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Plan of the talk

Introduction: what are long transients?

Basic mechanisms generating long transients (nonspatial
systems)

Relation to tipping points

A (brief) look at spatial systems

Conclusions



What is it all about

Transient: lasting for only a short time; temporary
(Cambridge English Dictionary)

Typically, transients are associated with the effect of the initial
conditions and disappear relatively fast.

Long-term dynamics are usually associated with the system’s
attractors.

“Long transient” is apparently an oxymoron??

However...



Examples of long transients in population models

Dynamics of a nonspatial, time-discrete, single-species model:
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Examples of long transients in population models

Time-continuous single-species model with time-delay:
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Examples of long transients in population models

Space-time-continuous, 3-species model (plankton dynamics):
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Empirical examples are abundant too
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In all above examples, a regime shift occurs

A well-known theory of regime shifts relates it to a tipping point:
a bifurcation (e.g. saddle-node) due to a slow change in some
system’s parameter (environmental conditions) (e.g. Scheffer et
al. 2009, 2012; Kuehn 2011; Dakos et al., 2012, 2014)

Interestingly, in all above examples, parameters (environmental
conditions) are constant!

How that can be possible?



Overview of the baseline mechanisms

“Crawl-by”’: transients induced by a saddle

Here Ais the ‘small’ vicinity of the saddle, B the range of appropriate initial conditions



Transients induced by a saddle

Consider a generic population dynamics model:

duy (t)
= fx(u k=1,...,n
at k( )7 ) s 1l
where u = (uy, ..., Un) are the population densities, t is time.

Linearized system in the vicinity of a steady state u:

axk (1)
at

= a1 Xy + ... BknXn, k=1,...,n,
where xi (t) = uk(t) — Ug.

Solution is a linear combination of exponents e*il. Let A4 be the eigenvalue with the
largest real part, ReAy > 0. The time spent in the vicinity of the (unstable) steady state
is estimated as |

T(Xﬁ.



Transients induced by a saddle

Nonlinear effects can substantially increase the range of appropriate
initial conditions:

A is the ‘small’ vicinity, B the range of appropriate initial conditions, S is a separatrix



Example: Rosenzweig—MacArthur model
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This will result in recurrent long transients:
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Generalization 1

A modified prey-predator system can have a saddle point in the
interior of the domain (not at the origin), so that the decay to
low density is not a necessary property

Example: strong Allee effect for prey, quadratic mortality for
predator
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(Sen & Banerjee 2015)



Generalization 2

Saddle-induced transients in a higher-dimensional systems

A case of more complex dynamics: connected saddles:

(Ashwin & Timme, 2005)



Ghost attractors

Consider a generic two-species system:

du
dt

dv
= F(u,v;p), i G(u,v;p)

Two-species nonlinear competition model (Hastings et al. 2018)



Ghost attractors

A change in the parameter value can bring the system beyond
the saddle-node bifurcation:

However, the local bifurcation does not change the global
structure of the phase flow: the system slows down in the
vicinity of the pre-bifurcation steady state location



Ghost attractors

The long transient dynamics occur:

Species v
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Ve

Long term transient

0 ‘ Time

The transient’s duration depends on the closeness to the bifurcation:

T X |p— ljcr()'5 .



Ghost attractors

A similar mechanism applies to more complicated dynamics, e.g. periodic solutions
(limit cycles) and chaos.

Example: long-term chaotic transient (chaotic ghost) in a resource-consumer-predator
system(Hastings and Powell 1991; McCann and Yodzis 1994)

Pre-bifurcation: chaotic attractor Post-bifurcation: the two basins

coexists with a stable limit cycle merge, chaotic attractor disappears

Chaotic transients can be particularly long: 7 o exp (k|p — pc|=7) (k,v > 0)
(Grebogi et al. 1983, 1985)



Ghost attractors

Example of the time-series generated by a chaotic ghost:
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(Petrovskii et al., 2017)



Slow-fast systems

Consider

du(t)
at

av(t)
dt

f(u7 V? 6)7

Introducing a rescaled time 7 = e, it turns into

d ol
€ lél(:) = f(u,v,e), ‘;(:) =9(u,v,e).
In the limit e — 0, system (1) turns into
du(t) av(t)
—, = f ) »0 ) = 07
G at
and system (2) turns into
o=fwv.0, g0,

=eg(u, v,e), ek 1.
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Slow-fast systems

Example 1: periodical dynamics in a prey-predator system
(e =0.01)
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Slow-fast systems

Example 2: aperiodical dynamics in a two-species competition
system
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Relation between long transients and tipping points



Relation between long transients and tipping points

Long transients

Tipping points

Saddles

Ghost attractors due to
reset of initial conditions

Regime shift as a
system’s response
when parameter

change is “not too
slow” —no LTs

Slow-fast dynamics

LTs created by noise

LTs due to time-delay

Parameter change very slow or with limited
variation: regime shift after LT ghost dynamics



Long transients in higher dimensional systems

e Effect of time-delay is known to generate long transients but the scaling law is
unknown

> Effect of noise - broad and variable. For non-chaotic systems (saddles and
ghosts), tends to decrease the transient’s life-time but would not normally destroy
it. Can create the transient dynamics (e.g. in bistable systems):

108

» For chaotic transients, noise can increase as well as decrease the transient’s
life-time (Grebogi et al. 1983; Do and Lai 2004, 2005).

» Spatial systems: new types of transients (e.g. related to population waves
propagation).



A brief look at the spatial systems

What are the new phenomena brought in by explicit space?

e Pattern formation

e Synchronization / desynchronization & onset of
spatiotemporal chaos

e Travelling waves



A brief look at the spatial systems

Consider the space-continuous, time-discrete single-species
system:

u(x,t+1) = /OLg(X—y)F(u(x, H))dx, F(u)=ue -9,

For distributed random initial conditions, the system’s dynamics
exhibit a chaotic saddle:

[] 5000 10,000
Time (years)

(Hastings and Higgins, 1994)



A brief look at the spatial systems

The above system exhibits long transients in terms of the spatially average values

Knowledge of the spatial population distribution can provide a different angle on long
transients

Example: “wave of chaos” in a space-time-continuous prey-predator system:

Prey and Predator Densities

o 500 1000 1500 2000 2500 8000 8500 4000 4500
Space

(Petrovskii and Malchow, 2001)

Spread of the chaotic phase over the system can take a very long

time, 7 %



A brief look at the spatial systems

For compact initial conditions, the system’s dynamics usually consists
of a succession of population waves

Example: space-time-continuous (diffusion-reaction) prey-predator
system, invasion of predator; dynamical stabilization in the wake of
the invasion front

(Petrovskii and Malchow, 2000)
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Conclusions

e Long transients do occur

e The life-time of long transients can be arbitrary long
(cf. scaling laws)

e We have identified a few basic mechanisms for the long
transients to occur

e Long transients provide an alternative scenario of regime
shifts
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