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Abstract (version 1)

Unlike classical antiferromagnets, quantum antiferromagnetic
systems exhibit ground state frustration effects even in one dimension. A
case in point is a quantum spin chain, with the interaction between
neighboring S-spins given by the projection on the two-spins singlet state.

This 1D quantum system’s ground state bears a close analogy to the
self dual 2D Fortuin-Kasteleyn random cluster model, at Q = (2S + 1)2.
The corresponding stochastic geometric representation has led to the
dichotomy (Aiz-Nachtergale): for each S the ground state exhibits either

(i) slow decay of spin-spin correlations
(as in the Bethe solution of the Heisenberg S = 1/2 antiferromagnet)
or else (ii) dimerization, manifested in translation symmetry breaking.

Drawing on the recent analysis of the phase transition of the FK
models (by Duminil-Gagnebin-Harel-Manolescu-Tassion, and Ray-Spinka),
we show that in the infinite volume limit for any S > 1/2 this SU(2S + 1)
invariant quantum system has a pair of distinct ground states, each exhibiting
spatial energy oscillations, and exponential decay of correlations.

(Joint work with H. Duminil-Copin and S. Warzel).
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Equilibrium states and ground states of quantum systems can often
be understood in terms of spontaneously emergent random geometric
structures. This is also true of the equilibrium states of classical statistic
mechanical system.

We shall discuss two quantum spin chains, exhibiting different
physical phenomena, of a common mathematical scaffolding:

1. spin-S quantum spins with the SU(2S + 1) invariant A-F Hamiltonian

HAF = −(2S + 1)
∑
u∈Z

P(0)
u,u+1

P(0)
u,v ≡ I[|Su + Sv | = 0] the orthog.

projection onto the singlet state.

2. the quantum spin-1/2 spin chain with

HXXZ =
1
2

∑
u∈Z

[
(σx

uσ
x
u+1 +σy

uσ
y
u+1) + ∆(σz

uσ
z
u+1−1)

]
∆=cosh(λ)>1

We prove that in the infinite volume limit:

(1) HAFF for any S > 1/2 (but not S = 1/2) has a pair of distinct ground
states, each gapped and exhibiting spatial energy oscillations.

(2) HXXZ at any ∆ > 1 (but not ∆ = 1) has a pair of ground states, with
oscillatory magnetization but constant energy density.

Both (1) and (2) can be understood by studying the structure of a common
loop system, associated also with the F-K Q-state random cluster model.
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A flash from the theory of loop-soup measures

In the planar setup loops soups appear in percolation models as the
separating lines between the connected clusters of a graph and of its dual
In that case N(ω) = #{finite connected clusters}

Random loop ensembles similar to the bound-
aries of our A/B regions
appear also in of the self-dual Q-state Potts

models, at
√

Q = (2S+1) .

[Translation symmetry breaking⇔ Q > 4]

Theorem: In the limit β, L→∞ the loop ensemble probability measure

µL,β(dω) =

∫
ρL,β (dω)

√
Q

N`(ω)
/Z (L, β) decomposes into a superposition

of two mutually singular measures µ = [µA + µB]/2 which are not translation
invariant, each being a shift of each other (by 1 lattice spacing).

• In µA the edges of ω are denser over the A edges than over B edges.
• The phase selection can be made through the A-wired, or B-wired,

boundary conditions.
• The surface tension between the two phases is strictly positive.

[Yang, Baxter, Lieb,...,Duminil-Gagnebin-Harel-Manolescu-Tassion ’16, Ray-Spinka‘19,...]
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Ground state expectation value functionals: 〈F 〉L = lim
β→∞

tr e−βH/2Fe−βH/2

For the infinite volume limit, based on the above observations, it is
natural to consider separately the even and odd L:

〈F 〉ev := lim
L→∞

L even
〈F 〉L and 〈F 〉odd := lim

L→∞
L odd

〈F 〉L ,

The random loop representation which was introduced in [AN] allows
to prove convergence in these two limits (by means of the FKG inequality).

It also led to the following dichotomy which, based on topological
arguments which this stochastic geometric representation enables.

Proposition (AN ‘94) For each S (integer or half integer)
either 1) the above two ground states coincide, in which case this ground
state exhibits slowly decaying correlations, satisfying∑

x∈Z |x | |〈σ0 · σx〉| =∞ ,

or else 2) dimerization: the system has two distinct ground states each of
period 2, related by a one step shift.
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The case S = 1/2, which corresponds to the quantum Heisenberg
anti-ferromagnet, was solved by Bethe by means of his famous ansatz. In
this case there is a unique ground state and 〈σ0 · σx〉 ≈ 1/|x − y |α.

One of our main result is that for all S > 1/2, regardless of the parity
of 2S, the second option holds:

Theorem For all S > 1/2 the two ground states of HAF differ.
The two states are related by a shift, but exhibit translation symmetry
breaking. More specifically, they are of uneven energy density, and satisfy

〈P(0)
2n,2n+1〉ev − 〈P(0)

2n−1,2n〉odd = αS > 0. (1)

for all n integer.

Previously dimerization was proved for S ≥ 8
[Nachtergaele – Ueltschi ‘17]

Remark: Using the FKG inequality (applicable in the loop representation) the
two can be shown to coincide: dimerization⇔ persistence of energy osc.
Furthermore for even L > 2|n|:

〈P(0)
2n,2n+1〉L − 〈P

(0)
2n−1,2n〉L ↘ αS (as L↗). (2)
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A (d + 1) dimensional functional integral representation
Feynman, Dyson, Ginibre ‘71, “Suzuki-Trotter”, .., Aiz.-Lieb ‘90, Conlon-Solovej ‘91, Toth ‘93, Aiz.- Nacht. ‘94.,..

Warmup: eβ(H−1) =
∑

n
pnHn ≡ E(HN ) with pn = βn

n!
e−β (the Poisson distribution)

eβ
∑

b∈E(Λ)(Kb−1) =

∫
Ω(Λ,β)

ρ(dω) T

 ∏
(b,t)∈ω

K (b, t)


Ω(Λ, β) – the set of countable subsets of E(Λ)× [0, β]
ρ(dω) – the probability measure under which ω forms a Poisson process

over Ω, of intensity dt along each “vertical” line {b} × [0, β].

Hence:

tr e−βH/2Fe−βH/2 =

∫
Ω(Λ,β)

ρ(dω) tr

By this method, thermal expectation value functional are expressed in terms
of an integral over histories of {Sz

x} (in “imaginary time”), i.e. configurations
of σ3(x , t) defined over [−L1, L2]× [β/2, β/2].

Each quantum operator F , on the Hilbert space associated with Λ, is
represented by a specific action on this functional integral (typically at t = 0).
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The loop representation for HAF = −
∑

(2S + 1)P(0)
u,u+1

In the basis of {Sz
u}: (2S + 1)P(0)

u,v =
S∑

m,m′=−S

(−1)m−m′ |m,−m〉〈m′,−m′| .

In this case, the signs can be changed to all positive by the gauge
transformation U = eiπη/2 at η =

∑
u(−1)uSz

u .

By these means, one gets a stochastic geometric representation of
the thermal states in terms of a system of random loops (AN94):

tr T

 ∏
(b,t)∈ω

K (b, t)

 = (2S+1)N(ω)

with Sz(u, t) restricted to ±m at m ∈ [−S,S] constant, and ± flipping upon
each “time reversal”, as one travels along a loop.

〈F 〉Λ,β =

∫
Ω(Λ,β)

E (F |ω) ρS(dω) ; with ρS(dω) = (2S + 1)N(ω)ρS(dω)/Norm

and E (F |ω) := tr UFU∗ T

 ∏
(b,t)∈ω

K (b, t)

 /(2S + 1)N(ω) .
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HAF ⇐⇒ loop ensemble

For a neatly stated relation of the HAF system in terms of a random
loop ensemble, it is convenient to start with the L-dimerized state

|DL〉〉 := ⊗L
j=1

 S∑
mj =−S

eiπmj |mj ,−mj〉−(L+1)+2j,−L+2j

 ; ‖|DL〉〉‖2 = (2S+1)L

The rules described above yield

〈〈DL|e−βHAff |DL〉〉 =

∫
ρL,β (dω)(2S + 1)N`(ω)

=: Z (L, β)

where Z (L, β) is the partition function of a random loop ensemble based on
the Poisson process of edges over Λ(L, β) := {−L + 1, ..., L} × [−β/2.β/2]
(of intensity dt), with N`(ω) the number of loops of ω,

drawn with the “alternatively wired” boundary conditions.

Important: The resulting random loop measure as it appears near u = 0
depends on the parity of L.
LRO is manifest in the rate of dimerization: over A versus B edges.
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⇒ Different physics in two projections of a common mathematical structure

1) For HAF = −
∑

(2S + 1)P(0)
u,u+1, at S > 1/2:

〈〈DL|e−βHAff |DL〉〉 = Z (L, β)

Two ground states: lim
L→∞
L even

lim
β→∞

1
Norm.

e−βHAF |DL〉〉 & similar limit with L odd.

Broken symmetry: translation invariance. Manifested in: energy oscillation.

2) For HXXZ = HXY −
∑

u ∆ 1
2 (τ z

u τ
z
u+1 − 1), ∆ > 1

eβ sinh(λ)〈〈−,+|e−βH̃XXZ |−,+〉〉 = Z	,λ(L, β)

Two ground states: lim
L→∞

lim
β→∞

1
Norm.

e−βHXXZ |−,+〉〉 & likewise with |+,−〉〉

Broken symmetry: global spin flip. Manifested in: Néel order.

Surprise: in this case there is no additional translation symmetry breaking
i.e. both states are AV symmetric (& hence do not exhibit energy oscillations)!

10 /17



⇒ Different physics in two projections of a common mathematical structure

1) For HAF = −
∑

(2S + 1)P(0)
u,u+1, at S > 1/2:

〈〈DL|e−βHAff |DL〉〉 = Z (L, β)

Two ground states: lim
L→∞
L even

lim
β→∞

1
Norm.

e−βHAF |DL〉〉 & similar limit with L odd.

Broken symmetry: translation invariance. Manifested in: energy oscillation.

2) For HXXZ = HXY −
∑

u ∆ 1
2 (τ z

u τ
z
u+1 − 1), ∆ > 1

eβ sinh(λ)〈〈−,+|e−βH̃XXZ |−,+〉〉 = Z	,λ(L, β)

Two ground states: lim
L→∞

lim
β→∞

1
Norm.

e−βHXXZ |−,+〉〉 & likewise with |+,−〉〉

Broken symmetry: global spin flip. Manifested in: Néel order.

Surprise: in this case there is no additional translation symmetry breaking
i.e. both states are AV symmetric (& hence do not exhibit energy oscillations)!

10 /17



The 4-edge (in lieu of 6-vertex) model

Back to our measures µL,β(dω) =
∫
ρL,β (dω)

√
2S + 1

N`(ω)
/Z (L, β):

As was done in the context of the random clusters of the Q-state
Potts models (Baxter-Kelland-Wu ’78), the factor

√
Q

N`(ω)
can be turned into a

product of local weights.

For that we introduce what initially is a fictitious spin function τ(u, t),
with values in {↑, ↓} = {+1,−1} flipping along each loop, and assign
weight e±λ/4 to each counterclockwise/ clockwise right turn

at λ satisfying
√

Q = eλ + e−λ (= sum over two possible loop orientations).

The result is a system of random loops based on Poisson distributed
edges, and a pseudo spin function, with 4 edge types (in the bulk):

Wa = 1,Wb = 1,Wc = e−λ,Wd = eλ .
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The loop ensemble and the HXXZ operator

The variables τ (with values ±1) were introduced in the context of HAF

as an auxiliary tool for the analysis of the stochastic geometry of it’s thermal
states. In terms of this model’s spin variables τ(x , t) do not correspond to any
local operator. However one may still ask about their induced distribution.

To find that, we find it convenient to view τ = ±1 as the z component
of a triplet (τ x

u , τ
y
u , τu) with the algebra of the σ operators of spin 1

2 .

In this terminology, Wa, .,Wd correspond to the interaction terms

Ku,v =
1
2
(
τ x

u τ
x
v +τ y

u τ
y
v
)

+ eλ(1 + τ z
u )(1− σz

v )/4 + e−λ(1− τ z
u )(1 + σz

v )/4

=
1
2
[(
τ x

u τ
x
v +τ y

u τ
y
v
)

+ cosh(λ)
(
1− τ z

u τ
z
v
)]

+
1
2

sinh(λ)(τ z
u − τ z

v )

The sum over the edges may be recognized as the spin 1
2 HXXZ Hamiltonian,

which is invariant under global (τ ) spin flip, plus a boundary term:

K = −H(∆)
XXZ +

1
2

sinh(λ)(τ z
L−τ z

−L+1) (with ∆ = cosh(λ))
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Loop ensemble⇐⇒ HXXZ

Towards an analog of the relation we found for HAF , let us denote:

1) |(−,+)L〉〉 := |−,+, ...,−,+〉

= |τu = (−1)x−L; u = −L + 1, ..., L〉

2) H̃XXZ := HXXZ − [the XX and YY terms at the boundary edges]

One then finds

eβ sinh(λ) 〈〈(−,+)L|e−βH̃XXZ |(−,+)L〉〉 =

=

∫
Λ(L,β)

ρ(dω)
(

eλ+e−λ
)N`(ω)int

eλN`(ω)bnd
=: Z	,λ(L, β)

with Z	,λ the partition function of the (ω, τ) ensemble, based on the above
Poisson process of edges over Λ(L, β) := {−L + 1, ..., L} × [−β/2.β/2]
restricted to configurations for which all the boundary-touching loops are of

positive helicity.
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A surprising symmetry
Let µβ,L;λ(dω dτ)=1[(τ, ω) consistent]

∏
`

eγ(`)λρL,β (dω)/Z (L, β;λ)

with ` ranging over the loops of ω, and γ(`) = ±1 the helicity of τ along ` [= (−1) for the clockwise orientatation].

and let µβ,L;λ(dω) & µβ,L;λ(dτ) be the restrictions of this probability
measure to functions of just ω and τ , correspondingly. Consider the event:

AL,β;	 = {(ω, τ) : γ(`) = +1 ∀` touching ∂Λ(Lβ)].

Theorem 2: For any β, L <∞, the conditional distribution of the process τ ,
conditioned on + helicity all along the boundary is an even function of λ.
I.e. the ±λ measures, conditioned on A..., are equal:

µβ,L;λ(dτ | AL,β;	) = µβ,L;−λ(dτ | AL,β;	) .

The statement echoes an observation about lattice loop models which appears implicitly in Galzman-Peled ‘18, and

which Ray-Spinka ‘19 employed for a novel proof of symmetry breaking in the rand. cluster models at Q > 4.

This hidden symmetry, combined with the A-N criterion, allows:
• a short & topological proof of the translation symmetry breaking

in the two ground states of HAF (bypassing the Bethe ansatz calculation)

• proof that the two ground states of HXXZ have the AV symmetry.
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Special cases of the S-spin HAF spin chain:

S = 1
2 : it is the Heisenberg antiferromag.

S = 1: it is the bi-quadratic Hamiltonian
H =

∑
u∈Z J1Su · Su+1 + J2

(
Su · Su+1

)2

[the lowest point on the wheel (fig. from Bach.-Nacht.]:
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Summary:
Lessons from classical probabilistic models, produce insights on

interesting quantum phenomena:
1. frustration in quantum system
2. conditions under which it may lead to non-uniqueness of the ground

state, and symmetry breaking

3. a more nuanced understanding of:
I dimerization
I the Néel phase [and the AV symmetry, shift◦ flip]

4. a stoch.-geom. / topological dichotomy
slow decay of correlations, or translation symmetry breaking

5. topological indices (characterizing “topological states”).

Rigorous proofs can be obtained through non-computational qualitative
analysis (loop representation, monotonicity arguments, and inequalities such
as FKG) where Bethe ansatz calculations are less than fully transparent.

In the converse direction, integrable probability has benefitted from
ideas originating in quantum physics.

Quantum and classical - best together.
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