Ultraproduct embeddings and amenability for tracial von Neumann algebras

Scott Atkinson
(joint with Srivatsav Kunnawalkam Elayavalli, Vanderbilt)

University of California Riverside

Classification Problems in von Neumann Algebras, BIRS 2019

Definition

A tracial von Neumann algebra (N, τ) is a von Neumann algebra N together with a normal faithful tracial state τ on N.

Definition

A tracial von Neumann algebra (N, τ) is a von Neumann algebra N together with a normal faithful tracial state τ on N.

Definition

Let (N,τ) and (M,σ) be two tracial von Neumann algebras. A unital *-homomorphism $\pi:N\to M$ is an *embedding* if it is injective and $\sigma\circ\pi=\tau$.

Definition

A tracial von Neumann algebra (N,τ) is *hyperfinite* if it is the σ -weak closure of an increasing union of finite-dimensional subalgebras. Let R denote the separably acting hyperfinite II₁-factor. This is equivalent to amenable, injective, and semidiscrete.

Definition

A tracial von Neumann algebra (N,τ) is *hyperfinite* if it is the σ -weak closure of an increasing union of finite-dimensional subalgebras. Let R denote the separably acting hyperfinite II₁-factor. This is equivalent to amenable, injective, and semidiscrete.

Proposition

If (N, τ) is a separable amenable tracial von Neumann algebra, let $\{M_k\}$ be a sequence of II_1 -factors, and let $\mathcal U$ denote a free ultrafilter on $\mathbb N$, then any two embeddings $\pi, \rho: \mathbb N \to \prod_{k\to \mathcal U} M_k$ are unitarily conjugate.

Definition

A tracial von Neumann algebra (N,τ) is *hyperfinite* if it is the σ -weak closure of an increasing union of finite-dimensional subalgebras. Let R denote the separably acting hyperfinite II₁-factor. This is equivalent to amenable, injective, and semidiscrete.

Proposition

If (N, τ) is a separable amenable tracial von Neumann algebra, let $\{M_k\}$ be a sequence of II_1 -factors, and let $\mathcal U$ denote a free ultrafilter on $\mathbb N$, then any two embeddings $\pi, \rho: \mathbb N \to \prod_{k\to \mathcal U} M_k$ are unitarily conjugate.

Definition

A tracial von Neumann algebra (N, τ) satisfies the Connes Embedding Problem (CEP) if there is an embedding $\pi: N \to R^{\mathcal{U}}$.

Jung's characterization

Theorem (Jung, '07)

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP. Then N is amenable if and only if any two embeddings $\pi, \rho: N \to R^{\mathcal{U}}$ are unitarily conjugate.

Definition

Let $X=\{x_1,\ldots,x_n\}\subset (N)_1^{\mathrm{s.a.}}$. The *n*-tuple X is *tubular* if for every $\varepsilon>0$ there is a $\delta>0$ and $m\in\mathbb{N}$ such that for any $J\in\mathbb{N}$ and $\xi,\eta\in\Gamma(X;m,J,\delta)$ there is a unitary $u\in\mathcal{U}(\mathbb{M}_J)$ such that

$$||\xi - u^*\eta u||_2 < \varepsilon.$$

Definition

Let $X = \{x_1, \dots, x_n\} \subset (N)_1^{\text{s.a.}}$. The *n*-tuple X is *tubular* if for every $\varepsilon > 0$ there is a $\delta > 0$ and $m \in \mathbb{N}$ such that for any $J \in \mathbb{N}$ and $\xi, \eta \in \Gamma(X; m, J, \delta)$ there is a unitary $u \in \mathcal{U}(\mathbb{M}_J)$ such that

$$||\xi - u^*\eta u||_2 < \varepsilon.$$

Lemma

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP with $N = W^*(X)$. If any two embeddings $\pi, \rho : N \to R^{\mathcal{U}}$ are unitarily conjugate, then X is (quasi-)tubular.

Lemma

Let (N,τ) be a tracial von Neumann algebra satisfying the CEP with $N=W^*(X)$. If X is (quasi-)tubular, then for any $\varepsilon>0$ there is an embedding $\pi:N\to R^\mathcal{U}$ and a finite dimensional subalgebra $A\subset R^\mathcal{U}$ such that $\pi(X)\subset_{\varepsilon,||\cdot||_2}A$.

Lemma

Let (N,τ) be a tracial von Neumann algebra satisfying the CEP with $N=W^*(X)$. If X is (quasi-)tubular, then for any $\varepsilon>0$ there is an embedding $\pi:N\to R^\mathcal{U}$ and a finite dimensional subalgebra $A\subset R^\mathcal{U}$ such that $\pi(X)\subset_{\varepsilon,||\cdot||_2}A$.

Proposition

Let (N,τ) be a tracial von Neumann algebra satisfying the CEP with $N=W^*(X)$. If for any $\varepsilon>0$ and there is an embedding $\pi:N\to R^{\mathcal U}$ and a finite dimensional subalgebra $A\subset R^{\mathcal U}$ such that $\pi(X)\subset_{\varepsilon,||\cdot||_2}A$, then N is semidiscrete.

ucp conjugation

Definition

Let (N,τ) be a separable tracial von Neumann algebra satisfying CEP. Two embeddings $\pi, \rho: N \to R^{\mathcal{U}}$ are *ucp-conjugate* if there is a sequence of ucp maps $\varphi_k: R \to R$ such that $\pi = (\varphi_k)_{\mathcal{U}} \circ \rho$. That is, for every $x \in N$, if $\rho(x) = (a_k)_{\mathcal{U}}$ then $\pi(x) = (\varphi_k(a_k))_{\mathcal{U}}$.

ucp conjugation

Definition

Let (N,τ) be a separable tracial von Neumann algebra satisfying CEP. Two embeddings $\pi, \rho: N \to R^{\mathcal{U}}$ are *ucp-conjugate* if there is a sequence of ucp maps $\varphi_k: R \to R$ such that $\pi = (\varphi_k)_{\mathcal{U}} \circ \rho$. That is, for every $x \in N$, if $\rho(x) = (a_k)_{\mathcal{U}}$ then $\pi(x) = (\varphi_k(a_k))_{\mathcal{U}}$.

Theorem (A.-Kunnawalkam Elayavalli, '19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying CEP. Then N is amenable if and only if any two embeddings $\pi, \rho: N \to R^{\mathcal{U}}$ are ucp-conjugate.

Definition

The *n*-tuple $X\subset (N)^{\text{s.a.}}_1$ is completely tubular if for every $\varepsilon>0$ there is a $\delta>0$ and $m\in\mathbb{N}$ such that for any $J\in\mathbb{N}$ and $\xi,\eta\in\Gamma(X;m,J,\delta)$ there is a ucp map $\varphi:\mathbb{M}_J\to\mathbb{M}_J$ such that

$$||\xi - \varphi(\eta)||_2 < \varepsilon.$$

Definition

The *n*-tuple $X\subset (N)^{\text{s.a.}}_1$ is *completely tubular* if for every $\varepsilon>0$ there is a $\delta>0$ and $m\in\mathbb{N}$ such that for any $J\in\mathbb{N}$ and $\xi,\eta\in\Gamma(X;m,J,\delta)$ there is a ucp map $\varphi:\mathbb{M}_J\to\mathbb{M}_J$ such that

$$||\xi - \varphi(\eta)||_2 < \varepsilon.$$

Lemma

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP with $N = W^*(X)$. If any two embeddings $\pi, \rho : N \to R^{\mathcal{U}}$ are ucp-conjugate, then X is completely tubular.

Lemma

Let (N,τ) be a tracial von Neumann algebra satisfying the CEP with $N=W^*(X)$. If X is completely tubular, then for any $\varepsilon>0$ and any finite subset $F\subset (N)_1$ there is a $J\in \mathbb{N}$ and a ucp map $\varphi:\mathbb{M}_J\to N$ such that $F\subset_{\varepsilon,||\cdot||_2}\varphi((\mathbb{M}_J)_1)$.

Lemma

Let (N, τ) be a tracial von Neumann algebra satisfying the CEP with $N = W^*(X)$. If X is completely tubular, then for any $\varepsilon > 0$ and any finite subset $F \subset (N)_1$ there is a $J \in \mathbb{N}$ and a ucp map $\varphi : \mathbb{M}_J \to N$ such that $F \subset_{\varepsilon, ||\cdot||_2} \varphi((\mathbb{M}_J)_1)$.

Proposition (Kishimoto, unpublished)

Let (N,τ) be a separable tracial von Neumann algebra. Then N is injective if and only if for any $\varepsilon>0$ and any finite subset $F\subset (N)_1$ there is a $J\in \mathbb{N}$ and a ucp map $\varphi:\mathbb{M}_J\to N$ such that $F\subset_{\varepsilon,||\cdot||_2}\varphi((\mathbb{M}_J)_1)$.

Consequences

Corollary (A.-Kunnawalkam Elayavalli, '19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying the CEP, and for each $k \in \mathbb{N}$ let M_k be a II_1 -factor. Then N is amenable if and only if any two embeddings $\pi, \rho : N \to \prod_{k \to \mathcal{U}} M_k$ are (unitarily /ucp-)conjugate.

Ozawa's improvement

Let $\mathbb{H}om(N,M)$ denote the space of all unital *-homomorphisms of N into M modulo unitary equivalence. Endow $\mathbb{H}om(N,M)$ with the natural topology of point- $||\cdot||_2$ convergence of representatives. Jung showed that N is amenable if and only if $|\mathbb{H}om(N,R^{\mathcal{U}})|=1$.

Ozawa's improvement

Let $\mathbb{H}om(N,M)$ denote the space of all unital *-homomorphisms of N into M modulo unitary equivalence. Endow $\mathbb{H}om(N,M)$ with the natural topology of point- $||\cdot||_2$ convergence of representatives. Jung showed that N is amenable if and only if $|\mathbb{H}om(N,R^{\mathcal{U}})|=1$.

Theorem (Ozawa '11)

Let (N, τ) be a separable tracial von Neumann algebra satisfying CEP. Then N is amenable if and only if $\mathbb{H}om(N, R^{\mathcal{U}})$ is separable.

Popa's question

Let $\{M_k\}$ be a sequence of II_1 -factors. The above consequence says that N is amenable if and only if $|\mathbb{H}om(N, \prod_{k\to\mathcal{U}} M_k)| = 1$.

Popa's question

Let $\{M_k\}$ be a sequence of II_1 -factors. The above consequence says that N is amenable if and only if $|\mathbb{H}om(N,\prod_{k\to\mathcal{U}}M_k)|=1$.

In 2014, Popa asked if a statement similar to Ozawa's improvement holds for $\mathbb{H}om(N, \prod_{k \to \mathcal{U}} M_k)$.

Popa's question

Let $\{M_k\}$ be a sequence of II_1 -factors. The above consequence says that N is amenable if and only if $|\mathbb{H}om(N,\prod_{k\to\mathcal{U}}M_k)|=1$.

In 2014, Popa asked if a statement similar to Ozawa's improvement holds for $\mathbb{H}om(N, \prod_{k \to \mathcal{U}} M_k)$.

Theorem (A.-Kunnawalkam Elayavalli, '19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying CEP. Then N is amenable if and only if $\mathbb{H}om(N, \prod_{k \to \mathcal{U}} M_k)$ is separable.

Tracial stability

Definition

Let $\mathscr C$ denote a class of C^* -algebras. A C^* -algebra $\mathcal A$ is $\mathscr C$ -tracially stable if for every unital *-homomorphism $\pi:\mathcal A\to\prod_{k\to\mathcal U}(\mathcal A_k,\tau_k)$ with $\mathcal A_k\in\mathscr C$ there is a sequence of unital *-homomorphisms $\pi_k:\mathcal A\to\mathcal A_k$ such that $\pi(a)=(\pi_k(a))_{\mathcal U}$ for every $a\in\mathcal A$.

Tracial stability

Definition

Let $\mathscr C$ denote a class of C^* -algebras. A C^* -algebra $\mathcal A$ is $\mathscr C$ -tracially stable if for every unital *-homomorphism $\pi:\mathcal A\to\prod_{k\to\mathcal U}(\mathcal A_k,\tau_k)$ with $\mathcal A_k\in\mathscr C$ there is a sequence of unital *-homomorphisms $\pi_k:\mathcal A\to\mathcal A_k$ such that $\pi(a)=(\pi_k(a))_{\mathcal U}$ for every $a\in\mathcal A$.

Example

R is II_1 -tracially stable. In fact, R is the only II_1 -tracially stable II_1 -factor.

Self-tracial stability

Definition

A tracial von Neumann algebra (N, τ) is *self-tracially stability* if N is $\{N\}$ -tracially stable.

Self-tracial stability

Definition

A tracial von Neumann algebra (N, τ) is *self-tracially stability* if N is $\{N\}$ -tracially stable.

Theorem (A.-Kunnawalkam Elayavalli, '19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying the CEP. Then N is amenable if and only if N is self-tracially stable.

Self-tracial stability

Definition

A tracial von Neumann algebra (N, τ) is *self-tracially stability* if N is $\{N\}$ -tracially stable.

Theorem (A.-Kunnawalkam Elayavalli, '19)

Let (N, τ) be a separable tracial von Neumann algebra satisfying the CEP. Then N is amenable if and only if N is self-tracially stable.

Corollary (A.-Kunnawalkam Elayavalli, '19)

If (N, τ) is self-tracially stable and non-amenable, then N does not satisfy the CEP.

THANKS!

Preprint: arXiv:1907.03359