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Toy model for Earthquakes

M ⊂ R3 open with smooth boundary. Denote U := R3 \M .

Interior source acoustic wave equation{
(∂2t − c2(x) ∆x) G(x, t; p, t0) = δp(x) δt0(t), in R3 × R,
(p, t0) ∈M × R, G(x, t; p, t0) = 0, for t < t0, x ∈ R3.

p

M

U
(z1, v1) (z2, v2)

∂M
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Four different data sets related to spherical waves

p

M

U
(z1, v1) (z2, v2)

∂M

Inverse problem: Recover wave speed c(x) from

travel time data (Kurylev)

travel time difference data (Lassas-S, Ivanov)

scattering data of internal sources ∼ “exit directions”

sphere data (de Hoop-Holman-Iversen-Lassas-Ursin,
de Hoop-Ilmavirta-Lassas)
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It is not accurate enough to model the interior of the
Earth with acoustic wave speed.

Typically one uses the elastic systems in R3.

Recall the talk by Joonas Ilmavirta on how the get from
Elasticity to Finsler geometry.
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What is a Finsler manifold?

Let M be a connected smooth manifold of dimension n ≥ 2. We use local
coordinates (x, y) for tangent bundle TM .

Let F : TM → [0,∞) be a continuous function that satisfies
1 F : TM \ {0} → [0,∞) is smooth.
2 for all (x, y) ∈ TM and a > 0 holds F (x, ay) = aF (x, y).
3 for all (x, y) ∈ TM \ {0} the Hessian(

1

2

∂

∂yi
∂

∂yj
F 2(x, y)

)n
i,j=1

:=

(
gij(x, y)

)n
i,j=1

is symmetric and positive definite.

(2) ⇒ F (x, y) 6= F (x,−y)

(3) ⇒ F (x, y1 + y2) ≤ F (x, y1) + F (x, y2)
and SxM := F−1{1} ⊂ TxM is convex

Pair (M,F ) is called a Finsler manifold.
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Riemannian and Randers metrics

Let g be a Riemannian metric and α be a 1–form then

Fg(x, y) :=
√
gij(x) yi yj and Fα(x, y) :=

√
gij(x) yi yj + αi(x) yi

are Finsler metrics with Hessians

1

2

∂

∂yi
∂

∂yj
F 2
g (x, y) = gij(x)

1

2

∂

∂yi
∂

∂yj
F 2
α(x, y) = gij(x) + αi(x)αj(x) +

Ak(x)yk

Fg(x, y)
+
Bk`h(x)yky`yh

F 3
g (x, y)

A Finsler function F is Riemannian if and only if

1

2

∂

∂yi
∂

∂yj
F 2(x, y) = constant w.r.t. y.
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Euclidean and Randers unit spheres
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Distance and geodesics of Finsler manifolds

Let p, q ∈M and let Cp,q denote the collection of all piecewise C1 paths from p
to q.

dF (p, q) := inf

{
L(c) :=

∫ 1

0

F (c(t), ċ(t)) dt

∣∣∣∣ c ∈ Cp,q}.
Every geodesic γ is uniquely given by the initial value (γ(0), γ̇(0)) ∈ TM .

Geodesics are not preserved under change of oritentation

⇒ γx,y(−t) 6= γx,−y(t)
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Additional differences between Riemannian and Finslerian
geometries

Finsler function does not give fibervice linear duality
between vectors and co-vectors. Legendre transform

Finsler function does not give a natural Levi-Civita
connection on TM . Chern connection
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Finslerian boundary distance function

Let (M,F ) be a smooth compact n-dimensional, n ≥ 2, Finsler manifold with
boundary and p ∈M int.

Boundary distance function

rp : ∂M → R, rp(z) := dF (p, z).

p ∂M

z

Direction is from p to z!

Boundary distance data

(∂M, {rp : p ∈M int})
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Inverse problem of Finslerian boundary distance functions

Let (Mi, Fi), i = 1, 2 be compact smooth n-dimensional, n ≥ 2 Finsler manifolds
with boundary.

The boundary distance data of (M1, F1) and (M2, F2) agree if ∃ φ : ∂M1 → ∂M2,
diffeomorphism such that

{
dF1(p, ·) : ∂M1 → [0,∞)|p ∈M int

1

}
=
{
dF2(q, φ(·)) : ∂M1 → [0,∞)|q ∈M int

2

}
(1)

Inverse problem: Are (M1, F1) and (M2, F2) Finsler isometric if (1) holds?

Answer: Not quite!
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Obstruction for the uniqueness

Define set G(M,F ) so that for (x, y) ∈ G(M,F ) ⊂ TM the geodesic γx,y is a
distance minimizer until it exits M at z ∈ ∂M .

∂M

(x, y)

(x, v)

z
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Main theorem: Boundary distance data, optimality

Theorem (de Hoop, Ilmavirta, Lassas, S)

Let (Mi, Fi), i = 1, 2 be smooth, connected, compact Finsler manifolds with
smooth boundary. If the boundary distance data of (M1, F1) and (M2, F2) agree,
then there is a diffeomorphism Ψ: M1 →M2 s.t. Ψ on ∂M1 coincides with φ.

The sets G(M1, F1) and G(M1,Ψ∗F2) coincide and in this set F1 = Ψ∗F2.

For any (x, y) ∈ TM int
1 \G(M1, F1) there exists a smooth Finsler function

F3 : TM1 → [0,∞) so that dF1
(p, z) = dF3

(p, z) for all p ∈M1 and z ∈ ∂M1 but
F1(x, v) 6= F3(x, v).
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Main theorem: Boundary distance data, analytic metric

Theorem (de Hoop, Ilmavirta, Lassas, S)

Let (Mi, Fi), i = 1, 2 be smooth, connected, compact Finsler manifolds with
smooth boundary. If the boundary distance data of (M1, F1) and (M2, F2) agree,
and if Finsler function Fi is fiberwise real analytic, then there exists a Finslerian
isometry Ψ: (M1, F1)→ (M2, F2) such that Ψ on ∂M1 coincides with φ.
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Strategy of the proof

The proof of optimality result consists of three steps:

1 Reconstruction of Topology

2 Reconstruction of Smooth structure

3 Reconstruction of Finsler structure

Topology: We study the map

Ri : Mi → (C(∂Mi), ‖ · ‖∞), Ri(p) := dFi
(p, ·) : ∂Mi → [0,∞), i = 1, 2.

For any p ∈Mi the minimizer zp of dFi(p, ·) is connected to p with a unique
geodesic normal to ∂Mi. Therefore map Ri is 1-to-1.

Since Mi is compact, there exists C > 0 such that for all p, q ∈Mi

1

C
dFi(p, q) ≤ dFi(q, p) ≤ CdFi(p, q) ⇒ ‖Ri(p)−Ri(q)‖∞

∆−ie
≤ CdFi(p, q).
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Smooth structure 1

By previous slide and the data, we know that a map

Ψ : R−1
2 ◦ Φ ◦ R1, Φ(f) = f ◦ φ−1 ∈ C(∂M2), f ∈ C(∂M1),

is a homeomorphism. We have to show that Ψ is diffeomorphism.

Boundary case
We show that the boundary normal coordinates for M1 and M2 agree.

One needs to use the reversed distance dFi(z, p), z ∈ ∂M, p ∈M and

inward going boundary normal geodesics

Reversed Finsler function F̃ (x, y) := F (x,−y). Then

dF (p, z) = dF̃ (z, p), p ∈M, z ∈ ∂M.

(Teemu Saksala) Geometry and seismology April 18, 2019 20 / 33



Smooth structure 2

Interior case
We show that for every p ∈M int

1 ∃ open set dense set U ⊂ (∂M)n−1 s.t. for
every U 3 (zi)

n−1
i=1 ,

(dF1
(x, zi))

n
i=1 = (dF2

(Ψ(x), φ(zi)))
n
i=1

is a coordinate map w.r.t. x variable, when x is close to p. Above z1 is any
closest boundary point to p.

To show this we must prove the following

τ(z, ν)︸ ︷︷ ︸
cut distance, ν interior unit normal

> τ∂M (z)︸ ︷︷ ︸
boundary cut distance

, z ∈ ∂M.

The proof differs from Riemannian case due to lack of Levi-Civita connection!
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Where do the Finsler functions coincide?

Since M1 and M2 are diffeomorphic we can assume that M := M1 = M2 and
denote F2 = Ψ∗F2 on M . Thus dF1

= dF2
on M × ∂M .

Let p ∈M int,
S(p) = {z ∈ ∂M : dFi

(·, z) is smooth at p}.

For z ∈ S(p) holds

d(dF1
(z, ·))

∣∣∣∣
p

= d(dF2
(z, ·)

∣∣∣∣
p

and F ∗i

(
d(dFi

(z, ·))
∣∣∣∣
p

)
= 1.

Let

Σi(p) = {y ∈ TpM∗i : y = rd(dFi
(z, ·))

∣∣∣∣
p

, z ∈ S(p), r > 0}.

These imply

Σ1(p) = Σ2(p) and F ∗1 (p, ·)
∣∣∣∣
Σ1(p)

= F ∗2 (p, ·)
∣∣∣∣
Σ2(p)

(Teemu Saksala) Geometry and seismology April 18, 2019 22 / 33



Finsler functions agree on G(M,Fi)

Recall that for (x, y) ∈ G(M,F ) ⊂ TM the geodesic γx,y is a distance minimizer
from x ∈M int to the “first” boundary point.

Important technical result:

There exists a dense set Ĝ(M,Fi) ⊂ G(M,Fi) : For any (x, v) ∈ Ĝ(M,Fi) the
distance function

dFi
(z, ·), z := γx,v(τexit(x, v)) ∈ ∂M,

is smooth at x

Therefore

The sets G(M1, F1) and G(M1,Ψ∗F2) coincide and in this set F1 = Ψ∗F2.
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It is difficult to measure boundary distance functions

p
∂M

z

w

d(p, z) = arrival time (p→ z) − origin time

d(p, z)− d(p, w) = arrival time (p→ z)− arrival time (p→ w)
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Boundary distance difference functions on compact
Riemannian manifold

Let n ≥ 2 and (M, g) be a n-dimensional smooth Riemannian manifold with
smooth boundary ∂M . For p ∈M int the boundary distance difference
function, is

Dp : ∂M × ∂M → R, Dp(z1, z2) := dg(p, z1)− dg(p, z2).

p∂M

z1

z2

Boundary distance difference data

(∂M, {Dp : ∂M × ∂M → R | p ∈M int}).
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Visibility condition: Boundaries we know how to handle

∂M

(x, v)

(z, η)

- Before considered by Stefanov & Uhlmann.

- If at every point in ∂M there is a convex direction then visibility condition holds

- If M ⊂ S2 is larger than hemisphere then ∂M does not satisfy the visibility
condition
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Main theorem: Boundary distance difference data

Theorem (de Hoop-S)

Let n ≥ 2 and (M, g), be a compact, connected n–dimensional Riemannian
manifold with smooth boundary ∂M which satisfies the visibility condition.

Then the boundary distance difference data determine (M, g) up to Riemannian
isometry.
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Scattering set of the interior point source

Let (M, g) be a smooth compact non-trapping Riemannian manifold with a
smooth strictly convex boundary ∂M .

The scattering set of point source p ∈M int is

R∂M (p) := {(γp,ξ(τexit(p, ξ)), (γ̇p,ξ(τexit(p, ξ)))T ) ∈ T∂M : ξ ∈ SpM}.

p

∂M
Scattering data of point

sources

(∂M, {R∂M (p) : p ∈M int})
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A good and a bad manifold

We denote for x, y ∈M and ` ∈ (0,∞),

I(g, x, y, `) := amount of g-geodesics of length ` from x to y.

Examples
Mi = polar cap in R3, M1 smaller than hemisphere, M2 larger than hemisphere.

∂M1
∂M2

good manifold bad manifold
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Main theorem: Scattering data of internal sources

p p′ p

∂M

Theorem (Lassas-S-Zhou)

Let (M, g) be a smooth compact Riemannian manifold with a smooth boundary
∂M . Suppose that ∂M is strictly convex, M is non-trapping and
supx,y,` I(g, x, y, `) <∞ , then {∂M, {R∂M (p) : p ∈M}} determine (M, g) up
to isometry.
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Talk was based on the following manuscripts:

I Inverse problem for compact Finsler manifolds with the boundary
distance map, with Maarten de Hoop, Joonas Ilmavirta and Matti Lassas,
preprint arXiv:1901.03902

II Inverse problem of travel time difference functions on a compact
Riemannian manifold with boundary, with Maarten de Hoop, Journal of
geometric analysis, (2018)

III Reconstruction of a compact Riemannian manifold from the scattering
data of internal sources, with Matti Lassas and Hanming Zhou, Inverse
problems and Imaging, (2018)

Thank you for your attention!
Slides available in teemusaksala.com

(Teemu Saksala) Geometry and seismology April 18, 2019 33 / 33


	Micro Earthquakes: Four different data set
	Finsler geometry 101
	The inverse problem of boundary distance functions on compact Finsler manifolds
	Tools for the proof

	Inverse problem of boundary distance difference functions on compact Riemannian manifold
	Reconstruction of a compact Riemannian manifold from the scattering data of internal sources

