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Benôıt Laslier and Dmitry Chelkak later today:
Perfect t-embeddings and convergence to GFF



1 The dimer model



• Planar bipartite graphs with positive edge weights.

• Boltzmann measure: draw a dimer covering at random
with probability proportional to its weight.

• Dimer covering : subset of edges such that each vertex
is incident to exactly one edge.
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• Planar bipartite graphs with positive edge weights.

• Multiplying by � > 0 the weight of every edge inci-
dent to a given vertex (gauge transformation) does not
change the probability measure.

• Alternating products of edge weights around faces are
coordinates on the space of edge weights modulo gauge.
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• Kasteleyn signs : assign a sign to each edge such that
the number of minus signs around a face of degree 2
mod 4 (resp. 0 mod 4) is even (resp. odd).
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• K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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• K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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• K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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The Kasteleyn matrix K

• Complex Kasteleyn signs: assign a unit complex num-
ber to each edge such that the alternating product of
these numbers around a face of degree 2 mod 4 (resp.
0 mod 4) is 1 (resp. �1).
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• The partition function (sum of the weights of all dimer
coverings) is | detK|. The dimer correlations are given
by minors of K�1 (Kasteleyn, Temperley-Fisher).

• Merge the complex Kasteleyn signs with the positive
edge weights to get complex edge weights (entries of K).
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• The partition function (sum of the weights of all dimer
coverings) is | detK|. The dimer correlations are given
by minors of K�1 (Kasteleyn, Temperley-Fisher).

• Merge the complex Kasteleyn signs with the positive
edge weights to get complex edge weights (entries of K).

• The alternating product of complex edge weights is real
positive (resp. real negative) around a face of degree 2
mod 4 (resp. 0 mod 4).



2 Circle patterns and circle centers



• Circle pattern for G: map from the vertex set of G to
R2 sending all the vertices around any bounded face to
concyclic points.
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• Circle centers for G: drawing of the dual graph of G
arising as centers of some circle pattern for G.

G planar



• Recover the circle pattern from the circle centers ?

How many circle patterns have the same centers ?

• Given a drawing of the dual graph of G, how to see if
it corresponds to the centers of a circle pattern for G ?

• Answers in the case when G is bipartite.



[Geogebra]



• 2-parameter family of patterns with the same centers.

• A drawing of the dual graph of G corresponds to circle
centers for G if and only if around each dual vertex the
sum of every other angle is 0 mod ⇡.

• An embedding of the dual graph of G corresponds to cir-
cle centers for G if and only if around each dual vertex
the sum of every other angle is equal to ⇡.

• From now on G is bipartite.
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3 Dimer models and circle centers



From circle centers to dimer weights

• Fix G a planar unweighted bipartite graph. Start with
an embedding of the dual of G as circle centers (a.k.a.
t-embedding for G).

• Construct complex edge weights for G associated to
that embedding which satisfy the Kasteleyn condition.

• For an edge in G between b and w, the weight is the vec-
tor (complex number) of its corresponding dual edge,
oriented so that b lies to its left.
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• The complex edge weights satisfy the Kasteleyn condi-
tion: the alternating product around of a face of degree
2 mod 4 (resp. 0 mod 4) is positive (resp. negative).



• The complex edge weights satisfy the Kasteleyn condi-
tion: the alternating product around of a face of degree
2 mod 4 (resp. 0 mod 4) is positive (resp. negative).

• Around every vertex, the sum of the complex edge
weights is zero, i.e. the edge weights have zero diver-
gence.



For a bipartite graph, the geometric local condition

implies the local condition

(Kenyon-Lam-R.-Russkikh, 2018)

• Positive edge weights are obtained from circle centers as
distances between adjacent centers.

“being centers of a circle pattern with embedded dual”

“being Kasteleyn edge weights with zero divergence”

• The fact that circle center embeddings satisfy the Kaste-
leyn condition was also observed by A↵olter (2018).

• Generalizes the construction from the isoradial case
(Kenyon 2002).



• Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.
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augmented dualdual

• Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.

From dimer weights to circle centers



Theorem (Kenyon-Lam-R.-Russkikh 2018). Let G be a pla-

nar bipartite weighted graph with outer face of degree 4. Fix

a convex quadrilateral P .

There are two circle center embeddings of the augmented dual

of G which produce weights that are gauge equivalent to the

original weights and such that the four outer dual vertices are

mapped to the vertices of P .



• Expected to hold in some form for other boundary
lengths.

• Given

� an unweighted bipartite planar graph G with
boundary of length 4

� a convex quadrilateral (boundary condition)

there is a 2-to-1 correspondence between embeddings
of the augmented dual of G as circle centers and dimer
Boltzmann measures on G.



• Other setting: infinite planar bipartite graphs, periodic
in two directions with edge weights also periodic.
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• The interior points of the amoeba (log-log represen-
tation of the spectral curve of G) parametrize the li-
quid ergodic Gibbs measures on G (Kenyon-Okounkov-
She�eld 2006).

• Gibbs measure: probability measure on the dimer co-
verings of G, whose restriction to finite subgraphs are
Boltzmann measures induced by the edge weights.

• Ergodic Gibbs measure: not a convex combination of
other Gibbs measures.

• Liquid : correlations decay polynomially.

• Let G be an infinite periodic weighted graph.



amoeba



• In both the finite and the infinite case, the construction
of a circle center embedding associated with a weighted
planar graph G depends globally (not locally) on G.

Theorem (Kenyon-Lam-R.-Russkikh 2018). Let G be an in-

finite weighted bipartite graph, periodic in two directions. Pe-

riodic circle center embeddings of the dual of G producing

edge weights that are gauge equivalent to the original ones

are in bijection with liquid ergodic Gibbs measures on G.



4 Local moves and scaling limits



Miquel’s theorem

Theorem (Miquel, 1838). In this setting,

A,B,C,D concyclic , A0, B0, C 0, D0
concyclic.
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Miquel’s theorem revisited
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Miquel’s theorem revisited

n

w

s

ec
c0 n,w, s, e, c, c0 2 C

Theorem (A↵olter 2018, Kenyon-Lam-R.-Russkikh 2018).

(c� w)(s� c0)(e� n)

(w � s)(c0 � e)(n� c)
= �1

Discrete Schwarzian KP equation



Urban renewal
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Theorem (A↵olter 2018, Kenyon-Lam-R.-Russkikh, 2018).
The Miquel move for circle centers corresponds to the urban

renewal for dimer models.



Miquel dynamics

• Miquel dynamics defined as a discrete-time dynamics
on the space of square-grid circle patterns: alternate
Miquel moves on all the white faces then on all the
black faces.

• Its integrability follows from the identification with the
Goncharov-Kenyon dimer dynamics.

• The evolution is governed by cluster algebras muta-
tions.



Embeddings in statistical mechanics

• Consider an infinite planar graph periodic in two direc-
tions on which we study a statistical mechanical model
(random walk, dimers, Ising,...).

• Find an embedding of it such that universal conformally
invariant objects appear in the scaling limit.

• Same issue for formulating the convergence to Liouville
quantum gravity of random planar maps decorated with
some statistical mechanical model.



Embeddings in statistical mechanics

Theorem (Kenyon-Lam-R.-Russkikh, 2018). Circle center

embeddings for dimers generalize the Tutte embedding

adapted to spanning trees and the s-embeddings adapted to

the Ising model.



The Aztec diamond limit shape
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The Aztec diamond limit shape

picture by Cris Moore

tuvalu.santafe.edu/
⇠moore/aztec256.gif

• Frozen corners

• Gaussian free field (GFF)
fluctuations around the
limit shape

• Conformal structure for
this GFF not given by the
Euclidean metric

(Jockush-Propp-Shor 1998,
Cohn-Kenyon-Propp 2001,
Chhita-Johansson-Young 2015,
Bufetov-Gorin 2018,...)



• After contraction of degree 2 vertices and merging of
parallel edges, the outer face has degree 4.
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The image of a dual vertex
inside (resp. outside) the

arctic circle is red (resp. blue).
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• Each frozen region is collapsed to a vertex of the square.

• Expect convergence to a continuous map z 7! ⇣ from
the unit square to itself.

• The map ⇣ does not directly give the right conformal
structure to describe the GFF fluctuations.
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GFF fluctuations in w
z w
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Chelkak-Laslier-Russkikh
general perspective:

In the continuum limit, the graph of
the origami map as a function of the t-
embedding is a minimal surface in Lorentz
space, whose canonical conformal struc-
ture describes the GFF fluctuations.

Chhita-Johansson-Young
Bufetov-Gorin



Conclusion
• Circle center embeddings (a.k.a. t-embeddings) for bi-

partite graphs are a particular choice of gauge.

• The angle condition for circle centers implies the Kaste-
leyn condition.

• Correspondence between embeddings as circle centers
and Boltzmann/Gibbs measures for the dimer model
for planar graphs with outer face of degree 4 and graphs
periodic in two directions.

• Expected to provide the right geometric setting to
study the scaling limit of the bipartite dimer model.
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