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Aztec diamond

A domino tiling of an Aztec diamond shape corresponds to a dimer
configuration on the Aztec graph.



Probability measure

Let ν(e) > 0 be the weight of the edge e in the graph G. The probability
of a certain dimer cover C , i.e. each vertex is covered exactly once, is

1

Z

∏
e∈C

ν(e).

Z is the partition function.



Two Periodic Weighting

The two-periodic weighting of the Aztec diamond is defined in the
following way. For a two-colouring of the faces, the edge weights around
a particular coloured face alternate between a and b, we have a-edges
and b-edges. E.g. for a size 4 Aztec diamond
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Random tiling of a two-periodic Aztec diamond



Aztec diamond height function
To each tiling of an Aztec diamond we can associate a height function.
The heights sit on the faces of the Aztec graph. The height differences
between two faces are given by

• +3 (−3) if we cross a dimer with a white vertex to the right (left)

• +1 (−1) if we do not cross a dimer and have a white vertex to the
left (right)
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Two-periodic Aztec diamond height function



Two-periodic Aztec diamond height function

Picture by V. Beffara



Kasteleyn Matrix

We choose a Kasteleyn sign, s(e), |s(e)| = 1, for each edge with certain
properties, and then define the Kasteleyn matrix K with elements

K(bi ,wj) = s(bi ,wj)ν(bi ,wj).

This is a signed weighted adjacency matrix for the graph.
For the Aztec diamond graph we can take

K(b,w) =

 ν(bw) if e = (b,w) is horizontal
iν(bw) if e = (b,w) is vertical
0 otherwise (i.e. no edge between b and w)



Kasteleyn’s theorem

Let K be a Kasteleyn matrix

Theorem (Kasteleyn)

det(K) = SZ ,

where Z is the partition function, and |S | = 1.

It follows from Kasteleyn’s theorem that

Theorem (Montroll-Potts-Ward, Kenyon)
If ei = (bi ,wi ), then the probability that e1, . . . , em belong to a dimer
cover is

P(e1, . . . , em) = det
(
K(bi ,wi )K−1(wi , bj)

)
1≤i,j≤m

This means that the dimers form a determinantal point process with
correlation kernel K (ei , ej) = K(bi ,wi )K−1(wi , bj), ei = (bi ,wi ).
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A simulation of the two-periodic Aztec diamond

Figure: n = 200, a = 0.5, b = 1 with 8 grayscale colors



Phases
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The curve in the picture is a degree 8 curve with two real components.
We get three regions which are called frozen, rough and smooth.



Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting
translation invariant Gibbs measures that are possible for bipartite
dimer models on the plane.

There are three classes of Gibbs measures, frozen, rough and smooth,
given by an appropriate infinite, translation-invariant full-plane inverse
Kasteleyn matrix K−1.



Phases

Kenyon, Okounkov and Sheffield have characterized the different limiting
translation invariant Gibbs measures that are possible for bipartite
dimer models on the plane.

There are three classes of Gibbs measures, frozen, rough and smooth,
given by an appropriate infinite, translation-invariant full-plane inverse
Kasteleyn matrix K−1.

Correlations between dominos decay polynomially with distance in the
rough region, and exponentially in the smooth region.



Rough-smooth boundary

We now have two types of boundaries, the rough-frozen boundary and
the rough-smooth boundary.
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Rough-smooth boundary
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What can we say about the interface fluctuations at the rough-smooth
boundary? What is actually the interface?



Rough-smooth boundary

What can we say about the interface fluctuations at the rough-smooth
boundary? What is actually the interface?

The rough-frozen interface is well-defined, the first place when the
regular pattern is broken

At the rough-smooth boundary the situation is less clear. How should we
define the interface combinatorially at the discrete level?



Formula for the inverse Kasteleyn matrix in the
two-periodic case
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The coordinate system that we use is indicated in the figure.



The inverse Kasteleyn Matrix

Theorem (Chhita-J. based on Chhita-Young)
Consider an Aztec diamond of size n = 4m with the two-periodic
weighting and let Km be its Kasteleyn matrix. Then,

K−1
m ((x1, x2), (y1, y2)) = K−1

sm ((x1, x2), (y1, y2))−
4∑

i=1

Bi ((x1, x2), (y1, y2)),

where K−1
sm is the full-plane inverse Kasteleyn matrix for the smooth

phase, which has an explicit double integral formula, and B1, . . . ,B4 are
contributions also given by explicit double integral formulas.
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Theorem (Chhita-J. based on Chhita-Young)
Consider an Aztec diamond of size n = 4m with the two-periodic
weighting and let Km be its Kasteleyn matrix. Then,

K−1
m ((x1, x2), (y1, y2)) = K−1

sm ((x1, x2), (y1, y2))−
4∑

i=1

Bi ((x1, x2), (y1, y2)),

where K−1
sm is the full-plane inverse Kasteleyn matrix for the smooth

phase, which has an explicit double integral formula, and B1, . . . ,B4 are
contributions also given by explicit double integral formulas.

Recently a more systematic approach has been developed to get the
inverse Kasteleyn matrix or, more specifically, a closely related correlation
kernel for an associated particle process, see The two periodic Aztec
diamond and matrix valued orthogonal polynomials, by Maurice Duits,
Arno B.J. Kuijlaars and Correlation functions for determinantal processes
defined by infinite block Toeplitz minors, by T. Berggren, M. Duits.



Airy kernel point process

Figure: The Airy line ensemble. The top path is the Airy process.



Airy kernel point process

The extended Airy point process is a determinantal point process on
parallel lines {τq}×R, 1 ≤ q ≤ L1 in R2. We can think of it as a random
measure µAi defined via a Laplace transform. Let Ap, 1 ≤ p ≤ L2, be
disjoint intervals in R, wp,q ∈ C,

E
[

exp

( L2∑
p=1

L1∑
q=1

wp,qµAi ({τq} × Ap)

)]
= det

(
I + (eΨ − 1)KextAi

)
L2({τ1,...,τq}×R)

,

where

Ψ(x) =
L1∑
q=1

L2∑
p=1

wp,qI{τq}×Ap
(x).
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,

where

Ψ(x) =
L1∑
q=1

L2∑
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wp,qI{τq}×Ap
(x).

Recall that the extended Airy kernel is given by

KextAi(τ1, ξ1; τ2, ξ2) = −φτ1,τ2 (ξ1, ξ2) + K̃extAi(τ1, ξ1; τ2, ξ2),

where

K̃extAi(τ1, ξ1; τ2, ξ2) =

∫ ∞
0

e−λ(τ1−τ2)Ai (ξ1 + λ)Ai (ξ2 + λ) dλ.



Asymptotics for the inverse Kasteleyn matrix at the
rough-smooth boundary

Let x = (x1, x2) be a white vertex and y = (y1, y2) a black vertex.
Scaling around a point at the rough-smooth boundary:

(x1, x2) = (4[ρm] + 2[c1ξ1m
1/3](1, 1)− 2[c2τ1m

2/3](−1, 1),

(y1, y2) = (4[ρm] + 2[c1ξ2m
1/3](1, 1)− 2[c2τ2m

2/3](−1, 1).
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Asymptotics

K−1
m (x , y) = K−1

sm (x , y)−m−1/3(pre-factor)K̃extAi(τ1, ξ1+τ 2
1 ; τ2, ξ2+τ 2

2 )(1+o(1))

as m→∞.



Random measure from the height function



Random measure from the height function



Random measure

Height differences between two points in a vicinity of the rough-smooth
boundary are due to two effects:

• Small and basically independent height fluctuations due to the
”surrounding smooth phase”.

• Long distance correlated effects due to the large scale structures
that we see in the figure.

• By taking suitable averages of height differences we could hope to
eliminate the small scale smooth phase effects. This is the idea
behind the definition of a certain random signed measure.



Random measure

Consider a two-periodic Aztec diamond of size n = 4m.

We want to imbed the intervals Ap as discrete intervals of length ∼ m1/3

in the Aztec diamond at the rough-smooth boundary. Consider only one
interval, A = [al , ar ]. We want to imbed M = [(logm)4] copies of it as
discrete intervals starting and ending at a-faces a certain distance apart.

M

Ij,1

Ij,2

Ij,M



Random measure

I

F+(I)

F−(I)

a

a

The height change along a discrete interval

∆h(I ) = h(F+(I ))− h(F−(I )).



Random measure

I

F+(I)
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The height change along a discrete interval

∆h(I ) = h(F+(I ))− h(F−(I )).

Random signed measure

µm({β} × A) =
1

4M

M∑
k=1

∆h(Ik).



Random measure

Random signed measure

µm({β} × A) =
1

4M

M∑
k=1

∆h(Ik).

Theorem (Beffara, Chhita, J., 18)
The random signed measure µm converges to µAi .

For one interval the result is

lim
m→∞

E
[
ewµm(A)

]
= E

[
ewµAi (A)

]
,

for w ∈ C, |w | < R.



Squishing

An a-dimer is a dimer that covers an a-edge. They are oriented from
white to black.

Figure: The red dimers are a-dimers, and the black b-dimers.



Squishing

We let the b-faces become smaller, go to zero in size.



Squishing

We get double edges, loops and paths.
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Paths and Loops

To get a unique split between paths and loops and get well-defined loops
we need a convention. We use mirrors.
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Paths

The paths go between the boundaries.
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Figure: After squishing.



Paths
The paths go between the boundaries.

Figure: After squishing, n = 300, a = 0.5.



What we would like to prove

With high probability, if we go along the main diagonal there is a last
path in the third quadrant close to the asymptotic rough-smooth
boundary and this path converges to the Airy process.



What we can prove
Let h(f ) be the height at the a-face f in the Aztec diamond. Then we
can split it into two parts:

h(f ) = h`(f ) + hc(f )

where h`(f ) is the loop height and hc(f ) is the corridor height.
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What we can prove

Assume that a < 1/3. Imbed the interval A as a discrete interval of
length ∼ m1/3 in the Aztec diamond at the rough-smooth boundary.
Define the new random signed measure

κm({β} × A) =
1

4
(hc(F+)− hc(F−)),

where F+ and F− are the end-faces of the discrete imbedded interval.
Then κm({β} × A) converges weakly to µAi ({β} × A) as m→∞, where
µAi is the Airy kernel point process.

We expect that with high probability κm is actually a positive measure.
We should think of κm as counting the number of paths between the two
faces.



Ingredients in the proof

• Show that the averaging in the random signed measure µm can be
done along a single line instead of on parallel lines.

• We control the size of the loops; in a box of size L they are no
bigger than C log L. This uses a Peierls’ type argument and requires
a < 1/3.

• In a not too large region at the rough-smooth boundary the
two-periodic Aztec measure can be replaced by the full-plane
smooth measure.

• There are no bi-infinite paths in the full-plane smooth phase.



Thank you for listening!


