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Results Random Tilings

Lozenge Tilings

Consider uniformly random tilings of large, finite subdomains R of the
triangular lattice T using three types of lozenges.
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Results Random Tilings

Lozenge Tilings of Different Domains
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Results Random Tilings

Height Functions

Associated with any tiling of R ⊂ T is a height function.
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Boundary height function: Restriction of this height function to ∂R
(independent of the tiling, up to shifts).
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Results Local Statistics

Local Statistics of Lozenge Tilings

Consider a uniformly random tiling of a domain R ⊂ T.
Fix a vertex v ∈ R and consider an O(1)-neighborhood of v.

Local statistics: Random tiling on this O(1)-neighborhood.

Question (Kasteleyn, 1961)
How do the local statistics around v depend on R?
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Results Global Law

Global Law

Fix simply-connected macroscopic domain R with piecewise smooth boundary
Let N ∈ Z>0 be large and R = RN ⊂ T be simply-connected and tileable
Boundary height function h = hN : ∂R→ Z associated with tiling of R
Assume N−1R ≈ R and N−1h(N·) ≈ h for some h : ∂R→ R
Height function H = HN : R→ Z for uniformly random tiling M = MN of R

Cohn–Kenyon–Propp (2000): For any δ > 0,

lim
N→∞

P
[
max
v∈R

∣∣N−1HN(v)−H(N−1v)
∣∣ > δ

]
= 0,

whereH : R→ R solves a variational principle (unique maximizer of
∫
R
σ
(
∇H(z)

)
dz).
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Results Global Law

Local Statistics Results

Fix v ∈ R such that (s, t) = ∇H(v) satisfies s, t > 0 and s + t < 1.
Let v = vN ∈ RN be such that N−1v ≈ v.

Sheffield (2003): There exists a unique infinite-volume, translation-invariant,
extremal Gibbs measure of slope (s, t), called µs,t.

Theorem (A., 2019)
As N tends to∞, the local statistics of M around v are given by µs,t.

Predicted by Cohn–Kenyon–Propp (2000)
Universality: Limiting local statistics around v only depend on ∇H(v)
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Results Global Law

Previous Results

Domains
Kenyon (1997): Torus
Okounkov–Reshetikhin (2001, 2005): q-Weighted (skew) plane partitions
Baik–Kreicherbauer–McLaughlin–Miller (2007), Gorin (2007): Hexagons
Petrov (2012): Trapezoids
Gorin (2016): Domains “covered” by trapezoids
Laslier (2017): Bounded perturbations of the above

Many of these results are based on exact determinantal identities for
correlation functions

Kasteleyn (1961): (Inverse) Kasteleyn matrix
Okounkov–Reshetikhin (2001): Schur processes

Issues
Inverse Kasteleyn matrix entries unstable under perturbations of R
Schur processes only apply for specific domains
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Proof Methods Random Path Ensembles

Non-Intersecting Paths

A path is a integer sequence q =
(
q(0), q(1), . . . , q(t)

)
such that

q(i + 1)− q(i) ∈ {0, 1} for each i.

An ensemble Q = (q1,q2, . . . ,qn)of paths is non-intersecting if
q1(s) < q2(s) < · · · < qn(s) for each s.

q1(0) q2(0) q3(0) q4(0) q5(0) q6(0)

q1(5) q2(5) q3(5) q4(5) q5(5)q6(5)

q2 q3 q4 q5q1 q6

Bijection between non-intersecting path ensembles and lozenge tilings
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Proof Methods Random Path Ensembles

Random Non-Intersecting Path Ensembles

Fix initial data a = (a1, a2, . . . , an) ∈ Zn and β ∈ (0, 1).

Let Q = (q1,q2, . . . ,qn) be an ensemble of n Bernoulli random walks,
with jump probability β, starting at a1, a2, . . . , an and conditioned to
never intersect.
Its probability distribution is given by

Pβ;a[Q] = β|q(t)|−|a|(1− β)tn−|q(t)|+|a|
∏

1≤j<k≤n

qk(t)− qj(t)
ak − aj

,

if Q is non-intersecting and 0 otherwise, where q(t) =
(
q1(t), q2(t), . . . , qn(t)

)
and

|p| =
∑

p∈p p.

Conditional on the ending data q(t), Q is uniform on all non-intersecting
path ensembles connecting a to q(t).
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Proof Methods Random Path Ensembles

Universality Results for Non-Intersecting Random Walks

Gorin–Petrov (2016): The model P = Pβ;a is a determinantal point process.
Explicit kernel amenable to analysis
If the initial data is sufficiently regular, then universal local statistics
appear after running Pβ for short time

Scales 1� U � T � V � N
Initial data a = (a1, a2, . . . , aN), density ρ ∈ (0, 1), integer x0 ∈ Z
Assume |I ∩ a| ≈ ρU, for any interval I ⊂ [x0 − V, x0 + V] of length U

Then the local statistics of the non-intersecting random walk model Pβ;a, run
for time T , converge around site x0 to some measure µs,t

x0

T

2V

U

N
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Proof Methods Proof Outline

Outline

Tileable R = RN ≈ NR ⊂ T
Uniformly random tiling M = MN with associated height function H : R→ Z
Vertex v = vN ≈ Nv of R

We will locally compare M around v with a Pβ;a path ensemble.
1 Local Law: Show H is approximately planar (with slope∇H(v)) in

small disks around v. This verifies the regularity of the initial data of the
path ensemble to be coupled with M.

2 Comparison: Couple M with a random path ensemble P sampled under
some Pβ;a, such that the two models likely coincide around v.

3 Universality: Use results of Gorin–Petrov to show that the local statistics
of P around v are universal, and conclude that the same holds for M.

Reminiscent of Erdős–Yau “three-step strategy” in random matrix theory, but
independent and with very different proofs
Method potentially also applies to other tiling models (such as domino ones)
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Proof Methods Proof Outline

The Local Law

Assume R = B1 and BN ⊂ R ⊂ BN+2 (but no assumptions on h)

Global lawH : B1 → R with∇H(v) = (s, t)

Fix 0 < ε < 1 and assume ε < s, t < s + t < 1− ε

Proposition (A., 2019)

There exists C = C(ε) > 1 such that, for c = 1
20000 and any 1 ≤ M ≤ N

log N ,

P

[
max
|u−v|<M

∣∣∣M−1(H(u)− H(v)
)
−M−1(u− v) · ∇H(v)

∣∣∣ > (logM)−c

]
< CM−100.

Here, M can be taken independently of N.

If M is close to N, then this analyzes global behavior

If M is close to 1, this analyzes local behavior
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Proof Methods Comparison

Outline of the Comparison

Let v = (x, y) ∈ R.
Fix an integer 1� T � N ∼ diam(R).
Define the vertex u0 = v− (0, T) = (x0, y0 − T) ∈ R.

Interpret M as an ensemble Q of non-intersecting paths, and let q denote
the locations where these paths intersect the horizontal line {y = y0−T}.
Local law: Approximates density of q and drifts of paths in Q

R

v

u0

T
v

u0
q
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Proof Methods Comparison

Outline of the Comparison

Introduce particle configurations p and r that coincide with q near u0, but
are to the left and right of q, respectively, away from u0.
Define two random path ensembles P ∼ Pβ1;p and R ∼ Pβ2;r

Select β1 ≈ β2 such that β1 < β2 and the drifts of the P-paths are less than
those of the Q-paths, which are less than those of the R-paths

Show that there exists a coupling between (P,Q,R) such that Q is likely
bounded between P and R.

p
P

u0

v

q
Q

u0

v

r
R

u0

v
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Proof Methods Comparison

Outline of the Comparison

Prove that the expected difference between the height functions for P and
R tends to 0 in a large neighborhood of u0 (containing v).

Based on explicit identities from Gorin–Petrov and the facts that β1 ≈ β2,
p1 = p2 near u, and p1 ≈ p2 everywhere

Using the ordering between (P,Q,R) and a Markov bound, conclude
that they can be coupled to coincide near v with high probability.
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Proof Methods Local Law

Local Law

Assume R = B1 and BN ⊂ R ⊂ BN+2 (but no assumptions on h)

SolutionH : B1 → R of variational principle, with boundary data approximately (within
O(N−1) of) N−1h(N−1·)
Set∇H(v) = (s, t) and assume ε < s, t < s + t < 1− ε

Proposition (A., 2019)

There exists C = C(ε) > 1 such that, for c = 1
20000 and any 1 ≤ M ≤ N

log N ,

P

[
max
|u−v|<M

∣∣∣M−1(H(u)− H(v)
)
−M−1(u− v) · ∇H(v)

∣∣∣ > (logM)−c

]
< CM−100.

Proof uses a multi-scale analysis with effective global laws for the height
function of the tiling.
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Proof Methods Local Law

Effective Global Laws

An effective global law is one of the form

P
[
max
v∈RN

∣∣N−1H(v)−H(N−1v)
∣∣ > ωN

]
< CN−100,

for some explicit ωN dependent on N.

Cohn–Kenyon–Propp (2000): Can take ωN = δ > 0 independent of N

On all known exactly solvable domains, one has $ � Nδ−1, for any δ > 0

Concentration estimates show

P
[
max
v∈RN

∣∣∣N−1H(v)− N−1E
[
H(v)

]∣∣∣ > Nδ−1/2
]
< CN−100,

but do not bound
∣∣N−1E

[
H(v)

]
−H(N−1v)

∣∣
Let us outline a proof of the local law assuming one has an effective local law
with ωN = (logN)−1−c, for some c > 0.
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Proof Methods Local Law

Outline of the Local Law

Original domain R = R(0) ≈ BN

Random height function H on R with boundary data h = h(0)

Let R(1) = BN/2 ∩ T and h(1) = H|∂R(1)

R = R(0)

R(1)

h = h(0)

h(1)
N

N
2

Condition on the restriction of H to R(0) \ R(1)

The restriction of H to R(1) is uniform over height functions with
boundary data h(1)
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Proof Methods Local Law

Outline of the Local Law

Define solutions of variational principle

LetH(0) : B1 → R have boundary data approximately N−1h(0)(N·)

Let F (0) : B1/2 → R have boundary data approximately N−1h(1)(N·)

R(0)

R(1)

h(0)

h(1)

H(0)

F (0)

N

N
2
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Proof Methods Local Law

Outline of the Local Law

R(0)

R(1)

h(0)

h(1)

H(0)

F (0)

N

N
2

By the assumed effective global law,

P
[

max
v∈∂R(1)

∣∣N−1h(1)(v)−H(0)(N−1v)
∣∣ > (logN)−1−c

]
< CN−100;

P
[
max
v∈R(1)

∣∣N−1H(v)−F (0)(N−1v)
∣∣ > 2(logN)−1−c

]
< CN−100.
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Proof Methods Local Law

Outline of the Local Law

Rescale and repeatedly apply this procedure.
Assume N = N0 is a power of 2, and set Nk =

Nk−1
2 for each k > 1

DefineH(k)(z) = 2F (k)( z
2

)
, which solves the variational principle on B1

R(k−1)

R(k)

Nk Nk−1

H(k−1)

F (k−1)

h(k−1)

h(k)

H(k)(z) = 2F (k−1)
( z

2

) R(k)

R(k+1)

Nk+1 Nk

H(k)

F (k)

h(k)

h(k+1)

We would like to show thatH(k) is approximately linear with slope (s, t), for
large k.
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Proof Methods Local Law

Gradient Stability Estimate

To that end, we bound the change in gradient upon passing fromH(0) to F (0).
Assume (s, t) ∈ [0, 1]2 satisfies ε < s, t < s + t < 1− ε.

Lemma
There exist constants C = C(ε) > 1 and δ = δ(ε) > 0 such that the following
holds. SupposeH1,H2 : B1 → R are solutions of the variational principle
with boundary data h1, h2 : ∂B1 → R, respectively. If h1, h2 are within δ of a
plane of slope (s, t), then

sup
z∈B1/2

∣∣∇H1(z)−∇H2(z)
∣∣ < C sup

z∈∂B1

∣∣h1(z)− h2(z)
∣∣.

Proof uses results of De Silva–Savin (2008) and known estimates on solutions of
uniformly elliptic partial differential equations.
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Proof Methods Local Law

Outline of the Local Law

By the assumed effective global law,

P
[

max
v∈∂R(1)

∣∣N−1h(1)(v)−H(0)(N−1v)
∣∣ > (logN)−1−c

]
< CN−100;

P
[
max
v∈R(1)

∣∣N−1H(v)−F (0)(N−1v)
∣∣ > 2(logN)−1−c

]
< CN−100.

Therefore by the maximum principle, with probability 1− 2CN−100,

sup
z∈∂B1/2

∣∣H(0)(z)−F (0)(z)
∣∣ < 3(logN)−1−c.

Thus, the previous lemma gives, with probability 1− 2CN−100,

sup
z∈∂B1/4

∣∣∇H(0)(z)−∇F (0)(z)
∣∣ < C(logN)−1−c.

Since∇H(1)
( z

2

)
= ∇F (0)(z) this implies, with probability 1− 2CN−100,

sup
z∈∂B1/2

∣∣∣∣∇H(0)
( z

2

)
−∇H(1)(z)

∣∣∣∣ < C(logN)−1−c.
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Proof Methods Local Law

Outline of the Local Law

Recall N is a power of 2 and Nk = 2−kN.
With probability 1− CN−100,

sup
z∈∂B1/2

∣∣∣∣∇H(0)
( z

2

)
−∇H(1)(z)

∣∣∣∣ < C(logN)−1−c.

More generally, with probability 1− CN−100
k ,

sup
z∈∂B1/2

∣∣∣∣∇H(k)
( z

2

)
−∇H(k+1)(z)

∣∣∣∣ < C(logNk)
−1−c.

Summing over k ∈ [0,K − 1] gives, with probability 1− CN−100
K ,

sup
z∈∂B1/2

∣∣∣∣∇H(0)
( z

2K+1

)
−∇H(K+1)(z)

∣∣∣∣ < C(logNK)
−c.

For 1� M � N
log N and M ∈

[ N
2K+1 ,

N
2K

)
, we have ∇H(0)

( z
2K+1

)
≈ (s, t).

Thus,H(K+1) is approximately a plane of slope (s, t).
So, on scale M, we have H ≈ H(K+1) is nearly planar with slope (s, t).

.
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Proof Methods Local Law

Improved Effective Global Law Without Facets

Issue: We can only prove an effective global law for fully general
boundary data when ω = (logN)−c.

However, for boundary data giving rise to a limit shape with no frozen
facets, we have an improved global law.

Integer N > 0, real number ε > 0, and domain R ≈ BN

Solution G : B1 → R of the variational principle with boundary data
g : ∂B1 → R

Random height function H : RN → Z with boundary data h : ∂RN → Z

Definition
We say that (h, g) is λ-confined if the following holds.

For each z ∈ ∂R, we have g(z) < N−1h(z) < g(z) + λ.

For each z ∈ B1, ∇G(z) = (sz, tz) satisfies ε < sz, tz < sz + tz < 1− ε.
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Proof Methods Local Law

Improved Effective Global Law

Integer N > 0, real number ε > 0, and domain R ≈ BN

Solution G : B1 → R of the variational principle with boundary data g : ∂B1 → R
Random height function H : RN → Z with boundary data h : ∂RN → Z

Lemma
Assume (h, g) is λ-confined. Then, for small c > 0 and large C = C(ε) > 1,

P
[
sup
v∈R

∣∣N−1H(v)− G(N−1v)
∣∣ > λ+ N−c

]
< CN−100.

Proof closely follows work of Laslier–Toninelli (2013) and is based on local
comparison to hexagons, analyzed by Petrov (2012)

For λ ∼ (logN)−1−c, provides an effective global law with ωN ∼ (logN)−1−c

To establish the local law, show upon reducing scales that the confinement
property is retained and apply this improved global law.
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