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A new family of models

» Our motivation is to abstract some recurring combinatorial themes
present in models of two-dimensional statistical mechanics

» To that end we introduce a four parameter
(9:4',a,b) € {1,2,...}* x (0,1]?

model of
I. spins (o,0")
2. height function (h, h")
3. bond percolation (w,w")
which generalizes the
e FK-random cluster and Potts models

e six-vertex model

loop O(n) model
e random current, double random current and XOR-Ising model

» We discuss its basic properties and asymptotic behaviour



The Potts model

Let Q be a finite set with g elements.

For a finite graph G = (V, E) and a coupling constant J, the g-state Potts
model is a probability measure on Q¥ given by

wu(s) = ! exp ( —J Z 1{s(v1) # s(vz)}>, seQ’,

V4
{vi;m}€E

where Z is the partition function.

We say that the model is ferromagnetic if J > 0 and antiferromagnetic if
J <0.



The Edwards—Sokal coupling

The g-state Potts model is related to the FK(g) random cluster model by the
classical Edwards—Sokal coupling, where for each edge {vy,v,} satisfying
s(v1) = s(v2), one declares it open with probability 1 — e~/ and
independently of other edges.

The resulting configuration of open edges ( is the random cluster model.
Conditioned on ¢, the spins s can be recovered by choosing a uniform spin
from Q independently for each cluster of (, where a cluster is a connected

component of (V, (), including isolated vertices.

In particular, if Q is symmetric,
(sn)s(v2) = pals), (v < va),

where {v & v, } is the event that v, and v, are in the same cluster of w.



The set-up

Let M be a compact, orientable surface with no boundary, or the plane.

Let G = (V, E) be a finite connected graph embedded in M in such a way
that each face is a topological disc, and let G* = (U, E*) be its dual, where
U is identified with the set of faces of G.

For e € E U E*, we write e* € E U E* for its dual edge. Similarly for
w C EUE*, we write w* = {e* : ¢ € w}.

For w C E, we write w’ = E* \ w*, and for w’ C E*, ()T = E\ (u')*.



1. The spin model

Fix q,q' € {1,2,...} and let O, Q" C R satisfy
0=-0, 0'=-0, [0l=q and [Q|=4"
A spin configuration on V (resp. U) is any function o : V — Q (resp.

o :U—= Q.

We define contour configurations

n(o) = {{vi,n}" 1 o(vi) #o(v2)} CE,

and n(0”) C E in a dual fashion. A connected component of 7 is called a
contour.



1. The spin model

The configuration space of our (constrained) spin model is
5= {(0.0") € 0" x 07 :n(0)" Ny(o”) = 0}.

In other words, this is the set of all pairs (o, ¢’) whose interfaces do not
Cross.

Equivalently,

(e(v1) —a(v2)) (o' (u1) — 0’ (u2)) = 0 @)

for every pair of a primal edge {v|,v,} and its dual {u;, us}.

Note that o is constant on 77(c”) and vice versa.



1. The spin model

We study a probability measure on X given by
1 ’
P(o,0') = z0,\77(0 Mpln(@)l
where a, b € (0, 1], and Z is the partition function.

This is equivalent to a pair of independent primal and dual ferromagnetic
Potts models with g and ¢’ spins, with coupling constants

7

b

b=e¢’, and a=e"

and conditioned on X.



2. The height function

{vi,u1,va,up } is a quad, if {vy,v2} € E and {vi,v2}* = {us,us}.

Assume that M is of genus zero. For (0,0’) € ¥, we consider a /eight
Jfunction H : VUU — R defined up to a constant by the rule: If u € U and
v € V belong to the same quad, then

That these relations are consistent follows from condition (*). Indeed, (*) is
equivalent to the fact that the sum of the gradients around each quad is zero.



2. The height function

We will denote by 4 and &’ the restriction of H to V and U respectively. Note
that if {vy,uy, v2,up} is a quad, then

W (uz) = W (ur) = o(vi)(0'(u2) — o' (w1)) = a(v2) (0" (2) — o' (w1)). (**)

Hence, n(o”) are the level lines of I'.

Remark

In higher genera one can define a height function on the universal cover
of M. Equivalently, one can talk about the increment of the height function
between two points taken along a curve, up to the homotopy of the curve.
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3. Bond percolation

Given (o, 0’) € ¥ sampled according to P,

1. Declare each primal edge in n(o’) and each dual edge in 1(c) open.

2. For each pair of a primal and its dual edge e and e* such that neither
e € n(o’) nor ¢* € n(c), and independently of other such pairs, declare

the state of the edges with the following probabilities:

a+b<1 a+b2>1
e open, ¢* closed a 1-b
e closed, ¢* open b 1—a
both e, ¢* open l—a—->b 0
both e, e* closed 0 a+t+b—1

Note that in both cases the probability of opening ¢ and ¢* is 1 — b and

1 — a respectively.




3. Bond percolation

A cluster of w, resp. w', is a connected component of the graph (V,w), resp.
(U,w"), including the isolated vertices.

We define

OY = {(w,w’,0,0") : o constant on clusters of w and 7(c) C

W'
o’ constant on clusters of w’ and 7(c”) C w},
where (o, 0’) € 3, and we denote by
P(w,w’,0,0")

the probability measure on Q23 given by the coupling above.

Note that

wh Cw' fora+b <1, and whow fora+b>1.



3. Bond percolation

Relevant literature:

» C. E. Pfister and Y. Velenik, Random-cluster representation of the
Ashkin-Teller model, Journal of Statistical Physics 88 (1997Sep), no. 5,
1295-1331.

» A. Glazman and R. Peled, On the transition between the disordered and
antiferroelectric phases of the 6-vertex model, 2018. arXiv:1909.03436.

» G. Ray and Y. Spinka, Finitary codings for gradient models and a new
graphical representation for the six-vertex model, 2019.
arXiv:1908.09056.



Edwards—Sokal property

Proposition (Conditional laws)

Conditioned on w,

|. o is distributed like an independent uniform assignment of a spin from
Q to each cluster of w.

2. ¢’ is distributed like the g-state Potts model with coupling constant J
satisfying e~/ = 1%, and defined on the dual (V(w),w)*.

3. in particular, o and ¢’ are independent.
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Edwards—Sokal property

Proof.

We claim that for fixed (w, o) with n(c’) C w, the weight of each consistent
configuration (w, o, ¢’), i.e., such that ¢ is constant on the clusters of w, is
equal to

@l (1 — p)len(@) plel

and in particular is independent of o.

Indeed each edge in
» n(o) contributes weight b by the definition of the spin model,

» w!\ n(c) also contributes weight b since this is the probability that a
dual edge {u;,u>} with o’ (u;) = o’(u,) ends up in w' in step (2) of the
definition of the edge percolation model.

This means that conditioned on (w, ¢’), we have a uniform distribution on all
spin configurations o such that (o) C wf. [



Random cluster model (a + b = 1)

Assume that M is of genus zero, and a + b = 1. Let

!

q

“7rar—1 <Ol

p

and let k(w) be the number of clusters of w. Then the marginal distribution
of P on w is given by

P(w) o (qq')*“)plI (1 — p)lE\I,

which is the FK(qq') random cluster model on G with free boundary
conditions.
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Six-vertex model (g = ¢' = 2)

+ + +

+ + - + + +
la  — 2a + 3a +
+ + +

— -+ - —
b — 2b  + 3b +

A primal edge (solid), its dual edge (dashed), and four corresponding medial
edges (blue). The sets of yellow primal and red dual edges 7 and r’ are given
by a mapping of Rys *63



Loop O(n) model (¢ =2,g=n,b=1)

Assume that G is trivalent, and ¢’ = 2, g = n, b = 1. Then

k loops i
P(n) o n*Mall o n# 00psmn(:_zl)|n|’

which is the law of the loop O(n) model with x = a/n.
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Random currents (¢ =2,qg=1,a> + b*> = 1)
Assume that M is of genus zero. Leta®> + b*> = 1, ¢’ = 2 and ¢ = 1. Then
P(n,w) o a™(1 — p)l«\lplE\l
which is the law of the sourceless single random current with a = tanh J.

Moreover, o is distributed like the /sing model.

19/29



Double random currents and XOR-Ising model
(¢ =qg=2,a*>+b*=1)

Proposition

Assume that M is of genus zero. Let x € (0, 1] be given by a = 2x/(1 + x?),
and let a®> + b> = 1 and ¢’ = ¢ = 2. Then

P(n,w) oc 2K@)HI@lylnl (2ylinl (1 _ 2B\

which is the law of the sourceless double random current with x = tanh J, or
equivalently a = tanh 2J.

Moreover, o and ¢’ are distributed like the XOR-Ising model.

The second part of the statement was first discovered during a discussion
with Roland Bauerschmidt, Hugo Duminil-Copin, and Aran Raoufi at IHES,
Bures-sur-Yvette, in 2017.
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An unconstrained spin system

Consider a spin model on (s,s’) € QY x Q' v given by the Gibbs-Boltzmann
distribution

ﬁ(sv SI) o exp ( Z 5s(v1),s(m) (Oé + 655’(v1),s’(\12)))’
{vi.m}eE

where

/

a:ln(lga) and ﬂ:ln(H— lq“a).

This is a special case of the model of Domany & Riedel *78.

Theorem

Assume that M is of genus zero. Then the distributions of ¢ under P, and of
s under /i are the same.
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Behaviour of height function

Consider the model on Ay = {—N,...,N}?, and let i’ = 0 on the
unbounded face of Ay.

Question
What is the behaviour of

Vary, [h'(1y)] as N — oo?

» variance bounded < [ocalization

» variance unbounded < delocalizatoin

In the case when ¢ = ¢/ = 2 and a = b, localization was proved for a < 1/2
(Duminil-Copin et al. ’16, Glazman & Peled ’18), and delocalization for

a = 1/2 (Duminil-Copin & Sidoravicius & Tassion, Glazman & Peled *18),
a=+"2 /2 (Kenyon ’99) and its small neighbourhood (Giuliani &
Mastropietro & Toninelli *14), and ¢ = 1 (Chandgotia et al. 2018).
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Height function <+ percolation

For uy,u; € U, let N(uy, uy) be the number of clusters of w disconnecting uy
from u,.

Theorem
Fora + b > 1, we have

Var[h'(ul) — hl(uz)] = E[N(ul, uz)] o
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Height function <+ percolation

Proof.
Fix ui,ur € U, and let

dh' = h(uy) — h(uy) and dol = op(uy) — ol (uy).

Note that if C does not disconnect u; from u,, then do, = 0.
We claim that

il = o(C)dor.

c

Indeed, let v = {iy, ..., } be a path of faces with #; = uy and it; = up. Let
v; be one of the two vertices of the edge dual to {u;, it }.
By (**), we have

1
dh' = ZU(V;‘)(U'(%) — o' (ij41)).



Height function <+ percolation

Therefore we have

Var|di'] =E [( 3 a(C)da’c) 2]

C
= E[o(Ci)do¢, 0(Cr)dog, | w]P(w)

= E[o(Ci)o(Co) | w]E[dog dog, | w]P(w)

E[(do)? | w]P(w)

where Ny = Ny(uy,u,) is the number of clusters C of w such that do, = d.



Height function <+ percolation

Assume that a + b > 1. Then

E[N0) 2 (1 = H)(EN] - 1).

Proof.
» LetCj,...,C} be the clusters of w’ that disconnect u; from u,.
» If two consecutive clusters C;,C;, | are assigned different spins, then

there exists a circuit in (¢”) disconnecting C; from Cj, |, and hence
also disconnecting u; from u,.
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» Conditioned on ¢’ and w’, we recover w by choosing randomly edges
from (w’)! and adding them to n(c’).

» This means that for every pair C/, C/, | with different spin o”, there
exists at least one cluster C of w, disconnecting u; from u,.

» Moreover, at least one of these clusters must satisfy do(, (u;,u2) # 0
(since the sum of do; over all such clusters is nonzero).

» This means that N is at least equal to the number of pairs C;, Cj |
with different spin o”.

» The latter is equal in distribution to the number of nearest neighbour
disagreements in an i.i.d. sequence of length N’.

This finishes the proof of Proposition and Theorem. [



Height function <+ percolation

Theorem

Consider a subsequential limit Pz = limy_, PTNk of the self-dual model
with ¢ = ¢’ and a = b > 1/2, and assume that

P, (w percolates) = 0.
Then
P2 (infinitely many clusters of w surround the origin) = 1.
and

lim  lim Varg, [A'(u;) — h'(uz)] = oo,
|1 —up| =00 k—00 L

where the height increment 4’ (u;) — k' (u,) is computed along one of the
shortest paths from u; to u, in the dual torus ']I‘}t,k.

28/29



Thank you!



