On the rough-smooth interface in the two-periodic Aztec diamond

Kurt Johansson
(Joint work with Sunil Chhita and Vincent Beffara)

BIRS, November 21, 2019

Aztec diamond

A domino tiling of an Aztec diamond shape corresponds to a dimer configuration on the Aztec graph.

Probability measure

Let $\nu(e)>0$ be the weight of the edge e in the graph \mathcal{G}. The probability of a certain dimer cover C, i.e. each vertex is covered exactly once, is

$$
\frac{1}{Z} \prod_{e \in C} \nu(e)
$$

Z is the partition function.

Two Periodic Weighting

The two-periodic weighting of the Aztec diamond is defined in the following way. For a two-colouring of the faces, the edge weights around a particular coloured face alternate between a and b, we have a-edges and b-edges. E.g. for a size 4 Aztec diamond

Random tiling of a two-periodic Aztec diamond

Aztec diamond height function

To each tiling of an Aztec diamond we can associate a height function. The heights sit on the faces of the Aztec graph. The height differences between two faces are given by

- $+3(-3)$ if we cross a dimer with a white vertex to the right (left)
- $+1(-1)$ if we do not cross a dimer and have a white vertex to the left (right)

Two-periodic Aztec diamond height function

Two-periodic Aztec diamond height function

Picture by V. Beffara

Kasteleyn Matrix

We choose a Kasteleyn sign, $s(e),|s(e)|=1$, for each edge with certain properties, and then define the Kasteleyn matrix \mathbb{K} with elements

$$
\mathbb{K}\left(b_{i}, w_{j}\right)=s\left(b_{i}, w_{j}\right) \nu\left(b_{i}, w_{j}\right) .
$$

This is a signed weighted adjacency matrix for the graph. For the Aztec diamond graph we can take

$$
\mathbb{K}(b, w)= \begin{cases}\nu(b w) & \text { if } e=(b, w) \text { is horizontal } \\ \mathrm{i} \nu(b w) & \text { if } e=(b, w) \text { is vertical } \\ 0 & \text { otherwise (i.e. no edge between } b \text { and } w)\end{cases}
$$

Kasteleyn's theorem

Let \mathbb{K} be a Kasteleyn matrix
Theorem (Kasteleyn)

$$
\operatorname{det}(\mathbb{K})=S Z,
$$

where Z is the partition function, and $|S|=1$.

Kasteleyn's theorem

Let \mathbb{K} be a Kasteleyn matrix
Theorem (Kasteleyn)

$$
\operatorname{det}(\mathbb{K})=S Z
$$

where Z is the partition function, and $|S|=1$.
It follows from Kasteleyn's theorem that
Theorem (Montroll-Potts-Ward, Kenyon)
If $e_{i}=\left(b_{i}, w_{i}\right)$, then the probability that e_{1}, \ldots, e_{m} belong to a dimer cover is

$$
\mathbb{P}\left(e_{1}, \ldots, e_{m}\right)=\operatorname{det}\left(\mathbb{K}\left(b_{i}, w_{i}\right) \mathbb{K}^{-1}\left(w_{i}, b_{j}\right)\right)_{1 \leq i, j \leq m}
$$

This means that the dimers form a determinantal point process with correlation kernel $K\left(e_{i}, e_{j}\right)=\mathbb{K}\left(b_{i}, w_{i}\right) \mathbb{K}^{-1}\left(w_{i}, b_{j}\right), e_{i}=\left(b_{i}, w_{i}\right)$.

A simulation of the two-periodic Aztec diamond

Figure: $n=200, a=0.5, b=1$ with 8 grayscale colors

Phases

The curve in the picture is a degree 8 curve with two real components. We get three regions which are called frozen, rough and smooth.

Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting translation invariant Gibbs measures that are possible for bipartite dimer models on the plane.

There are three classes of Gibbs measures, frozen, rough and smooth, given by an appropriate infinite, translation-invariant full-plane inverse Kasteleyn matrix \mathbb{K}^{-1}.

Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting translation invariant Gibbs measures that are possible for bipartite dimer models on the plane.

There are three classes of Gibbs measures, frozen, rough and smooth, given by an appropriate infinite, translation-invariant full-plane inverse Kasteleyn matrix \mathbb{K}^{-1}.

Correlations between dominos decay polynomially with distance in the rough region, and exponentially in the smooth region.

Rough-smooth boundary

We now have two types of boundaries, the rough-frozen boundary and the rough-smooth boundary.

Rough-smooth boundary

What can we say about the interface fluctuations at the rough-smooth boundary? What is actually the interface?

Rough-smooth boundary

What can we say about the interface fluctuations at the rough-smooth boundary? What is actually the interface?

The rough-frozen interface is well-defined, the first place when the regular pattern is broken

At the rough-smooth boundary the situation is less clear. How should we define the interface combinatorially at the discrete level?

Formula for the inverse Kasteleyn matrix in the two-periodic case

The coordinate system that we use is indicated in the figure.

The inverse Kasteleyn Matrix

Theorem (Chhita-J. based on Chhita-Young)
Consider an Aztec diamond of size $n=4 m$ with the two-periodic weighting and let \mathbb{K}_{m} be its Kasteleyn matrix. Then,

$$
\mathbb{K}_{m}^{-1}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\mathbb{K}_{s m}^{-1}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)-\sum_{i=1}^{4} B_{i}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right),
$$

where $\mathbb{K}_{s m}^{-1}$ is the full-plane inverse Kasteleyn matrix for the smooth phase, which has an explicit double integral formula, and B_{1}, \ldots, B_{4} are contributions also given by explicit double integral formulas.

The inverse Kasteleyn Matrix

Theorem (Chhita-J. based on Chhita-Young)

Consider an Aztec diamond of size $n=4 m$ with the two-periodic weighting and let \mathbb{K}_{m} be its Kasteleyn matrix. Then,

$$
\mathbb{K}_{m}^{-1}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\mathbb{K}_{s m}^{-1}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)-\sum_{i=1}^{4} B_{i}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right),
$$

where $\mathbb{K}_{\text {sm }}^{-1}$ is the full-plane inverse Kasteleyn matrix for the smooth phase, which has an explicit double integral formula, and B_{1}, \ldots, B_{4} are contributions also given by explicit double integral formulas.
Recently a more systematic approach has been developed to get the inverse Kasteleyn matrix or, more specifically, a closely related correlation kernel for an associated particle process, see The two periodic Aztec diamond and matrix valued orthogonal polynomials, by Maurice Duits, Arno B.J. Kuijlaars and Correlation functions for determinantal processes defined by infinite block Toeplitz minors, by T. Berggren, M. Duits.

Airy kernel point process

Figure: The Airy line ensemble. The top path is the Airy process.

Airy kernel point process

The extended Airy point process is a determinantal point process on parallel lines $\left\{\tau_{q}\right\} \times \mathbb{R}, 1 \leq q \leq L_{1}$ in \mathbb{R}^{2}. We can think of it as a random measure μ_{Ai} defined via a Laplace transform. Let $A_{p}, 1 \leq p \leq L_{2}$, be disjoint intervals in $\mathbb{R}, w_{p, q} \in \mathbb{C}$,

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\sum_{p=1}^{L_{2}} \sum_{q=1}^{L_{1}} w_{p, q} \mu_{\mathrm{Ai}}\left(\left\{\tau_{q}\right\} \times A_{p}\right)\right)\right] \\
& =\operatorname{det}\left(I+\left(e^{\Psi}-1\right) K_{\mathrm{extAi}}\right)_{L^{2}\left(\left\{\tau_{1}, \ldots, \tau_{q}\right\} \times \mathbb{R}\right)}
\end{aligned}
$$

where

$$
\Psi(x)=\sum_{q=1}^{L_{1}} \sum_{p=1}^{L_{2}} w_{p, q} \mathbb{I}_{\left\{\tau_{q}\right\} \times A_{p}}(x)
$$

Airy kernel point process

The extended Airy point process is a determinantal point process on parallel lines $\left\{\tau_{q}\right\} \times \mathbb{R}, 1 \leq q \leq L_{1}$ in \mathbb{R}^{2}. We can think of it as a random measure μ_{Ai} defined via a Laplace transform. Let $A_{p}, 1 \leq p \leq L_{2}$, be disjoint intervals in $\mathbb{R}, w_{p, q} \in \mathbb{C}$,

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(\sum_{p=1}^{L_{2}} \sum_{q=1}^{L_{1}} w_{p, q} \mu_{\mathrm{Ai}}\left(\left\{\tau_{q}\right\} \times A_{p}\right)\right)\right] \\
& =\operatorname{det}\left(I+\left(e^{\Psi}-1\right) K_{\text {extAi }}\right)_{L^{2}\left(\left\{\tau_{1}, \ldots, \tau_{q}\right\} \times \mathbb{R}\right)},
\end{aligned}
$$

where

$$
\Psi(x)=\sum_{q=1}^{L_{1}} \sum_{p=1}^{L_{2}} w_{p, q} \mathbb{I}_{\left\{\tau_{q}\right\} \times A_{p}}(x) .
$$

Recall that the extended Airy kernel is given by

$$
K_{\mathrm{extAi}}\left(\tau_{1}, \xi_{1} ; \tau_{2}, \xi_{2}\right)=-\phi_{\tau_{1}, \tau_{2}}\left(\xi_{1}, \xi_{2}\right)+\tilde{K}_{\mathrm{extAi}}\left(\tau_{1}, \xi_{1} ; \tau_{2}, \xi_{2}\right),
$$

where

$$
\tilde{K}_{\text {extAi }}\left(\tau_{1}, \xi_{1} ; \tau_{2}, \xi_{2}\right)=\int_{0}^{\infty} e^{-\lambda\left(\tau_{1}-\tau_{2}\right)} \operatorname{Ai}\left(\xi_{1}+\lambda\right) \operatorname{Ai}\left(\xi_{2}+\lambda\right) d \lambda .
$$

Asymptotics for the inverse Kasteleyn matrix at the rough-smooth boundary

Let $x=\left(x_{1}, x_{2}\right)$ be a white vertex and $y=\left(y_{1}, y_{2}\right)$ a black vertex. Scaling around a point at the rough-smooth boundary:

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=\left(4[\rho m]+2\left[c_{1} \xi_{1} m^{1 / 3}\right](1,1)-2\left[c_{2} \tau_{1} m^{2 / 3}\right](-1,1),\right. \\
& \left(y_{1}, y_{2}\right)=\left(4[\rho m]+2\left[c_{1} \xi_{2} m^{1 / 3}\right](1,1)-2\left[c_{2} \tau_{2} m^{2 / 3}\right](-1,1) .\right.
\end{aligned}
$$

Asymptotics for the inverse Kasteleyn matrix at the rough-smooth boundary

Let $x=\left(x_{1}, x_{2}\right)$ be a white vertex and $y=\left(y_{1}, y_{2}\right)$ a black vertex. Scaling around a point at the rough-smooth boundary:

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right)=\left(4[\rho m]+2\left[c_{1} \xi_{1} m^{1 / 3}\right](1,1)-2\left[c_{2} \tau_{1} m^{2 / 3}\right](-1,1)\right. \\
& \left(y_{1}, y_{2}\right)=\left(4[\rho m]+2\left[c_{1} \xi_{2} m^{1 / 3}\right](1,1)-2\left[c_{2} \tau_{2} m^{2 / 3}\right](-1,1)\right.
\end{aligned}
$$

Asymptotics

$$
\mathbb{K}_{m}^{-1}(x, y)=\mathbb{K}_{\mathrm{sm}}^{-1}(x, y)-m^{-1 / 3}(\text { pre-factor }) \tilde{K}_{\mathrm{ext} \mathrm{Ai}}\left(\tau_{1}, \xi_{1}+\tau_{1}^{2} ; \tau_{2}, \xi_{2}+\tau_{2}^{2}\right)(1+o(1))
$$

$$
\text { as } m \rightarrow \infty
$$

Random measure from the height function

Random measure from the height function

Random measure

Height differences between two points in a vicinity of the rough-smooth boundary are due to two effects:

- Small and basically independent height fluctuations due to the "surrounding smooth phase".
- Long distance correlated effects due to the large scale structures that we see in the figure.
- By taking suitable averages of height differences we could hope to eliminate the small scale smooth phase effects. This is the idea behind the definition of a certain random signed measure.

Random measure

Consider a two-periodic Aztec diamond of size $n=4 m$.
We want to imbed the intervals A_{p} as discrete intervals of length $\sim m^{1 / 3}$ in the Aztec diamond at the rough-smooth boundary. Consider only one interval, $A=\left[a^{\prime}, a^{r}\right]$. We want to imbed $M=\left[(\log m)^{4}\right]$ copies of it as discrete intervals starting and ending at a-faces a certain distance apart.

Random measure

The height change along a discrete interval

$$
\Delta h(I)=h\left(F_{+}(I)\right)-h\left(F_{-}(I)\right) .
$$

Random measure

The height change along a discrete interval

$$
\Delta h(I)=h\left(F_{+}(I)\right)-h\left(F_{-}(I)\right) .
$$

Random signed measure

$$
\mu_{m}(\{\beta\} \times A)=\frac{1}{4 M} \sum_{k=1}^{M} \Delta h\left(I_{k}\right) .
$$

Random measure

Random signed measure

$$
\mu_{m}(\{\beta\} \times A)=\frac{1}{4 M} \sum_{k=1}^{M} \Delta h\left(I_{k}\right) .
$$

Theorem (Beffara, Chhita, J., 18)
The random signed measure μ_{m} converges to $\mu_{A i}$.
For one interval the result is

$$
\lim _{m \rightarrow \infty} \mathbb{E}\left[e^{w \mu_{m}(A)}\right]=\mathbb{E}\left[e^{w \mu_{\mathrm{Ai}}(A)}\right]
$$

for $w \in \mathbb{C},|w|<R$.

Squishing

An a-dimer is a dimer that covers an a-edge. They are oriented from white to black.

Figure: The red dimers are a-dimers, and the black b-dimers.

Squishing

We let the b-faces become smaller, go to zero in size.
KKK

Squishing

We get double edges, loops and paths.

Paths and Loops

To get a unique split between paths and loops and get well-defined loops we need a convention. We use mirrors.

Paths

The paths go between the boundaries.

Figure: After squishing.

Paths

The paths go between the boundaries.

Figure: After squishing, $n=300, a=0.5$.

What we would like to prove

With high probability, if we go along the main diagonal there is a last path in the third quadrant close to the asymptotic rough-smooth boundary and this path converges to the Airy process.

What we can prove

Let $h(f)$ be the height at the a-face f in the Aztec diamond. Then we can split it into two parts:

$$
h(f)=h_{\ell}(f)+h_{c}(f)
$$

where $h_{\ell}(f)$ is the loop height and $h_{c}(f)$ is the corridor height.

What we can prove

Assume that $a<1 / 3$. Imbed the interval A as a discrete interval of length $\sim m^{1 / 3}$ in the Aztec diamond at the rough-smooth boundary. Define the new random signed measure

$$
\kappa_{m}(\{\beta\} \times A)=\frac{1}{4}\left(h_{c}\left(F_{+}\right)-h_{c}\left(F_{-}\right)\right),
$$

where F_{+}and F_{-}are the end-faces of the discrete imbedded interval. Then $\kappa_{m}(\{\beta\} \times A)$ converges weakly to $\mu_{\mathrm{Ai}}(\{\beta\} \times A)$ as $m \rightarrow \infty$, where μ_{Ai} is the Airy kernel point process.

We expect that with high probability κ_{m} is actually a positive measure. We should think of κ_{m} as counting the number of paths between the two faces.

Ingredients in the proof

- Show that the averaging in the random signed measure μ_{m} can be done along a single line instead of on parallel lines.
- We control the size of the loops; in a box of size L they are no bigger than $C \log L$. This uses a Peierls' type argument and requires $a<1 / 3$.
- In a not too large region at the rough-smooth boundary the two-periodic Aztec measure can be replaced by the full-plane smooth measure.
- There are no bi-infinite paths in the full-plane smooth phase.

Thank you for listening!

