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DIMER MODEL: DEFINITION
> Planar, bipartite graph G =(V =BUW, E).

> Dimer configuration M: subset of edges s.t. each vertex is
incident to exactly one edge of M ~» M(G).

> Positive weight function on edges: v = (Ve)ecE-

> Dimer Boltzmann measure (G finite):

[T ve

S —
YMe M(G), Pdtmer(M) - Zdimer(G’V)‘

where Zgimer(G, v) is the dimer partition function.
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DIMER MODEL: KASTELEYN MATRIX

» Kasteleyn matrix (Percus-Kuperberg version)

- Edge wb ~» angle ¢, s.t. for every face wy, by, ..., wy, by:

k
> @uty = b)) = (k= D mod 2.

J=1

- K is the corresponding twisted adjacency matrix.

K Vup€®®  if w~b
b= .
¢ 0 otherwise.



DIMER MODEL: FOUNDING RESULTS

> Assume G finite.
THEOREM ([KASTELEYN'61] [KUPERBERG 98])
Zimer(G, v) = | det(K)|.

THEOREM (KENYON'Q7)
Let € ={e1 = wiby,...,e, = wy;by} be a subset of edges of G, then:

n
Pdimer(eh L] en) = |(l_[ KWj,bj) det(K_1)8|’
j=1

where (K™V)¢ is the sub-matrix of K~! whose rows/columns are indexed
by black/white vertices of €.

> G infinite: Boltzmann measure ~» Gibbs measure

- Periodic case [Cohn-Kenyon-Propp’01], [Ke.-Ok.-Sh.’06]
- Non-periodic [dT’07], [Boutillier-dT’10], [B-dT-Raschel'19]



DIMER MODEL: PERIODIC CASE

> Assume G is bipartite, infinite, Z2-periodic.

» Exhaustion of G by toroidal graphs: (G,) = (G/nZ?).



DIMER MODEL: PERIODIC CASE

» Fundamental domain: Gy

> Let K; be the Kasteleyn matrix of fundamental domain Gy.
> Multiply edge-weights by z,z7L, w,w™! — Ki(z, w).

» The characteristic polynomial is:

P(z,w) = detKi(z, w).

Example: weight function v=1, Pz,w) =5-z-1 -w- 1.
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DIMER MODEL: SPECTRAL CURVE

» The spectral curve:
C={(zw) e (C"H: P(z,w)=0)}.

> Amoeba: image of € through the map (z,w) — (log|z|, log |w|).

Amoeba of the square-octagon graph



DIMER MODEL AND HARNACK CURVES

THEOREMS

» Spectral curves of bipartite dimers

[Ke.-Ok.-Sh.06] [Ke.-Ok.06] . .
— Harnack curves with points on ovals.

» Spectral curves of isoradial, bipartite dimer models with critical

. [Kenyon-Okounkov06]
weights [Kenyon '02] — Harnack curves of genus 0.

L. . i . [Goncharov-Kenyon '13]
» Spectral curves of minimal, bipartite dimers —>

Harnack curves with points on ovals.

Explicit (—) map

» [Fock’l5] Explicit («—) map for all algebraic curves.
(no check on positivity).



DIMER MODEL AND HARNACK CURVES OF GENUS I

THEOREM ([BouTiLLIER-DT-CIMASONT' 19+])
Spectral curves of minimal, bipartite dimer models with Fock’s weights

—

Harnack curves of genus 1 with a point on the oval.



QUAD—GRAPH, TRAIN-TRACKS

> Infinite, planar, embedded graph G; embedded dual graph G*.

» Corresponding quad-graph G°, train-tracks.
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ISORADIAL GRAPHS

> An isoradial embedding of an infinite, planar graph G is an
embedding such that all of its faces are inscribed in a circle of
radius 1, and such that the center of the circles are in the interior
of the faces [Duffin] [Mercat] [Kenyon].

> Equivalent to: the quad-graph G° is embedded so that of all its
faces are rhombi.

THEOREM (KENYON-SCHLENCKERO4)

An infinite planar graph G has an isoradial embedding iff

BN







ISORADIAL EMBEDDINGS
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MINIMAL GRAPHS

> If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right).




MINIMAL GRAPHS

> If the graph G is bipartite, train-tracks are naturally oriented
(white vertex of the left, black on the right).

> A bipartite, planar graph G is minimal if

==

[Thurston’04] [Gulotta’08] [Ishii-Ueda’ll] [Goncharov-Kenyon13]




IMMERSIONS OF MINIMAL GRAPHS

> A minimal isoradial immersion of an infinite planar graph G is
an immersion of the quadgraph G° such that:

- all of the faces are rhombi (flat or reversed)
* *
\’ ‘T D
/’ /.
¢ ¢ . %

- the immersion is flat: the sum of the rhombus angles around every
vertex and every face is equal to 2.

PrROPOSITION (BouTiLLiER-DT-CiMASONI 1Q+)
The flatness condition is equivalent to :

- around every vertex there is at most one reversed rhombus
- around every face, the cyclic order of the vertices differ by at most
disjoint transpositions in the embedding and in the immersion.

THEOREM (BouTiLLIER-DT-CimasoNT 1Q+)

An infinite, planar, bipartite graph G has a minimal isoradial immersion
iff it is minimal.



DIMER VERSION OF FOCK’S WEIGHTS

» Tool 1. Jacobi’s (first) theta function.

- Parameter g = ¢, 3(1) > 0, A(q) = 7Z + n7Z, T(q) = C/A.

0(z) = 2g7 Z(—l)"q"<”+l> sin(2n + 1)z.
n=0
- Allows to represent A(qg)-periodic meromorphic functions.
- 0(z) ~ Zq% sin(z) as g — O.
> Tool 2. Isoradially immersed, bipartite, minimal graph G.
- each train-track T is assigned direction e?2°T,

- each edge e = wb is assigned train-track directions ¢*®,e%# and a
half-angle g — a € [0, 7).



DIMER VERSION OF FOCK'S ADJACENCY MATRIX
> Tool 3. Discrete Abel map [Fock] D € (R/7Z)VE)
- Fix face fy and set D(fy) = 0,

- o: degree -1, o: degree 1, faces: degree O,

- when crossing T: increase/decrease D by ar accordingly.

» Point ¢ € §T+R.

» Fock’s adjacency matrix

08 — a)

ifw~b

KY, = {60+ D(b) - B)0(t + D(w) — @)
s 0 otherwise.



DIMER VERSION OF FOCK’S ADJACENCY MATRIX

LEMMA ([BouTiLLIER-DT-CIMASONI 1g+])

Under the above assumptions, the matrix K© is a Kasteleyn matrix for
a dimer model (positive weights) on G.



FUNCTIONS IN THE KERNEL OF K(t)

> Define g : V°x V°xC — C

- gl =0

I f~w, g (1) =g w7 = B(u + t + D(w))

s

O(u — @)
0 Db
I f~ b, ghw) = g = %’

where ¢%® is the direction of the tt crossing the edge.

- If distance > 2, take product along path in G°.




PROPERTY OF THE FUNCTION gV

LEMMA ([Fock'15] [BouTILLIER-DT-CIMASONI19+])
- The function g9 is well defined.
- The function g9 is in the kernel of K©:

w,b gb,x
b:b~w

Ywe W, x € V°, Z KO o® () = 0.

Proor.
Weierstrass identity: s,t € T(qg), a,b,c € C,

0(b — a) Ou+s—a->b) 6(c—b) Ou+s—b-c)
O(s — 2)0(s — b) 0 — 20 —b)  8(s — b)A(s — ) Ot — bYou —¢)
f(a—rc) Ou+ts—c—a)

0(s — c)f(s — a) 0(u — c)0(u — a)




EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

» Assume G is Z?-periodic. Define the map v,

Y : T(q) — C
e Y(u) = (2(w), ww))

where z(u) = glg?,bo +(1,0)(”)’ w(u) = gg)),bo +(0,1)(”))'

bo + (0,1)
[ ]

@ [ )
b by -+ (1.0)




EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

ProrosiTiOoN ([B-pT-C'19+])

The map  is an explicit birational parameterization of the spectral
curve C of the dimer model with Kasteleyn matrix K.

The real locus of C is the image under ¥ of the set R/nZ x {0, 57},
where the connected component with ordinate %T is bounded and the
other is not.

(The spectral curve is independent of t).
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GIBBS MEASURES FOR BIPARTITE DIMER MODELS

THEOREMS (KENYON-OKOUNKOV-SHEFFIELD 06)

- The dimer model on a Z?-periodic, bipartite graph has a
two-parameter family of ergodic Gibbs measures indexed by the
slope (h,v), i.e., by the average horizontal/vertical height change.

- The latter are obtained as weak limits of Boltzmann measures with
magnetic field coordinates (By, By).

- The phase diagram is given by the amoeba of the spectral curve C.

frozen / frozen B
x

frozen




LLocAL EXPRESSION FOR (GIBBS MEASURES, GENUS I

Suppose ¢ fixed. Omit it from the notation.

THEOREM (BouTILLIER-DT-CIMASONI'1Q+)

The 2-parameter set of EGM of the dimer model with Kasteleyn matrix
K'is (P“),,ep, where ¥ subset of edges € = {ej = wiby, ..., e, = Wpby},

n
Per,. .. en) = ([ | Kuypy) det(A™)e,
j=1
i6(0)

where Vbe B, we W, A =
e 2

" Zow(wduL.
Cb,(\)v

Moreover, when uy

- is the unique point corresponding to the top boundary of D, the
dimer model is gaseous,

- is in the interior of D, the dimer model is liquid,

- is a point corresponding to a cc of the lower boundary, the model
is solid.



LLOoCAL EXPRESSIONS FOR ERGODIC GIBBS MEASURES, GENUS I

> Domain D. Top boundary identified with a single point

D

71N

. Each connected component is identified with a single point
> Congours of integration.

Lo
U uo Cul)
C b,(v),v C bow / b,{wﬁ
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COROLLARY
The slope of the Gibbs measure P“° is:
1

d
-~ | Zqa du,
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IDEA OF THE PROOF

» Proof 1. Using [C-K-P], [K-O-S] the Gibbs measure PB with
magnetic field coordinates B = (By, B)) has the following
expression on cylinder sets:

k
PEB ey, ) = ([ | Kuypy) det(AP)e,
j=1

where ( ) d J
Q(z,w . . dw dz

‘&bB+(mn)w = b’WZ Mw : P

T, P(Z,W) 2inw 2inz

- Perform one integral by residues.
- Do the change of variable u — (1) = (z(u), w(u)).

- Non-trivial cancellation !



IDEA OF THE PROOF

> Proof 2. Show that for every ug, A% is an inverse of K.
- Use Weierstrass identity.
- Show that the contours of integration are such that one has 1 on
the diagonal.

Use uniqueness statements of inverse operators.



CONSEQUENCES

> Suitable for asymptotics.

> Explicit local expressions for edge probabilites.



CONNECTION TO PREVIOUS WORK

> Genus 0. [Kenyon'02].
> Genus 1. Two specific cases were handled before:

- the bipartite graph arising from the Ising model
[Boutillier-dT-Raschel'19]

- the Z®¥-Dirac operator [dT’18] ~» massive discrete holomorphic
functions.



PERSPECTIVES

> 2-parameter family of Gibbs measures for non-periodic graphs.
Missing: every finite, simply connected subgraph of an isoradial
immersion can be embedded in a bipartite, Z2-periodic isoradial
immersion.

> Extension to genus g > 1.

- [Fock] gives a candidate for the dimer model.
- Welerstrass identity ~w» Fay’s trisecant identity.



