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Adjacency matrix and Laplacian matrix of a graph

Definition

Let X be a weighted graph on vertices 1, 2, · · · , n. Denote the

weight of the edge between vertices u and v by wu,v . Then the

adjacency matrix A(X ) of X is an n × n matrix and is defined via

auv =

{
wu,v if u and v are adjacent

0 if u and v are not adjacent,

and the Laplacian matrix of X is defined as L(X ) = D(X )− A(X ),

where D(X ) is a diagonal matrix whose u-th diagonal entry is the

degree of vertex u: deg(u) = 2wu,u +
∑

v 6=u wu,v . If D(X ) is a

scalar matrix, then X is said to be regular.

Both A(X ) and L(X ) are symmetric matrices. If X does not have

loops, then L(X ) is positive semi-definite with 1 = (1, 1, · · · , 1)T

as an eigenvector associated to eigenvalue 0.
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Quantum state transfer on graphs

Fidelity of state transfer

Let M be the Laplacian matrix L(X ) (resp. the adjacency matrix

A(X )) of a (weighted) graph X on n vertices. Let U(t) = e itM ,

then the Laplacian (resp. adjacency) fidelity of transfer on graph

X from vertex u to vertex v at time t is given by

puv (t) = |
(
U(t)

)
uv
|2 = |eTu U(t)ev |2.

The fidelity is a number between 0 and 1.
1 If puv (t) = 1 for vertices u, v and time t

1 If u 6= v , then X is said to admits Laplacian (resp. adjacency)

perfect state transfer (PST) between u and v .

2 If u = v , then X is said to be Laplacian (resp. adjacency)

periodic at vertex u at time t.

2 If puv (tm)→ 1 as m→∞, then the system admits Laplacian

(resp. adjacency) pretty good state transfer (PGST) between

u and v .
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Fractional revival

Fractional revival in terms of fidelity

If there is a time t, and two distinct vertices u and v such that

puu(t) + puv (t) = 1, with puv (t) > 0, then we say there is

Laplacian (resp. adjacency) fractional revival (FR) between u and

v .

or equivalently,

Fractional revival in terms of U(t)

If there is a time t, and two distinct vertices u and v , such that

U(t)eu = αeu + βev for some α, β ∈ C with β 6= 0 (since U(t) is

unitary, we know that |α|2 + |β|2 = 1), then we say that there is

fractional revival (FR) from u to v at time t.

If puu = puv , or equivalently, |α| = |β|, then the revival is said to

be balanced.
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Generalized fractional revival

If there is a time t, and a proper subset S of V (X ), such that

|S | ≥ 3 and that for any vertex u ∈ S , U(t)uv = 0 if v /∈ S , and

that the unweighted graph associated to the submatrix U(t)[S ,S] is

connected, then we say that there is generalized fractional revival

between vertices in S .
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Calculate the fidelity through diagonalization

The two dynamics

A regular graph admits adjacency PST (PGST, or FR) if and only

if it admits Laplacian PST (PGST, or FR).

e itL = e it(D−A) = e it(dI−A) = e itde−itA = e itde itA, where d is the

degree of the graph.

Any real symmetric matrix is diagonalizable by a real orthogonal

matrix.

Assume that M is diagonalized by a orthogonal matrix Q = [quv ]

to QTMQ = Λ = diag(λ1, . . . , λn). Then

puv (t) = |eTu e itMev |2 = |eTu e itQΛQT
ev |2 = |eTu Qe itΛQT ev |2 =

|qTu e itΛqv |2 = |
∑n

`=1 e
itλ`qu`qv`|2.
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Spectral decomposition of a Hermitian matrix

Spectral decomposition

Let M be an n × n Hermitian matrix. Assume that λ1, . . . , λs are

all the distinct eigenvalues of M, and for each j = 1, . . . , s, let Ej

represent the orthogonal projection matrix onto the eigenspace

associated to the eigenvalue λj . Then the spectral decomposition

of M is M =
∑s

r=1 λrEr .

Furthermore, the following holds:

1 E 2
j = Ej and EjEk = 0 if j 6= k;

2
∑s

r=1 Er = In;

3 If f (x) is an analytic function which is defined at each

eigenvalue of M, then f (M) =
∑s

r=1 f (λr )Er .

Therefore e itM =
∑s

r=1 e
itλrEr , and puv (t) =

∑s
r=1 e

itλr (Er )uv .
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Cospectral vertices and eigenvalue support of a vertex

Let M be either the adjacency matrix or Laplacian matrix of a

(weighted) graph. Assume the spectral decomposition of M is

M =
∑s

r=1 λrEr .

Two vertices u and v are said to be strongly cospectral with

respect to M if for each r = 1, . . . , s, Ereu = ±Erev .
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Equitable partition of a graph and quotient graph

Definition

Let X be a graph on n vertices. A partition π = (C1, . . . ,Ck) of
V (X ) is equitable if for any `, j ∈ {1, . . . , k}, the number of
neighbours in C` of a vertex in Cj is the same for all vertices in Cj .

j 6= `: the bipartite graph on Cj ∪ C` formed by the edges between
the two cells is semi-regular.
j = `: the induced subgraph on Cj is regular.

Definition

Assume that π = (C1, . . . ,Ck) is an equitable partition of a graph

X . Define the symmetrized quotient graph X̂/π of X with respect
to π to be the unweighted graph that has the cells of π as its
vertices, and with an edge of weight

√
cj`c`j between Cj and C`

whenever cj`c`j 6= 0, where cj` is the number of neighbours a
vertex in cell Cj has in cell C`.

A(X̂/π) is of size k × k, with (j , `) entry equal to
√
cj`c`j .
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An example of an equitable partition of a graph

0000

0001 0010 0100 1000

0011 0101 1010 1100 1001 0110

1110 1101 1011 0111

1111

c12 = 4, c23 = 3, c34 = 2, c45 = 1,
c21 = 1, c32 = 2, c43 = 3, c54 = 4.

A(Q̂4/π) =
0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2
0 0 0 2 0
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Graph and its symmetrized quotient graph

Graph and symmetrized quotient graph under XY dynamics

(Bachman et al., 2012)

Let X be a graph with an equitable partition π, where vertices u

and v are singleton cells. Then for any time t,

(
e itA(X )

)
uv

=
(
e itA(X̂/π)

)
{u}{v}.

Weighted path (Christandl–Datta–Ekert–Landahl, 2004)

For any positive integer n, there is a weighted path on n vertices

which admits adjacency PST between its end vertices.

One possible weights set is wu,u+1 =
√
u(n − u) for each

u ∈ {1, . . . , n − 1}.
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Weighted paths with adjacency fractional revival

Use weighted path with PST (Genest–Vinet–Zhedanov, 2016)

Let Rm denote the antidiagonal matrix of size m ×m.
Assume A is the adjacency matrix of a weighted path with loops
that admits adjacency PST between the two end vertices.

Let Q =

[
sin(θ)I n

2
cos(θ)R n

2

cos(θ)R n
2
f − sin(θ)I n

2

]
if n is even, and

Q =

 sin(θ)I n−1
2

0 n−1
2

cos(θ)R n−1
2

0T
n−1

2

1 0T
n−1

2

cos(θ)R n−1
2

0 n−1
2
− sin(θ)I n−1

2

 if n is odd.

Then the

weighted path with adjacency matrix A(θ) = QAQ admits
adjacency fractional revival between the two end vertices.
Furthermore, the deformation only changes the middle edge weight
(also the weights of the loops on the middle two vertices of the
path when n is even).
Therefore there is a weighted path with loops of any length that
admits adjacency FR between the two end vertices.
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Some known graphs

Graphs known with adjacency FR

Weighted paths with loops.

Some weighted cubelike graphs.

Some weighted graphs obtained from hypercubes.

A weighted path with adjacency FR

(Chan–Coutinho–Tamon–Vinet–Zhan, 2018)

w 11 2 3

There is adjacency FR between vertices 1 and 3 at time

t = π√
w2+1

. When w 6= 1, the two vertices are not strongly

cospectral.
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Laplacian FR

1 Spectral decomposition L(X ) =
∑s

r=1 λrEr =⇒ U(t) =
e itL(X ) =

∑s
r=1 e

itλrEr =⇒ ErU(t) = e itλrEr for any r

2 Laplacian FR at t between 1 and 2, U(t) =

[
U1 02,n−2

0n−2,2 U2

]
.

U(t)e1 = u11e1 + u21e2,U(t)e2 = u21e1 + u22e2
premultiply Er−−−−−−−−→

e itλrEre1 = ErU(t)e1 = u11Ere1 + u21Ere2

e itλrEre2 = ErU(t)e2 = u12Ere1 + u22Ere2.

3 [Ere1,Ere2]

[
u11 − e itλr u12

u21 u22 − e itλr

]
= [Ere1,Ere2](U1−e itλr I2) = 0

4 For a (complex) symmetric matrix U, any real right
eigenvector is a real left eigenvector at the same time:
Ux = λx , x real, then xTU = λxT .

5 Real eigenvectors associated to distinct eigenvalues of a
symmetric matrix U are orthogonal:
λxT y = (xTU)y = xT (Uy) = µxT y .

6 1 is an eigenvector of U1, U2 associated to 1, and
σ(L(X )) = {λ1, . . . , λs} =⇒ σ(e itL(X )) = {e itλ1 , . . . , e itλs}.
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Ux = λx , x real, then xTU = λxT .

5 Real eigenvectors associated to distinct eigenvalues of a
symmetric matrix U are orthogonal:
λxT y = (xTU)y = xT (Uy) = µxT y .

6 1 is an eigenvector of U1, U2 associated to 1, and
σ(L(X )) = {λ1, . . . , λs} =⇒ σ(e itL(X )) = {e itλ1 , . . . , e itλs}.
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Strong cospectrality of two vertices involved in Laplacian
FR

If a connected weighted graph X admits Laplacian FR between two

vertices u and v at time t, then the two vertices are strongly

cospectral with respect to the Laplacian matrix L(X ): for

L(X ) =
∑

r λrEr ,

either Ereu = Erev (if tλr
2π ∈ Z), or Ereu = −Erev (if tλr

2π /∈ Z).

The FR time t satisfies that tλr
2π ∈ Z for some λr 6= 0.
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Generalized Laplacian FR

Generalized Laplacian FR

Assume that X is a weighted graph that admits generalized

Laplacian FR between vertices in S = {1, 2, . . . ,m} ⊂ V (X ) at

time t, and that U1 = U(t)[S ,S] = (e itL(X ))[S ,S] has 1 as a simple

eigenvalue. Consider the spectral decomposition

L(X ) =
∑s

r=1 λrEr . For each r = 1, . . . , s, the vectors

Ere1, Ere2, · · · ,Erem are linearly dependent, and either

Ere1 = Ere2 = · · · = Erem if e itλr = 1, or (1)

Ere1 + Ere2 + · · ·+ Erem = 0 if e itλr 6= 1. (2)
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A graph with (generalized) Laplacian FR

v1

v3

v6 v5

v4

v2

Figure: Graph X , with Laplacian eigenvalues:0, 1, 3(2), 4,5

There is Laplacian FR between vertices v1 and v2, and generalized

FR between vertices {v3, v4, v5, v6} at time 2π
3 . (1 is not simple for

U2)

There is also generalized Laplacian FR between vertices

{v1, v4, v5}, and between vertices {v2, v3, v6} at time π. (1 is

simple for both U1 and U2)
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Threshold graphs

Definition

A threshold graph can be constructed from one-vertex graph by

repeatedly adding a single vertex of two types: isolated vertex, i.e.,

a vertex without any incident edges, or a dominating vertex, i.e., a

vertex connected to all other vertices.

Characterize a connected threshold graph with join and union

A connected graph X is a threshold graph if and only if one of the

two conditions is true:

1) there are indices m1, . . . ,m2k with m1 ≥ 2 such that

X = ((((Om1 ∨ Km2) ∪Om3) ∨ Km4) · · · ) ∨ Km2k
≡ Γ(m1, . . . ,m2k),

2) there are indices m1, . . . ,m2k+1 with m1 ≥ 2 such that X =

((((Km1 ∪ Om2) ∨ Km3) ∪ Om4) · · · ) ∨ Km2k+1
≡ Γ(m1, . . . ,m2k+1).
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Spectral property of threshold graphs

Laplacian eigenvalues of the threshold graph Γ(m1, m2, . . . ,m2k):

1 λ0 = 0 (multiplicity 1),

2 λj = mj+1 + mj+3 + · · ·+ m2k for any odd integer

j ∈ {1, . . . , 2k} (multiplicity

{
m1 − 1, if j = 1
mj otherwise.

)

3 λj = σj + mj+2 + · · ·+ m2k for any even integer
j ∈ {1, . . . , 2k} (multiplicity mj), where
σj := m1 + m2 + · · ·+ mj for j = 1, 2, . . . , 2k .

Orthogonal idempotents: E0 = 1
σ2k

Jσ2k ,

E1 =


Im1 − 1

m1
Jm1 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

Ej =


mj

σj−1σj
Jσj−1 − 1

σj
Jσj−1,mj 0σj−1,σ2k−σj

− 1
σj
Jmj ,σj−1 Imj − 1

σj
Jmj 0mj ,σ2k−σj

0σ2k−σj ,σj−1 0σ2k−σj ,mj 0σ2k−σj ,σ2k−σj

.
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State transfer in threshold graphs

Laplacian FR between u and v ,
strong cospectrality−−−−−−−−−−−→ {u, v} = {1, 2}

and m1 = 2.

(e itL(X ))1,w = 0 for w ≥ 3 iff tm2k , tm2k−1, tm2k−2, . . . , tm3, and

tσ2 are all even integer multiples of π.

In this case, (e itL(X ))1,1 = 1
2e

itm2 + 1
2 , (e itL(G))1,2 = −1

2e
itm2 + 1

2 .

Hence, if in addition,

tm2 (and therefore tm1 = 2t) is an even integer multiple of π,

then the graph G is periodic at vertex 1 (and vertex 2);

tm2 (and therefore tm1 = 2t) is an odd integer multiple of π,

then the graph G admits Laplacian perfect state transfer

between vertex 1 and 2;

tm2 (and therefore tm1 = 2t) is not an integer multiple of π,

then the graph G admits Laplacian fractional revival between

vertex 1 and 2.
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Laplacian FR in threshold graphs

Laplacian FR in connected threshold graphs

The threshold graph X = Γ(m1, . . . ,me), where e = 2k or 2k + 1,
admits Laplacian FR between two vertices u and v at time t iff

1 {u, v} = {1, 2} and m1 = 2, and
2 1 m1

t
π = 2 t

π /∈ Z
2 (m1 + m2) t

2π ,mj
t

2π ∈ Z for j = 3, . . . , e.

Balanced Laplacian FR in connected threshold graphs

Balanced FR between u, v at time t in X = Γ(m1, . . . ,me) iff

1 m1 = 2 with {u, v} = {1, 2},
2 t = 2`+1

4 π for some non-negative integer `,

3 m2 = 2(2s+1)
2`+1 , for the same integer ` as in 2.) above, and for

a non-negative integer s of distinct parity from ` such that
(2`+ 1)|(2s + 1) (in this case 2s+1

2`+1 ≡ 3 (mod 4)), and

4 mj ≡ 0 (mod 8) for j = 3, . . . , e.

Xiaohong Zhang, Joint work with Steve Kirkland Fractional revival of threshold graphs under Laplacian dynamics



Laplacian FR in threshold graphs

Laplacian FR in connected threshold graphs

The threshold graph X = Γ(m1, . . . ,me), where e = 2k or 2k + 1,
admits Laplacian FR between two vertices u and v at time t iff

1 {u, v} = {1, 2} and m1 = 2, and
2 1 m1

t
π = 2 t

π /∈ Z
2 (m1 + m2) t

2π ,mj
t

2π ∈ Z for j = 3, . . . , e.

Balanced Laplacian FR in connected threshold graphs

Balanced FR between u, v at time t in X = Γ(m1, . . . ,me) iff

1 m1 = 2 with {u, v} = {1, 2},
2 t = 2`+1

4 π for some non-negative integer `,

3 m2 = 2(2s+1)
2`+1 , for the same integer ` as in 2.) above, and for

a non-negative integer s of distinct parity from ` such that
(2`+ 1)|(2s + 1) (in this case 2s+1

2`+1 ≡ 3 (mod 4)), and

4 mj ≡ 0 (mod 8) for j = 3, . . . , e.

Xiaohong Zhang, Joint work with Steve Kirkland Fractional revival of threshold graphs under Laplacian dynamics



Generalized Laplacian FR in threshold graphs

Consider the threshold graph X = Γ(m1, . . . ,me), where e = 2k or

2k + 1, and let C`, ` = 1, . . . , e denote the cells of the partition π

of V (X ) according to the parameters m`, ` = 1, . . . , e. Then X

admits generalized Laplacian FR between vertices in S ⊂ V (X ) at

some time t > 0 iff, for some integer j < e,

1 tme
2π ,

tm2k−1

2π , . . . ,
tmj+2

2π , and
tσj+1

2π ∈ Z,

2
tmj+1

2π /∈ Z.

In this case, S = C1 ∪ · · · ∪ Cj , and X is periodic at all vertices in

the cells Cj+1, . . . ,Ce .
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Almost equitable partition

Definition

Let X be a graph on n vertices. A partition π = (C1, . . . ,Ck) of
V (X ) is almost equitable if for any ` 6= j ∈ {1, . . . , k}, the number
of neighbours in C` of a vertex in Cj is the same for all vertices in
Cj .

j 6= `: the bipartite graph on Cj ∪ C` formed by the edges between
the two cells is semi-regular.

Quotient

Assume that π = (C1, . . . ,Ck) is an almost equitable partition of a

graph X . Let B = [bj`] with bj` =

{
−√cj`c`j if ` 6= j∑

r 6=j cjr if ` = j
.

If u and v are both singleton cells of π. Then for any time t,(
e itL(X )

)
u,v

=
(
e itB

)
{u}{v}
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Construct more graphs with Laplacian PST, PGST or FR

More graphs with Laplacian FR

Suppose that the graph X = (V ,E ) has an almost equitable

partition π of V , with vertices u and v being singleton cells. If

there is Laplacian PST, PGST or FR between vertices u and v ,

then for any graph Y obtained from X by adding or deleting any

collection of edges within the cells of π, Y also admits Laplacian

PST, PGST or FR.

The partition of X = Γ(m1, . . . ,me), according to the indices

m1, . . . ,me is an equitable partition, so is any refinement of it.

O2 ∨ K6 admits Laplacian FR at time π/4 and Laplacian PST at

time π/2, then so does the complete bipartite graph K2,6, since it

can obtained from O2 ∨ K6 by removing all the edges inside K6.
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can obtained from O2 ∨ K6 by removing all the edges inside K6.
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Construct more graphs with Laplacian PST, PGST or FR

More graphs with Laplacian FR

Suppose that the graph X = (V ,E ) has an almost equitable

partition π of V , with vertices u and v being singleton cells. If

there is Laplacian PST, PGST or FR between vertices u and v ,

then for any graph Y obtained from X by adding or deleting any

collection of edges within the cells of π, Y also admits Laplacian

PST, PGST or FR.

The partition of X = Γ(m1, . . . ,me), according to the indices

m1, . . . ,me is an equitable partition, so is any refinement of it.

O2 ∨ K6 admits Laplacian FR at time π/4 and Laplacian PST at

time π/2, then so does the complete bipartite graph K2,6, since it

can obtained from O2 ∨ K6 by removing all the edges inside K6.
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Thank you!
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