Limit shape of perfect matchings on square-hexagon lattice

Zhongyang Li
University of Connecticut

November 20, 2019

Perfect matching: definition

- $G=(V, E):|V|<\infty,|E|<\infty$
- Dimer configuration (perfect matching): subset of edges such that each vertex is incident to exactly one edge.
- Edge weight: $w: E(G) \rightarrow \mathbb{R}^{+} \cup\{0\}$;
- $\mathrm{P}(M)=\frac{1}{Z} \prod_{e \in M} w(e)$;
- Partition function $Z=\sum_{M} \prod_{e \in M} w(e)$.
- When $w(e)=1, \forall e \in E(G), Z$ is the total number of perfect matchings.

Perfect matching, dimer, and tiling

Figure: Perfect matching on square grid and domino tiling (by R. Kenyon)

Figure: Perfect matching on hexagonal lattice and lozenge tiling (by R. Kenyon)

Asymptotic behavior

Figure: Limit shapes of uniform random tilings on square grid and hexagonal lattice (by James Propp)

Previous work

- (Cohn, Kenyon and Propp 2001) A variational principle for domino tilings
- (Okounkov, Reshetikhin 2001) Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram
- (Kenyon, Okounkov 2007) Explicitly solved the variational problem, obtain limit shape and frozen boundary for uniform lozenge tilings with certain boundary condition
- (Petrov, Gorin, Panova, Bufetov, Knizel, 2012-2018) Uniform perfect matchings on hexagon lattice and square grid with certain boundary conditions: limit shape and height fluctuation
- (Boutillier, Bouttier, Chauy, Corteel, Ramassamy, 2015) Dimers on rail yard graph as a Schur process, correlation function

Whole-plane lattice: local structures

Figure: between levels m and $m+\frac{1}{2}$

Figure: between levels $m-\frac{1}{2}$ and m when $a_{m}=0$

Figure: between levels $m-\frac{1}{2}$ and m when $a_{m}=1$

Contracting lattice example: square grid

Figure: Rectangular Aztec diamond with $N=4, m=2, \Omega=(1,3,5,6)$, and $a_{i}=0$.

Contracting lattice examples: hexagon lattice

Figure: Contracting hexagon lattice with $N=4, m=2, \Omega=(1,2,4,6)$, and $a_{i}=1$.

Contracting lattice examples: square-hexagon lattice

Figure: Contracting square-hexagon lattice with $N=3, m=3$, $\Omega=(1,3,6),\left(a_{1}, a_{2}, a_{3}\right)=(1,0,1)$.

Overview

- Uniform boundary condition: $\Omega=(1, \ell, 2 \ell, \ldots, N \ell) ; \ell \in \mathbb{N}^{+}$ fixed.
- Piecewise boundary condition:
- $\frac{x_{i+1, N}}{x_{i, N}} \leq N^{-\alpha}$, where $1 \leq i \leq n-1, \alpha>0$.
$\rightarrow x_{1}=x_{2}=\ldots=x_{n}=1,\left\{y_{i}\right\}_{i \in I_{2}}$ periodic.

Partition, Schur function and counting measure

- Partition of length N : an N-tuple of non-increasing, nonnegative integers: $\mu=\left(\mu_{1} \geq \mu_{2} \geq \ldots, \geq \mu_{N} \geq 0\right)$.
- $\mathbb{G T}_{N}^{+}$: all the partitions of length N.
- $\lambda \in \mathbb{G T}_{N}^{+}$.
- rational Schur function

$$
s_{\lambda}\left(u_{1}, \ldots, u_{N}\right)=\frac{\operatorname{det}_{i, j \in 1, \ldots, N}\left(u_{i}^{\lambda_{j}+N-j}\right)}{\prod_{1 \leq i<j \leq N}\left(u_{i}-u_{j}\right)}
$$

- Counting measure:

$$
\begin{equation*}
m(\lambda)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\frac{\lambda_{i}+N-i}{N}\right) \tag{1}
\end{equation*}
$$

Correspondence between partition and dimer configurations

Figure: partition on the level- $\left(m-\frac{1}{2}\right)$ row: (10)

- $m \in\{0,1,2, \ldots\}$;
- P-vertices (resp. Q-vertices): vertices incident to at least one present edge (resp. vertices incident to only absent edges) between Levels $m-\frac{1}{2}$ and m.
- Assume at level $m-\frac{1}{2}$ of $\mathcal{R}(\Omega$, ă $)$ has $p_{j} P$-vertices and q_{j} Λ-vertices.
- The dimer configuration on level $m-\frac{1}{2}$ corresponds to a partition $\lambda^{\left(p_{j}\right)} \in \mathbb{G} \mathbb{T}_{p_{j}}$, where for $1 \leq i \leq p_{j}, \lambda_{i}^{\left(p_{j}\right)}$ is the number of Q-vertices on the right of the i th P-vertex (counting from the left)

Partition function and Schur polynomial

Theorem
(Boutillier and Li, 2017) The dimer partition function on $\mathcal{R}(\Omega$, ă $)$ with these weights is given by

$$
Z=\left[\prod_{i \in l_{2}} \Gamma_{i}\right] s_{\omega}\left(x_{1}, \ldots, x_{N}\right)
$$

where

$$
\begin{aligned}
\Gamma_{i} & =\prod_{t=i+1}^{N}\left(1+y_{i} x_{t}\right) \\
I_{2} & =\left\{k \in\{1, \ldots, N\} \mid a_{k}=0\right\}
\end{aligned}
$$

Uniform bottom boundary condition and periodic weights

- ℓ : fixed positive integer
- Uniform boundary condition:
$\omega=((N-1)(\ell-1),(N-2)(\ell-1), \ldots, \ell-1,0)$.
- $s_{\omega}\left(x_{1}, \ldots, x_{N}\right)=\prod_{1 \leq i<j \leq N} \frac{x_{i}^{\ell}-x_{j}^{\ell}}{x_{i}-x_{j}}$.
- $x_{i}=x_{[i \bmod n]} ; y_{i}=y_{[i \bmod n]}$.

Limit shape for uniform bottom boundary condition and periodic weights

Figure: Limit shape of perfect matchings on the square-hexagon lattice with weights $y_{1}=3, x_{1}=0.3, x_{2}=0.8, y_{3}=0.5, x_{3}=1.4, x_{4}=1.8$ and $\ell=1$

Limit shape for uniform bottom boundary condition and periodic weights

Figure: Limit shape of perfect matchings on the square-hexagon lattice with weights $y_{1}=3, x_{1}=10, x_{2}=0.1, y_{3}=0.5, x_{3}=3.0, x_{4}=0.3$ and $m=2$

Limit shape for uniform bottom boundary condition and

 periodic weights- $\kappa \in(0,1)$.

$$
\begin{aligned}
& Q_{\kappa}(u)=\frac{1}{1-\kappa} \\
& {\left[\frac{1}{n} \sum_{1 \leq j \leq n} \log \left(\frac{u^{m}-x_{j}^{m}}{u-x_{j}}\right)+\frac{\kappa}{n} \sum_{i \in\{1,2, \ldots, n\} \cap I_{2}} \log \left(1+y_{i} u\right)(\beta)\right.}
\end{aligned}
$$

- \mathbf{m}^{κ} : the limit of the counting measure for the partition corresponding to the dimer configuration on the $\lfloor 2 \kappa N\rfloor$ th row of the square-hexagon lattice, counting from the bottom.
- (Boutillier, Li 2017)

$$
\begin{aligned}
& \int_{\mathbb{R}} x^{p} \mathbf{m}^{\kappa}(d x) \\
= & \frac{1}{2(p+1) \pi \mathbf{i}} \oint_{C_{x_{1}, \ldots, x_{n}}} \frac{d z}{z}\left(z Q_{\kappa}^{\prime}(z)+\sum_{j=1}^{n} \frac{z}{n\left(z-x_{j}\right)}\right)^{p+1}:=I_{p},
\end{aligned}
$$

Proof of the limit shape with uniform bottom boundary condition

- $1 \leq k \leq 2 N+1, t=\left\lfloor\frac{k}{2}\right\rfloor$.
- ρ^{k} : probability measure for random partitions corresponding to the dimer configurations on the k th row of $\mathcal{R}(\Omega$, ă $)$, counting from the bottom.
- $X^{(N-t)}=\left(x_{\overline{t+1}}, \ldots, x_{\bar{N}}\right)$ where $\bar{i}=[i \bmod n]$.
- $Y^{(t)}=\left(x_{\overline{1}}, \ldots, x_{\bar{t}}\right)$.
- Schur generating function (definition):

$$
\mathcal{S}_{\rho^{k}, X^{(N-t)}}\left(u_{1}, \ldots, u_{N-t}\right)=\sum_{\lambda \in \mathbb{G T}_{N-t}^{+}} \rho^{k}(\lambda) \frac{s_{\lambda}\left(u_{1}, \ldots, u_{N-t}\right)}{s_{\lambda}\left(X^{(N-t)}\right)}
$$

Proof of the limit shape with uniform bottom boundary condition

- By Schur branching formula,

$$
\begin{aligned}
\mathcal{S}_{\rho^{k}, X(N-t)}\left(u_{1}, \ldots, u_{N-t}\right)= & \frac{s_{\omega}\left(u_{1}, \ldots, u_{N-t}, Y^{(t)}\right)}{s_{\omega}\left(X^{(N)}\right)} \\
& \prod_{i \in\{1,2, \ldots, t\} \cap 冃_{2}} \prod_{j=1}^{N-t}\left(\frac{1+y_{i} u_{j}}{1+y_{i}^{-} x_{\overline{t+j}}}\right)
\end{aligned}
$$

- $V_{N}=\prod_{1 \leq i<j \leq N}\left(u_{i}-u_{j}\right) ;$
- $\mathcal{D}_{p}=\frac{1}{V_{N}} \sum_{i=1}^{N}\left(u_{i} \frac{\partial}{\partial u_{i}}\right)^{p} V_{N}$;
- $\lambda^{(N-t)}$: partition corresponding to dimer configurations on the $(2 t)$ th or $(2 t+1)$ th row of $\mathcal{R}(\Omega$, ă $)$, counting from the bottom.

Proof of the limit shape with uniform bottom boundary condition

$$
\begin{array}{r}
\mathbb{E}\left(\int_{\mathbb{R}} x^{p} m\left[\lambda^{(N-t)}\right] d x\right)^{m}=\frac{1}{[(1-\kappa) N]^{m(I+1)}}\left(\mathcal{D}_{p}\right)^{m} \\
\left.\mathcal{S}_{\rho^{k}, X^{(N-t)}}\left(u_{1}, \ldots, u_{N-t}\right)\right|_{\left(u_{1}, \ldots, u_{N}\right)=\left(x_{1}, \ldots, x_{N}\right)}
\end{array}
$$

- Analyzing the leading terms,

$$
\begin{aligned}
& \mathbb{E}\left(\int_{\mathbb{R}} x^{p} m\left[\lambda^{(N-t)}\right] d x\right) \approx I_{p} \\
& \mathbb{E}\left(\int_{\mathbb{R}} x^{p} m\left[\lambda^{(N-t)}\right] d x\right)^{2} \approx I_{p}^{2}
\end{aligned}
$$

Frozen Boundary

- $\mathcal{R}:=\frac{1}{N} \mathcal{R}(\Omega$, ă $) ;$
- Liquid region \mathcal{L} : the set of (χ, κ) inside \mathcal{R} such that the density of \mathbf{m}^{κ} there is neither 0 nor 1 .
- Fact: density $f(x)$ of a measure η and Stieltjes transform: $f(x)=-\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\pi} \operatorname{Im}\left[\operatorname{St}_{\eta}(x+i \epsilon)\right]$.

Frozen boundary when $m=1$

$$
U(z)=\frac{z}{n} \sum_{i \in\{1,2, \ldots, n\} \cap L_{2}} \frac{y_{i}}{1+y_{i} z}, \quad V(z)=\sum_{j=1}^{n} \frac{z}{n\left(z-x_{j}\right)} .
$$

Frozen boundary

$$
(\chi, \kappa)=\left(\frac{U(z) V^{\prime}(z)-U^{\prime}(z) V(z)}{V^{\prime}(z)-U^{\prime}(z)}, \frac{V^{\prime}(z)}{V^{\prime}(z)-U^{\prime}(z)}\right) ;
$$

A cloud curve of rank $m+n$.

Frozen boundary when $m=2$

$$
W(z)=\frac{z}{n} \sum_{1 \leq j \leq n} \frac{1}{z+x_{j}}
$$

then

$$
\begin{aligned}
\chi & =\frac{W^{\prime}(z) U(z)+V^{\prime}(z) U(z)-U^{\prime}(z) V(z)-W^{\prime}(z) V(z)}{V^{\prime}(z)-U^{\prime}(z)}+W(z) \\
\kappa & =\frac{V^{\prime}(z)+W^{\prime}(z)}{V^{\prime}(z)-U^{\prime}(z)}
\end{aligned}
$$

for (χ, κ) on the frozen boundary. If we have m^{\prime} distinct values of x_{i} 's in the fundamental domain, then for $z=x_{i}$, we get that the the points $\left(U\left(x_{j}\right)+W\left(x_{j}\right), 1\right)$ are m^{\prime} tangent points of the frozen boundary to the line $\kappa=1$.

A formula for Schur function

- $\lambda(N) \in \mathbb{G} \mathbb{T}_{N}^{+}$
- Σ_{N} : symmetric group of N-elements.
- $\sigma \in \Sigma_{N}$.
- $\Sigma_{N}^{X}=\left\{\sigma \in \Sigma_{N}: x_{i}=x_{\sigma(i)}\right\}$.
- $\left[\Sigma_{N} / \Sigma_{N}^{X}\right]^{r}$: all the right cosets of Σ_{N}^{X} in Σ_{N}
- $\eta_{j}^{\sigma}(N)=\left|\left\{k: k>j, x_{\sigma(k)} \neq x_{\sigma(j)}\right\}\right|$.
- $\phi^{(i, \sigma)}(N)=\left\{\lambda_{j}(N)+\eta_{j}^{\sigma}(N), x_{\sigma(j)}=x_{i}\right\}$.
- $\phi^{(i, \sigma)}(N)$: the partition obtained by decreasingly ordering elements in $\Phi^{(i, \sigma)}(N)$.

A formula for Schur function

Theorem
$(L i, 2018) \lambda \in \mathbb{G T}_{N}^{+}$

$$
\begin{aligned}
s_{\lambda}\left(x_{1}, \ldots, x_{N}\right)= & \sum_{\bar{\sigma} \in\left[\Sigma_{N} / \Sigma_{N}^{x}\right]^{r}}\left(\prod_{i=1}^{n} x_{i}^{\left|\phi^{(i, \sigma)}(N)\right|}\right)\left(\prod_{i=1}^{n} s_{\phi(i, \sigma)}(N)\right. \\
& \times(1, \ldots, 1)) \\
& \times\left(\prod_{i<j, x_{\sigma(i)} \neq x_{\sigma(i)}} \frac{1}{x_{\sigma(i)}-x_{\sigma(j)}}\right)
\end{aligned}
$$

Corollary

- $1 \leq k \leq N$ and $k=q n+r$, where $r<n$ and q, r are positive integers.

$$
w_{i}= \begin{cases}u_{i} & \text { if } 1 \leq i \leq k \\ x_{i} & \text { if } k+1 \leq i \leq N\end{cases}
$$

$$
s_{\lambda}\left(w_{1}, \ldots, w_{N}\right)=
$$

$$
\sum_{\bar{\sigma} \in\left[\Sigma_{N} / \Sigma_{N}^{x}\right]^{r}}\left(\prod_{i=1}^{n} x_{i}^{\left|\phi^{(i, \sigma)}\right|}\right)\left(\prod _ { i = 1 } ^ { r } s _ { \phi (i , \sigma) } \left(\frac{u_{i}}{x_{i}}, \frac{u_{n+i}}{x_{i}} \ldots, \frac{u_{q n+i}}{x_{i}}, 1, \ldots,\right.\right.
$$

$$
\times\left(\prod_{i=r+1}^{n} s_{\phi(i, \sigma)}\left(\frac{u_{i}}{x_{i}}, \frac{u_{n+i}}{x_{i}} \ldots, \frac{u_{(q-1) n+i}}{x_{i}}, 1, \ldots, 1\right)\right)
$$

$$
\times\left(\prod_{i<j, x_{\sigma(i)} \neq x_{\sigma(i)}} \frac{1}{w_{\sigma(i)}-w_{\sigma(j)}}\right)
$$

Assumptions on edge weights

- $x_{1, N}>x_{2, N}>\ldots>x_{n, N}>0$;
- $\frac{N}{n}$ is a positive integer;
- $x_{i, N}=x_{j, N}$ if $[i \bmod n]=[j \bmod n]$;

$$
\liminf _{N \rightarrow \infty} \frac{\log \left(\min _{1 \leq i<j \leq n} \frac{x_{i, N}}{x_{j, N}}\right)}{\log N} \geq \alpha>0
$$

- α : a sufficiently large positive constant independent of N.

Piecewise boundary condition

- ω : partition on the bottom boundary.
- Let $1 \leq i \leq n-1$, for any $p \geq \frac{i N}{n}>q, \omega_{p}>\omega_{q}$.
- $\mu_{1}>\ldots>\mu_{t}$ are all the distinct elements in $\omega_{1}, \ldots, \omega_{N}$, with t a finite integer independent of N.
- $1 \leq p<q \leq s, C_{1} N \leq \mu_{p}-\mu_{q} \leq C_{2} N$

Limit shape with piecewise boundary condition

$$
\int_{\mathbb{R}} x^{p} \mathbf{m}^{\kappa}(d x)=\frac{1}{2 n(p+1) \pi \mathbf{i}} \sum_{i=1}^{n} \oint_{C_{1}} \frac{d z}{z}\left(z Q_{i, k}^{\prime}(z)+\frac{n-i}{n}+\frac{z}{n(z-1)}\right)^{p}
$$

where for $i=1$
$Q_{i, \kappa}(z)=\left[H_{m_{i}}(z)-(n-i) \log z+\kappa \sum_{r \in\{1,2, \ldots, n\} \cap \cap_{2}} \log \frac{1+y_{r} z x_{1}}{1+y_{r} x_{1}}\right]$
for $2 \leq i \leq n$,

$$
Q_{i, \kappa}(z)=\frac{1}{(1-\kappa) n}\left[H_{\mathbf{m}_{i}}(z)-(n-i) \log z\right]
$$

Limit shape with piecewise boundary condition

- $\bar{\sigma}_{0} \in\left[\Sigma_{N} / \Sigma_{N}^{X}\right]^{r}$, such that $x_{\sigma_{0}(1)} \geq x_{\sigma_{0}(2)} \geq \ldots \geq x_{\sigma_{0}(N)}$.
- \mathbf{m}_{i} : the limit of the counting measure for $\phi^{\left(i, \sigma_{0}\right)}$.
$>H_{\mathbf{m}_{i}}^{\prime}(u)=\frac{\mathrm{St}_{\mathbf{m}_{i}}^{(-1)}(u)}{u}-\frac{1}{u-1}$.

$$
\begin{array}{r}
s_{\lambda}\left(x_{1}, \ldots, x_{N}\right) \approx\left(\prod_{i=1}^{n} x_{i}^{\left|\phi^{\left(i, \sigma_{0}\right)}(N)\right|}\right)\left(\prod_{i=1}^{n} s_{\phi^{\left(i, \sigma_{0}\right)}(N)}(1, \ldots, 1)\right) \\
\times\left(\prod_{i<j, x_{\sigma_{0}}(i) \neq x_{\sigma_{0}(j)}} \frac{1}{x_{\sigma_{0}(i)}-x_{\sigma_{0}(j)}}\right)
\end{array}
$$

Proof of Limit Shape

$$
\begin{aligned}
& s_{\lambda}\left(w_{1}, \ldots, w_{N}\right) \approx \\
& \left(\prod_{i=1}^{n} x_{i}^{\left|\phi^{\left(i, \sigma_{0}\right)}\right|}\right)\left(\prod_{i=1}^{r} s_{\phi^{\left(i, \sigma_{0}\right)}}\left(\frac{u_{i}}{x_{i}}, \frac{u_{n+i}}{x_{i}} \ldots, \frac{u_{q n+i}}{x_{i}}, 1, \ldots, 1\right)\right) \\
& \times\left(\prod_{i=r+1}^{n} s_{\phi^{\left(i, \sigma_{0}\right)}}\left(\frac{u_{i}}{x_{i}}, \frac{u_{n+i}}{x_{i}} \ldots, \frac{u_{(q-1) n+i}}{x_{i}}, 1, \ldots, 1\right)\right) \\
& \times\left(\prod_{i<j, x_{\sigma_{0}(i)} \neq x_{\sigma_{0}(j)}}^{w_{\sigma_{0}(i)}-w_{\sigma_{0}(j)}}\right)
\end{aligned}
$$

Asymptotic Analysis

- $\left|\Sigma_{N}\right|=N!, \Sigma_{N}^{X}=\left[\left(\frac{N}{n}\right)!\right]^{n}$, hence $\lim _{N \rightarrow \infty} \frac{1}{N} \log \left|\left(\Sigma_{N} / \sum_{N}^{X}\right)^{r}\right|=n$.
- for any $\sigma \in \Sigma_{N},\left|\frac{\prod_{i<j, i, x_{0}(i) \neq x_{0}(j)}\left(x_{\sigma_{0}(i)}-x_{\sigma_{0}(j)}\right.}{\prod_{\left.i j, i, x_{\sigma(i)}\right) \neq \alpha_{\sigma}(j)}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)}\right|=1$.

certain function measuring the difference of σ_{0} and σ

- $s_{\phi(i, \sigma)}(1, \ldots, 1)=\prod_{1 \leq j<k \leq \frac{N}{n}} \frac{\phi_{j}^{(i, \sigma)}-\phi_{k}^{(i, \sigma)}+k-j}{k-j}$.
- $s_{\phi\left(i, \sigma_{0}\right)}(1, \ldots, 1) \geq 1$.
- Under the assumption of edge weights,

$$
\left|\frac{s_{\phi}\left(i, \sigma_{0}\right)(1, \ldots, 1)}{s_{\phi}^{(i, \sigma)}(1, \ldots, 1)}\right| \geq N^{-C D\left(\sigma_{0}, \sigma\right)}
$$

for some constant C.

Proof of Limit Shape

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log \left[\frac{s_{\lambda}\left(w_{1, N}, \ldots, w_{N, N}\right)}{s_{\lambda}\left(x_{1, N}, \ldots, x_{N, N}\right)}\right]=\sum_{i=1}^{k}\left[P_{i}\left(u_{i}\right)\right]
$$

where

1. if $[i \bmod n] \neq 0, P_{i}(u)=\frac{H_{\mathrm{m}_{[i \bmod n]}(u)}}{n}-\frac{(n-[i \bmod n]) \log (u)}{n}$.
2. if $[i \bmod n]=0, P_{i}(u)=\frac{H_{m_{n}}(u)}{n}$.

Frozen Boundary

- $\operatorname{St}_{\mathbf{m}^{\kappa}}(x)=\sum_{i=1}^{n} \log \left(z_{i}(x)\right) ; z_{i}(x)$ is a root of $F_{i, \kappa}(z)=x$, and

$$
F_{i, \kappa}(z)=z Q_{i, \kappa}^{\prime}(z)+\frac{n-i}{n}+\frac{z}{n(z-1)} .
$$

- $F_{i, \kappa}(z)=x$ has at most one pair of complex conjugate roots.
- For $1 \leq i \leq n$, the condition on (χ, κ) such that $F_{i, \kappa}(z)=\frac{\chi}{1-\kappa}$ has double roots are disjoint cloud curves.

Limit shape with piecewise boundary condition

Figure: Frozen boundary for a contracting hexagonal lattice when $n=2$, $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(12,8,5,2)$, represented by the union of the red curve and the blue curve.

Figure: Frozen boundary for a contracting square hexagon lattice with $n=2,\left|I_{2} \cap\{1,2\}\right|=1$ when $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(12,8,5,2), c_{r}=\frac{1}{2}$, represented by the union of the red curve and the blue curve.

Gaussian Unitary Ensemble (GUE)

- GUE: a random Hermitian matrix whose eigenvalues $\epsilon_{1} \geq \epsilon_{2} \geq \ldots \epsilon_{k}$ have a distribution $\mathbb{P}_{\mathbb{G U E}}^{k}$ on \mathbb{R}^{k} with a density with respect to the Lebesgue measure on \mathbb{R}^{k} proportional to:

$$
\prod_{1 \leq i<j \leq k}\left(\epsilon_{i}-\epsilon_{j}\right)^{2} \exp \left(-\sum_{i=1}^{k} \epsilon_{i}^{2}\right)
$$

Dimers near the top and GUE

- $x_{1}=\ldots=x_{N}=1$.
- $y_{i}=y_{[i \bmod n]}$.
- $\lambda^{k}(N)$ be the signature corresponding to the dimer configuration incident to the ($N-k+1$) th row of white vertices in $\mathcal{R}(\Omega(N)$, ă $)$, and for $1 \leq I \leq k$,
- $b_{k l}^{N}=\lambda_{l}^{k}(N)+N-l$.
- $\psi_{1}=\int_{\mathbb{R}} x d \mathbf{m}^{1} ; \psi_{2}=\int_{\mathbb{R}} x^{2} d \mathbf{m}^{1}$
where \mathbf{m}^{1} is the limit counting measure of signatures on the top of $\mathcal{R}(\Omega(N)$, ă $)$.

$$
\tilde{b}_{k l}^{(N)}=\frac{\frac{b_{k l}^{(N)}}{\sqrt{N}}-\sqrt{N}\left(\psi_{1}-\frac{1}{2}+\frac{1}{n} \sum_{i \in l_{2} \cap\{1, \ldots, n\}} \frac{y_{i}}{1+y_{i}}\right)}{\psi_{2}-\psi_{1}^{2}-\frac{1}{12}+\frac{1}{n} \sum_{i \in I_{2} \cap\{1,2, \ldots, n\}} \frac{y_{i}}{\left(1+y_{i}\right)^{2}}}, 1 \leq I \leq k .
$$

Theorem
(Boutillier and Li 2017) For any fixed k, the distribution of $\left(\tilde{b}_{k l}^{(N)}\right)_{I=1}^{k}$ converges weakly to $\mathbb{P}_{\mathbb{G U E}}^{k}$ as $N \rightarrow \infty$.

- $\left(q_{1}, \ldots, q_{k}\right) \in \mathbb{R}^{k}$ be a random vector with distribution \mathbb{P}
- $Q=\operatorname{diag}\left[q_{1}, \ldots, q_{k}\right]$.
- \mathbb{P} is $\mathbb{P}_{\mathbb{G U E}_{k}}$ if and only if for any diagonal matrix P,

$$
\mathbb{E} \int_{U(k)} \exp \left[\operatorname{Tr}\left(P U Q U^{*}\right)\right] d U=\exp \left(\frac{1}{2} \operatorname{Tr} P^{2}\right)
$$

Figure: Limit shape of perfect matchings on the square-hexagon lattice with periodic weights $x_{1}=x_{2}=x_{3}=x_{4}=1, y_{1}=3, y_{3}=0.5$.

Thank you!

