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L =

∑
D∈DL

∏
b∈D

tr(b).

Type r = 4

Model parametrized by t1, t2, t3, t4 (we can set t4 = 1).

The model is exactly solvable, e.g., Z 0
L = detK (t),

with K (t) the Kasteleyn matrix. This implies

F (t) = lim
L→∞

1

L2
log Z 0

L =

∫
[−π,π]2

dk

(2π)2
log |µ(k)|,

with: µ(k) = t1 + it2e
ik1 − t3e

ik1+ik2 − ie ik2.



Non-interacting dimer correlations

Non-interacting dimer-dimer correlations can also be
computed exactly. E.g.,

〈1(x ,1);1(y ,1)〉0 = −t2
1 K

−1(x − y)K−1(y − x),

where: K−1(x) =

∫
[−π,π]2

dk

(2π)2

e−ik·x

µ(k)
.

Analyticity of F (t) and decay of 〈1(x ,r);1(y ,r ′)〉0 can
be read from the zeros of µ(k):

µ(k) = 0 ⇔ e ik2 =
t1 + it2e

ik1

i + t3e ik1
.

Liquid phase: two non-degenerate zeros, in which
case K−1(x) decays algebraically, as (dist.)−1.
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Asymptotics of dimer correlations

Let p± be the two non-degenerate zeros of µ(k),
α± = ∂k1

µ(p±), β± = ∂k2
µ(p±).

One has

K−1(x) =
1

2π

∑
ω=±

ω
e−ipω·x

βωx1 − αωx2
+ O(|x |−2).

Correspondingly,

〈1(x ,r);1(0,r ′)〉0 =
1

4π2

∑
ω=±

Kω,rKω,r ′

(βωx1 − αωx2)2

+
1

4π2

∑
ω=±

K−ω,rKω,r ′

|βωx1 − αωx2|2
e i(pω−p−ω)·x + O(|x |−3)

where: Kω,1 = t1, Kω,2 = it2e
i(pω)1,

Kω,3 = −t3e
i(pω)1+i(pω)2, Kω,4 = −ie i(pω)2.
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Dimers and height function

Dimer correlations ⇒ fluctuations of h(f ):

h(f ′)− h(f ) =
∑

b∈Cf→f ′

σb(1b − 1/4)

[σb = ±1 if b crossed with white on the right/left.]
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Non-interacting height fluctuations

E.g., variance of the height difference:

Var0(h(f )− h(f ′)) =
∑

b,b′∈Cf→f ′

σbσb′〈1b;1b′〉0.

Formula for 〈1b;1b′〉0 + path-indep. of h(f )− h(f ′)

⇒ Var0(h(f )− h(f ′)) ∼ 1

π2
log |f − f ′|

as |f − f ′| → ∞ (Kenyon, Kenyon-Okounkov-Sheffield).

NB: the pre-factor 1
π2 is independent of t1, t2, t3.

Building upon this (Kenyon):

height fluctuations converge to massless GFF

scaling limit is conformally covariant
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Universality in non-interacting dimers

Summarizing, in the liquid phase the scaling limit of
height fluctuations is universal in very strong sense:

1 the limit is always Gaussian, with logarithmic
growth of the variance;

2 the pre-factor in front of the logarithm in the
variance is independent of the edge weights.

Q: Does universality survives in the presence of
perturbations breaking the determinant structure?
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Interacting dimers

Interacting model:

Zλ
L =

∑
D∈DL

(∏
b∈D

tr(b)

)
eλ
∑

x∈Λ f (τxD),

where: λ is small, f is a local function around the
origin, τx translates by x .

Two examples:
1 Dimers with plaquette interaction:

fP(D) = 1e1
1e2

+ 1e3
1e4

+ 1e1
1e5

+ 1e6
1e7

2 The 6-vertex model: f6v(D) = 1e1
1e2

+ 1e3
1e4

[Recall: 6V ↔ AT via discrete bosonization (Dubedat)]

e1 e2

e3

e4

e5

e7

e6 b



Interacting dimers

Interacting model:

Zλ
L =

∑
D∈DL

(∏
b∈D

tr(b)

)
eλ
∑

x∈Λ f (τxD),

where: λ is small, f is a local function around the
origin, τx translates by x . Two examples:

1 Dimers with plaquette interaction:

fP(D) = 1e1
1e2

+ 1e3
1e4

+ 1e1
1e5

+ 1e6
1e7

2 The 6-vertex model: f6v(D) = 1e1
1e2

+ 1e3
1e4

[Recall: 6V ↔ AT via discrete bosonization (Dubedat)]

e1 e2

e3

e4

e5

e7

e6 b



Critical exponents and weak universality

If f = f6v the model is solvable by Bethe Ansatz.

Generically, the model is non-solvable.

In all cases, it is non-determinantal and displays
λ-dependent critical exponents.

Therefore, if the model exhibits some form of
universality, it cannot be in a naive way. Right
notion: weak universality, proposed by Kadanoff:

all critical exponents can be deduced by one of them.

E.g., XAT
c XAT

e = 1, XAT
p =

1

4
XAT
e .



Critical exponents and weak universality

If f = f6v the model is solvable by Bethe Ansatz.

Generically, the model is non-solvable.

In all cases, it is non-determinantal and displays
λ-dependent critical exponents.

Therefore, if the model exhibits some form of
universality, it cannot be in a naive way. Right
notion: weak universality, proposed by Kadanoff:

all critical exponents can be deduced by one of them.

E.g., XAT
c XAT

e = 1, XAT
p =

1

4
XAT
e .



Critical exponents and weak universality

If f = f6v the model is solvable by Bethe Ansatz.

Generically, the model is non-solvable.

In all cases, it is non-determinantal and displays
λ-dependent critical exponents.

Therefore, if the model exhibits some form of
universality, it cannot be in a naive way.

Right
notion: weak universality, proposed by Kadanoff:

all critical exponents can be deduced by one of them.

E.g., XAT
c XAT

e = 1, XAT
p =

1

4
XAT
e .



Critical exponents and weak universality

If f = f6v the model is solvable by Bethe Ansatz.

Generically, the model is non-solvable.

In all cases, it is non-determinantal and displays
λ-dependent critical exponents.

Therefore, if the model exhibits some form of
universality, it cannot be in a naive way. Right
notion: weak universality, proposed by Kadanoff:

all critical exponents can be deduced by one of them.

E.g., XAT
c XAT

e = 1, XAT
p =

1

4
XAT
e .



Main results: interacting dimer-dimer correlation

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:

Let t1, t2, t3 be s.t. µ(k) has two distinct non-degen. zeros, p±

(non-degenerate ⇔ αω = ∂k1µ(pω) and βω = ∂k2µ(pω) are not parallel).

Then, for λ small enough,

〈1(x ,r);1(0,r ′)〉λ =
1

4π2

∑
ω=±

Kλ
ω,rK

λ
ω,r ′

(βλωx1 − αλωx2)2

+
1

4π2

∑
ω=±

Hλ
−ω,rH

λ
ω,r ′

|βλωx1 − αλωx2|2ν(λ)
e−i(p

λ
ω−pλ−ω)·x + O(|x |−3+O(λ)) ,

where: Kλ
ω,r , H

λ
ω,r , α

λ
ω, βλω, pλω, ν(λ) are analytic in λ.

Moreover, ν(λ) = 1 + aλ + · · · and, generically, a 6= 0.
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Remarks

Proof ⇒ algorithm for computing Kλ
ω,r ,H

λ
ω,r , ...

We don’t have closed formulas for these quantities.

Use formula for 〈1b;1b′〉λ in that for height variance:

Varλ(h(f )− h(f ′)) =
∑

b,b′∈Cf→f ′

σbσb′〈1b;1b′〉λ

it is not obvious that the growth is still logarithmic:
a priori, it may depend on the critical exp. ν(λ).



Remarks

Proof ⇒ algorithm for computing Kλ
ω,r ,H

λ
ω,r , ...

We don’t have closed formulas for these quantities.

Use formula for 〈1b;1b′〉λ in that for height variance:

Varλ(h(f )− h(f ′)) =
∑

b,b′∈Cf→f ′

σbσb′〈1b;1b′〉λ

it is not obvious that the growth is still logarithmic:
a priori, it may depend on the critical exp. ν(λ).



Main results: interacting height fluctuations

Theorem [G.-Mastropietro-Toninelli (2015, 2017, 2019)]:

Same hypotheses as previous theorem. Then:

Height fluctuations still grow logarithmically:

Varλ(h(f )− h(f ′)) =
A(λ)

π2
log |f − f ′|+ O(1)

as |f − f ′| → ∞, where

A(λ) =

[
Kλ
ω,3 + Kλ

ω,4

βλω

]2

=

[
Kλ
ω,2 + Kλ

ω,3

αλω

]2

.

In general, A(λ) depends on λ, f , t1, t2, t3. Moreover,

A(λ) = ν(λ)
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Kadanoff/Haldane relation

A and ν given by different renormalized expansions.
No hope of showing A = ν from diagrammatics.

A(λ) = ν(λ) ! Kadanoff relation XAT
p = 1

4X
AT
e .

Previous rigorous proofs: in AT, 8V and
non-integrable variants (Benfatto-Falco-Mastropietro).

However: restricted to scaling relations for ‘local
observables’, e.g., XAT

c XAT
e = 1.

Analogue of A = ν previously proved in quantum
1D models (Haldane relation) (Benfatto-Mastropietro).

Our result is the first instance of such a ‘non-local’
scaling relation in a classical statmech model.
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Fermionic representation

Starting point: Grassmann representation of the
non-interacting partition function:

Z0 = det(K ) =

∫ ∏
x

dψ+
x dψ

−
x e
−(ψ+,Kψ−)

=

∫
Dψ e

−
∫

dk
(2π)2 ψ̂

+
k ψ̂
−
k µ(k)

where {ψ±x }x∈Λ are Grassmann variables.

Similarly,

K−1(x , y) =
1

det(K )

∫
Dψ e

−
∫

dk
(2π)2 ψ̂

+
k ψ̂
−
k µ(k)

ψ−x ψ
+
y .
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Interacting dimers as interacting fermions

The partition function of the interacting model is

Zλ
Z0

=
1

det(K )

∫
Dψ e

−
∫

dk
(2π)2 ψ̂

+
k ψ̂
−
k µ(k)+V (ψ)

,

where V (ψ) is exp. decaying. E.g., if f = fP ,

V (ψ) = −
∑

γ: |γ|>1

(1− eλ)|γ|−1
∏
e∈γ

(Kr(e)ψ
+
b(e)ψ

−
w(e)),

The generating function for dimer correlations W (A) = 〈
∏

e e
Ae1e 〉

λ
can

be expressed similarly. E.g., if f = fP , V (ψ) is replaced by

V (ψ,A) = −
∑

γ: |γ|>1

(1− eλ)|γ|−1
∏
e∈γ

(Kr(e)ψ
+
b(e)ψ

−
w(e)e

Ae ),

which is lattice gauge invariant w.r.t.

ψ±x → e iα
±
x ψ±x , Ae → Ae − iα+

b(e) − iα−w(e)
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Counterterms

The interaction has the effect of moving the ‘Fermi
points’ pω and the ‘Fermi velocities’ αω, βω.

We let

pλω = pω+O(λ), αλω = αω+O(λ), βλω = βω+O(λ),

be the interacting ones, to be fixed a posteriori via a
fixed point argument. Correspondingly, we write

µ(k) = µ0(k)− n(k),

where, in the vicinity of pλω,

n(k) = ν0,ω + a0,ω(k1 − (pλω)1) + b0,ω(k2 − (pλω)2)
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Multiscale decomposition

We rewrite

Zλ
Z0

=
1

det(K )

∫
Dψ e

−
∫

dk
(2π)2 ψ̂

+
k ψ̂
−
k µ0(k)+N(ψ)+V (ψ) ≡

〈
eN(ψ)+V (ψ)

〉
0
.

where

N(ψ) =

∫
dk

(2π)2
ψ̂+
k ψ̂
−
k n(k),

and similarly for W (A).

Zλ and W (A) can be analyzed via a
multiscale procedure (fermionic RG): we decompose∫

dk

(2π)2

e−ik·(x−y)

µ0(k)
=
∑
ω=±

∑
h≤0

e−ip
λ
ω(x−y)g (h)

ω (x − y),

where

g (h)
ω (x) =

∫
d2k

(2π)2

e−i(k−p
λ
ω)x

µ0(k)
fh(k − pλω)

with fh(k) a smooth version of 1(2h−1 ≤ |k | ≤ 2h).
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Multiscale integration

Correspondingly, we decompose the Grassmann field into

quasi-particles and scales: ψ±x =
∑

ω e
±ipωF x

∑
h≤0 ψ

(h)±
x ,ω and

integrate step by step ψ(0), ψ(−1), ..., thus getting for h < 0

Zλ
Z0

= eL
2Eh

∫
PZh

(ψ(≤h))eV
(h)(
√
Zhψ

(≤h)),

and similarly for W (A). Here PZh
has propagator Z−1

h g
(h)
ω and

V (h)(ψ) =
∑
ω

∫
dk

(2π)2
ψ̂+
k,ωψ̂

−
k,ω(2hνh,ω + ah,ωk1 + bh,ωk2)

+ λh
∑
x

ψ+
x ,+ψ

−
x ,+ψ

+
x ,−ψ

−
x ,− + irrelevant terms.

Key point to be shown: if ν0,ω, a0,ω, b0,ω are properly fixed,

|νh,ω|, |ah,ω|, |bh.ω|, |λh−λ−∞| ≤ C |λ|2h/2, with λ−∞ = λ+O(λ2).
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The infrared reference model: Tomonaga-Luttinger

Difficult part: control λh. If it stays bounded ∀h < 0, it must
be due to cancellations (‘vanishing of the beta function’).

In order to prove it, we compare the IR behaviour of our model
with that of a reference, exactly solvable, model, playing the
role of infrared fixed point theory, the TL model:

eWN(J,φ) =

∫
P

[≤N]
Z (dψ)eV(

√
Zψ)+

∑2
j=1(J(j), ρ(j))+Z(ψ,φ).

Here: P
(≤N)
Z has relativistic propagator with UV cutoff

gω(x − y) =
1

Z

∫
dk

(2π)2

e−ik(x−y)

αλωk1 + βλωk2
χN(k);

V is a non-local quartic interaction with kernel λ∞v0(x , y);

ρ
(1)
x ,ω = ψ+

x ,ωψ
−
x ,ω is the ‘density’, ρ

(2)
x ,ω = ψ+

x ,ωψ
−
x ,−ω is the ‘mass’.
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Exact solution of the TL model

Key features of the TL model: if λ∞ is sufficiently small, using
Ward Identities + Schwinger-Dyson equation:

1 λTLh tends exp. fast to λTL−∞, which is analytic in λ∞.

2 There exists η and ATL, analytic in λ∞, s.t.
ZTL
h ∼ ATL2ηh, with exp. small relative error.

3 In the limit N →∞, the correlation functions can be
computed explicitly. E.g., if τ = −λ∞/(4∆π) with
∆ = Reαλ+Imβλ+− Imαλ+Reβλ+, and Dω(p) = αλωp1 + βλωp2:

Z
∑
ω′=±

Dω′(p)〈ρ̂(1)
p,ω′ ; ψ̂

+
k+p,ωψ̂

−
k,ω〉TL =

〈ψ̂+
k,ωψ̂

−
k,ω〉TL − 〈ψ̂

+
k+p,ωψ̂

−
k+p,ω〉TL

1− τ v̂0(p)
,

〈ρ(1)
x ,ω; ρ

(1)
0,ω〉TL =

1

4π2Z 2(1− τ 2)

1

(βλωx1 − αλωx2)2
+O(|x |−3),

and 〈ρ(2)
x ,ω; ρ

(2)
0,ω〉TL ∼ (const.)|x |−2νTL , with νTL = 1−τ

1+τ
.
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0,ω〉TL ∼ (const.)|x |−2νTL , with νTL = 1−τ

1+τ
.



Comparison of the dimer model with TL

The beta function of λh in the dimer model is the same as TL
up to lower order terms ⇒ boundedness of λTLh implies
boundedness of λh.

Therefore, for h < 0,

λh = λ−∞(1 + O(λ2h/2)), Zh = Ã 2η̃h(1 + O(λ2h/2)

for suitable λ−∞, η̃, Ã, analytic in λ.

By fixing the bare parameters λ∞,Z of the TL model, we can
impose that λ−∞ = λTL−∞, η = η̃, Ã = ATL and ν = νTL.

Correspondingly, 〈ψ̂−
k+pλω

ψ̂+
k+pλω
〉λ ∼ 〈ψ̂−k,ωψ̂

+
k,ω〉TL, and

〈1(x ,r);1(y ,r ′)〉λ =
∑
ω=±

K̂ω,r K̂ω,r ′〈ρ(1)
x ,ω; ρ(1)

y ,ω〉TL

+
∑
ω=±

e i(p
λ
ω−pλ−ω)(x−y)Ĥ−ω,r Ĥω,r ′〈ρ(2)

x ,ω; ρ(2)
y ,ω〉TL + O(|x − y |−3+O(λ)).

A similar relation, involving the same prefactors K̂ω,r , K̂ω,r , is
valid for the vertex function.
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for suitable λ−∞, η̃, Ã, analytic in λ.
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Correspondingly, 〈ψ̂−
k+pλω

ψ̂+
k+pλω
〉λ ∼ 〈ψ̂−k,ωψ̂

+
k,ω〉TL, and

〈1(x ,r);1(y ,r ′)〉λ =
∑
ω=±

K̂ω,r K̂ω,r ′〈ρ(1)
x ,ω; ρ(1)

y ,ω〉TL

+
∑
ω=±

e i(p
λ
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Ward Identities for the dimer and TL models

Using the last relation between 〈1(x ,r);1(y ,r ′)〉λ and

〈ρ(j)
x ,ω; ρ

(j)
y ,ω〉TL, with j = 1, 2, we obtain our main result on the

asymptotics of the interacting dimer-dimer correlation, with

Kλ
ω,r = K̂ω,r

1

Z
√

1− τ 2
.

If we now compare the vertex WI of the TL model with the
lattice WI of the dimer model, associated with the local
conservation law

∑
b→x 1b = 1, we find:
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Logarithmic growth and Kadanoff relation

We go back to Varλ(h(f )−h(f ′)) =
∑

b∈Cf→f ′

∑
b∈C ′

f→f ′

σbσb′〈1b;1b′〉λ.

Using the asymptotics of 〈1b;1b′〉λ and the oscillations due to

σbσb′ and e i(p
λ
ω−pλ−ω)(x−y), we find:

Varλ(h(f )− h(f ′)) =
∑
ω=±

∑
b∈Cf→f ′
b′∈C ′

f→f ′

σbσb′K
λ
ω,r(b)K

λ
ω,r(b′)

4π2(φλω(x − y))2
+ O(1)

where φλω(x) = βλωx1 − αλωx2. Eq.(∗) can be restated as∑
b∈s(x ,j)

σbK
λ
ω,r(b) = −i

√
ν∆jφ

λ
ω,

where s(x , j) is a two-bonds path from x to x + ej . Therefore,

Varλ(h(f )−h(f ′)) = − ν

2π2
Re

∫ φλ+(f ′)

φλ+(f )

dz

∫ φλ+(f ′)

φλ+(f )

dz ′
1

(z − z ′)2
+O(1).
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Conclusions

Class of interacting, non-integrable, dimer
models; correlations by constructive RG.

Dimer correlations: anomalous critical exp. ν(λ).
Height fluctuations: universal GFF fluctuations.

Kadanoff relation: A = ν; subtle form of univers.

Proof based on constructive, fermionic, RG
(key ingredients: WIs, SD eqn, comparison with reference

model, path indepnce of the height).

Related results, via similar methods, for:
Ashkin-Teller, 8V, 6V, XXZ, non-planar Ising.
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Open problems and perspectives

Get rid of periodic b.c., work with general
domains (in perspective: conformal covariance)

Compute correlations of e iαh(f ).
(Connected: spin correlations in non-planar Ising).

Generalize to more general Z2-periodic bipartite
planar graphs: larger unit cell corresponds to fermions

with more colors; unclear whether beta function is

vanishing or not (as in 1D fermions with S = 1/2)

...
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Thank you!
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