely whether its kernel is an integrable hyperplane
distribution, which means that Kerω is the tangent space of a
smooth family of submanifolds, which are thus locally level sets of
a function f , so ω is a smooth multiple of df .

In this case,
g = αg0 + γ df ⊗ df .

In geological terms, this corresponds to a layered material with
layers given by the level sets of f . The integrability condition is
natural at least locally.
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Our first theorem is:

Theorem (de Hoop-Uhlmann-V.)

Consider the class of elastic problems in which Kerω = Ker df is
an integrable hyperplane distribution on a manifold with boundary
M, with ω not conormal to ∂M (so level sets of f locally intersect
∂M non-degenerately) and not orthogonal to N∗∂M relative to G0.

Then, under the convexity conditions for Riemannian determination
(up to diffeomorphisms), f , α, β are determined by the qSH travel
times and the labelling of the level sets of f at the boundary.

Thus, there is no diffeomorphism freedom in this problem, unlike
for the boundary rigidity problem in Riemannian geometry.
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qSH-wave speed does not depend on a11, a13, a33 ⇒ we need to
consider qSV and qP waves.

At a point with g0-orthogonal coordinates there and the isotropy
axis aligned with the x̃3 axis, the Hamiltonians for the other waves
take the form (±: qP vs. qSV, and G twice the Hamiltonians)

GqP/qSV =(a11 + a55)|ξ̃′|2 + (a33 + a55)ξ̃23

±
√(

(a11 − a55)|ξ̃′|2 + (a33 − a55)ξ̃23
)2 − 4E 2|ξ̃′|2ξ̃23 ,

where
E 2 = (a11 − a55)(a33 − a55)− (a13 + a55)2.

(We assume max{a55, a66} < min{a11, a33}.) In isotropic elasticity,
a11 = a33 = λ+ 2µ in terms of the Lamé parameters, while
a55 = µ, and E = 0.

In another coordinate systems, xj , and corresponding dual variables
ξj , the sound speed is given by the corresponding change of
variables.
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GqP/qSV =(a11 + a55)|ξ̃′|2 + (a33 + a55)ξ̃23

±
√(

(a11 − a55)|ξ̃′|2 + (a33 − a55)ξ̃23
)2 − 4E 2|ξ̃′|2ξ̃23 ,

where
E 2 = (a11 − a55)(a33 − a55)− (a13 + a55)2.

Thus, these wave speeds are no longer given by a quadratic
polynomial in momentum, and thus are not the wave speeds of a
Riemannian metric unless E = 0 ⇒ E measures the departure
from the Riemannian, or ‘elliptic’, case.

The Riemannian boundary rigidity result is not applicable... but
the analysis of that paper is based on the study of a class of
transforms which are microlocally weighted X-ray transforms along
curves, and even these general sound speeds fall in this class, with
the techniques introduced by Uhlmann and V. being applicable.
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Now, there are three quantities we would still like to determine:
a11, a33 and E , and we have two different wave speeds, the qSV
and the qP waves that we can use. As a first step:

Theorem (de Hoop-Uhlmann-V.)

Suppose that we are given the qSH-travel time data so that ω, a55
and a66 are determined already, and assume that the hypotheses of
qSH-theorem hold. Given E 2 and a33, the material parameter a11
can be recovered from qP-travel time data.
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We may instead consider a functional relationship where a11
determines a33 and E 2. This yields an alternative to the theorem
above:

Theorem (de Hoop-Uhlmann-V.)

Suppose that we are given the qSH-travel time data so that ω, a55
and a66 are determined already, and assume that the hypotheses of
Theorem 5 hold together with an additional qSV non-degeneracy
condition (see later). Suppose also that we are given C∞ functions
F : R→ R with F ′ ≥ 0 and H such that a33 = F (a11) and
E 2 = H(a11). Then a11 can be recovered from the qP- and
qSV-travel time data jointly.
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In order to explain the successes and limitations, let us recall the
microlocal analysis background.

Following the Uhlmann-V. approach, we work with a function on
M with strictly convex level sets, and localize to super-level sets of
this function.

We show that the modified and localized ‘normal operators’ that
arise from the Stefanov-Uhlmann pseudolinearization formula,
which is valid for all Hamiltonian flows, are scattering
pseudodifferential operators in Melrose’s scattering
pseudodifferential algebra, with the level set of the function at
which we stop playing the role of the boundary. (Thus, this
artificial boundary is the only one with analytic significance, while
the original boundary of M simply constrains supports.)
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This algebra corresponds to the Parenti-Shubin ps.d.o. algebra on
Rn; the artificial boundary playing the role of the sphere at infinity.
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Symbols: |Dα
z D

β
ζ a(z , ζ)| ≤ Cαβ〈z〉`−|α|〈ζ〉m−|β|.

In this algebra there are two different (and somewhat coupled)
notions of ellipticity:

that of the standard principal symbol: |ζ| → ∞ and

that of the boundary principal symbol: |z | → ∞.

The standard principal symbol corresponds to differentiable
regularity, the boundary principal symbol to decay.

Ellipticity: comparable lower bounds.
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Theorem (de Hoop-Uhlmann-V.)

Assume that the hypotheses of qSH Theorem hold, and that ∇f is
neither parallel, nor orthogonal to the artificial boundary. (Holds
near ∂M if the convex function is a perturbation of a boundary
defining function for ∂M.) Assume an additional non-degeneracy
condition (see later) if qSV data are used. Here convexity of the
foliation always understood with respect to GqP , resp. GqSV , if qP,
resp. qSV data are used.

Then the modified and localized ‘normal operators’ arising from
the Stefanov-Uhlmann formula are in Melrose’s scattering
pseudodifferential operator algebra. Furthermore, the boundary
principal symbol is elliptic at finite points (ζ bounded) for any one
of E 2, a11, a33 from the qP travel data, and for E 2 (as well as a11
and a33 if E 2 > 0) from the qSV travel data. Furthermore, for a11
from the qP-travel time data standard principal symbol ellipticity
also holds.
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Finally, we show the precise nature of the obstruction to full
invertibility via elliptic analysis:

Theorem (de Hoop-Uhlmann-V.)

For a33,E
2 from the qP or qSV travel data, as well as for E 2 and

one of a11 and a33 jointly from the qP and qSV data, the standard
principal symbol is not elliptic, rather vanishes in a non-degenerate
quadratic manner along the span of df at infinite points
(|ζ| → ∞).
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The explanation is simple: In general, for the normal operator
standard principal symbol computation at a point ζ ∈ T ∗xM, one
takes a weighted average of certain quantities evaluated at
covectors for which the Hamilton vector field for the relevant
sound speed is annihilated by ζ.

if ζ = df is in the axis direction, the tangent vectors involved in
the integration correspond to covectors in the g0-orthogonal plane,
i.e. with vanishing ξ̃3 coordinate, and there the qP and qSV sound
speeds are insensitive to a33,E

2 as these appear with a prefactor
ξ̃23 above.

The quadratic non-degeneracy also corresponds to this: namely the
relevant coefficient is a non-degenerate multiple of ξ̃23 .
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This means that the analytic framework for this inverse problem
involves double characteristics, which were studied in now-classical
papers of Guillemin and Uhlmann, and Mendoza and Uhlmann.
However, here these need to be analyzed in the context of
scattering pseudodifferential operators, and the analysis must be
global on the manifold cut out by the artificial boundary.

Of course, we would like to determine all three of the remaining
parameters ideally. One may set up a system by adding a third row
and using different premultipliers, as was done in to treat boundary
rigidity in the normal gauge, but one will certainly still have the
double characteristic phenomena at the minimum.
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Finally: the qSV non-degeneracy condition:

Instead of using the cotangent space for parameterizing the
bicharacteristics, we need to use the tangent space instead.
Consider the Hamilton vector field map of the Hamiltonian
function p: the tangent vector to a projected bicharacteristic
γ(t) = X (t) corresponding to the bicharacteristic (X (t),Ξ(t)) is
γ̇(t) = HX (t)(Ξ(t)), where Hx is the push-forward of the Hamilton
vector field to the base

Hx(ξ) =
∑
j

∂p

∂ξj
(x , ξ)∂xj ,

where the notation indicates that for each base point x we consider
it as a map

ξ 7→ Hx(ξ).

This is a nonlinear map in general (though linear in Riemannian
geometry.)
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In terms of λ and a, the dispersion relation (3) becomes
[
c11s2

x + 1
2 (1 − λ)as2

z − 1
][ 1

2 (1 − λ)as2
x + c33s2

z − 1
]

−
[ 1

2 (1 + λ)a
]2s2

x s2
z = 0. (36)

The qP slowness relation can be shown to be insensitive to
variations in λ. The mild anisotropy conditions imply that
λ >−1 and that a> 0. Also, mildly anisotropic media satisfy
c55 = 1

2 (1 − λ)(c13 + 2c55) < min[c11, c33]. If c55 and c66 are al-
lowed to approach zero with a held equal to its original value,
then c13 > 0 and λ ↑ 1. In this acoustic limit, the exact dispersion
relation for qP-waves simplifies [see equation (18)] to

[

1 −
(

1 − a2

c11c33

)

X

]

Z = 1 − X, (37)

directly leading to a rational approximation. In terms of the
parameters λ and a, our first-order rational approximation (30)
becomes

Z = (1 − X)

×
1 − 1

2 (1 − λ)
a
c33

[
1 −

(
1 − c33

c11

)
X
]

1 − 1
2 (1 − λ)

a
c33

+
[

(1 − λ)
a
c33

+
(

1 − λa2

c11c33

)]

X
,

(38)

which in the limit λ ↑ 1 reduces to the solution of the exact
dispersion relation (37).

EXAMPLES

The approximations will be illustrated using the measured
moduli of Greenhorn shale (Jones and Wang, 1981) as a starting
model. The relevant squared velocity moduli in (km/s)2,

c11 = 14.47, c33 = 9.57, c55 = 2.28, c13 = 4.51,

give dimensionless parameters

γ = 0.190, ϵP = 0.204, ϵA = 0.482.

Other examples considered have these same parameters ex-
cept for anellipticity ϵA, which varies by changing the value of
c13. Thus, all examples have the same anchor points but dif-
ferent anellipticity. We compare the first- and second-order
rational approximations with the exact slowness surfaces, with
Dellinger et al.’s (1993) bielliptic approximation (derived in
Appendix B), and with the elliptical TI medium. All examples
conform to mild anisotropy.

Figure 2a shows the exact qP and qSV slowness curves, their
first-order rational approximations, and their bielliptic approx-
imations for Greenhorn shale. As a reference, for this figure and
all the remaining figures, the associated elliptically anisotropic
medium curves are shown in gray. Figure 2b shows, instead
of the rational first-order appoximation, the second-order ap-
proximation. This and subsequent figures are normalized so
the qSV-curve traverses points [0, 1] and [1, 0], i.e., the curves
are scaled by normalizing all moduli by c55.

Next, we perturb the Greenhorn shale by increasing ϵA to the
value 0.910 (by decreasing c13 to 0.547), Figure 3 shows the the
same curves for this very anelliptic medium as were plotted in
Figure 2. Figure 3a contains the first-order rational approxima-
tion, and Figure 3b contains the second-order approximation.
In Figure 3c, approximation (37) is compared with the first-
order rational approximation for qP-waves only. Finally, we
perturb the Greenhorn shale by decreasing ϵA to the negative
value −0.126 (by increasing c13 to 7.72). The slowness curves
are shown in Figure 4.

For all three cases, the first-order rational approximation is
very accurate for the qP curves while the second-order approx-
imation is acceptable for the qSV curves, even for the very high
anellipticity case shown in Figure 3. For all three cases, the first-
order rational approximation is closer to the exact dispersion

FIG. 2. Slowness curves for Greenhorn shale. The elastic mod-
uli are normalized by c55. The dimensionless parameters are
γ = 0.190, ϵP = 0.204, ϵA = 0.482. The exact slowness curves are
the black solid curves; the rational approximations are the long
dashes; Muir’s bielliptic approximations are the short dashes.
For reference, the associated elliptical TI curves are shown in
gray. (a) First-order rational approximation. (b) Second-order
rational approximation.
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The Greenhorn shale qSV wave speed level set, from Schoenberg
and de Hoop.
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The Greenriver shale wave speed level sets, thanks to Jianliang
Qian.
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In order to parameterize the bicharacteristics, ξ 7→ Hx(ξ) should be
a map with a smooth inverse, at least locally along the
bicharacteristics we wish to use.

This holds if DHx is invertible. Explicitly, this differential is the

Hessian matrix with ij entry ∂2p
∂ξi∂ξj

. If p(x , .) is a positive definite

quadratic polynomial, such as in Riemannian geometry and qSH
waves, then the Hessian matrix is positive definite, thus invertible.
Positive definiteness of the Hessian corresponds to strict convexity
of the level sets of p from the side of the sublevel sets.

In general, for interesting examples of p arising from qSV waves in
transversely isotropic materials, such as for the Greenhorn shale,
the strict convexity may fail.

For the qP waves it always holds.
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The Greenriver shale wavefronts, thanks to Jianliang Qian.
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The non-degeneracy condition relative to a convex foliation
(concave from the superlevel sets for GqSV ) then is:

for each point x and each vector v tangent to the convex foliation
at the point x there is a covector ξ in the cotangent space over x
such that Hx(ξ) = v and the map Hx has invertible differential at
ξ, with Hx arising from GqSV .

A transversely isotropic material is non-degenerate provided the
statement above holds for all v (and not just v tangent to a
particular convex foliation).

These hold in most interesting examples, and indeed always hold
for E 2 ≥ 0 when the tangent space of the convex foliation is close
to the plane of isotropy at each point.
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