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Lozenge Tilings

@ Consider uniformly random tilings of large, finite subdomains R of the
triangular lattice T using three types of lozenges.
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Random Tilings

Results

Lozenge Tilings of Different Domains

ST
Nettmzioiirent
R DI
Wotaiehy hemha ooz, O, etz fas
R S P 58
R L S LIS B2l
e R e e e oo by
S R S L R
e by te e e eha ey Vet
SR LIS (LTS
R 7 AR
DR O R ) R R
RS DR RO
W Srey NI,
0%

oy 0
LIRS,
QR PP T (T P
83 T
% SEE
0 SRROTATRAL K
Sy R
REERLLNCS
o ey
ACTLTBTALALS
o
Ho

L
e, o
SIS el
e e
R0
A
KBS
Zotzze,
'
G
PRDSI
P
ORI 1
BT g
Voidettes,
20

“,

3/27




Random Tilngs
Height Functions

@ Associated with any tiling of R C T is a height function.

H+1 H+1

H H+1

o Boundary height function: Restriction of this height function to IR
(independent of the tiling, up to shifts).
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Local Statistics of Lozenge Tilings

@ Consider a uniformly random tiling of a domain R C T.
e Fix a vertex v € R and consider an O(1)-neighborhood of v.

0O(1) Neighborhood

e Local statistics: Random tiling on this O(1)-neighborhood.

Question (Kasteleyn, 1961)

How do the local statistics around v depend on R?




Global Law
Global Law

@ Fix simply-connected macroscopic domain R with piecewise smooth boundary
@ Let N € Z>o be large and R = Ry C T be simply-connected and tileable

@ Boundary height function 2 = hy : OR — Z associated with tiling of R

@ Assume N"'R~ 9% and N~'h(N-) ~ b for some h : R — R

@ Height function H = Hy : R — Z for uniformly random tiling M = My of R

Discrete Continuous

R

K
&5 B> KO H
(XX NSO LLR
AR IO KL AR

AU N OUE AR

o X OSSR

KRR T, 7 SIS LR

QEKREL ZoA%a SRSt IR

XX R

SRR T RERNY o

Cohn—Kenyon-Propp (2000): For any § > 0,

lim P max|N_1HN(v) — ’H(N_lv)| >4 =0,
N—o0 vER

where 7 : R — R solves a variational principle (unique maximizer of [, o (V7(z))dz).



Local Statistics Results

@ Fix v € R such that (s,1) = VH(v) satisfies s,# > Oand s + ¢ < 1.

@ Letv=vy € Rybesuchthat N"!v ~ v.
Discrete Continuous
R R
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Sheffield (2003): There exists a unique infinite-volume, translation-invariant,
extremal Gibbs measure of slope (s, 1), called ;.

Theorem (A., 2019)
As N tends to oo, the local statistics of M around v are given by [i ;.

@ Predicted by Cohn—Kenyon—Propp (2000)
@ Universality: Limiting local statistics around v only depend on VH(b)



Previous Results

@ Domains

Kenyon (1997): Torus

Okounkov—Reshetikhin (2001, 2005): g-Weighted (skew) plane partitions
Baik—Kreicherbauer—McLaughlin—Miller (2007), Gorin (2007): Hexagons
Petrov (2012): Trapezoids

Gorin (2016): Domains “covered” by trapezoids

Laslier (2017): Bounded perturbations of the above

@ Many of these results are based on exact determinantal identities for
correlation functions
o Kasteleyn (1961): (Inverse) Kasteleyn matrix
e Okounkov—Reshetikhin (2001): Schur processes
@ Issues

o Inverse Kasteleyn matrix entries unstable under perturbations of R
e Schur processes only apply for specific domains



Random Path Ensenbls
Non-Intersecting Paths

o A path is a integer sequence q = (¢(0),¢(1),...,¢(t)) such that
q(i+1) —q(i) € {0,1} for each i.

e Anensemble Q = (q,,qy, - - .,q,)of paths is non-intersecting if
q1(s) < g2(s) < -+ < gu(s) for each s.
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@ Bijection between non-intersecting path ensembles and lozenge tilings
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Proof Methods Random Path Ensembles

Random Non-Intersecting Path Ensembles

o Fix initial data a = (ay,az,...,a,) € Z"and 8 € (0,1).

o LetQ=(q;,qy,-..,q,) be an ensemble of n Bernoulli random walks,
with jump probability 3, starting at a;, ay, . . ., a, and conditioned to
never intersect.

@ Its probability distribution is given by

—la n— a 1) — (t
PyalQ] = BMOI7HI(1 _ gyrla0l+al T %,
1<j<k<n k= dj

if Q is non-intersecting and 0 otherwise, where q(z) = (¢i (1), ¢2(t), .. ., ga(t)) and
Pl =>,cpP-

e Conditional on the ending data q(¢), Q is uniform on all non-intersecting
path ensembles connecting a to q(z).



Proof Methods Random Path Ensembles

Universality Results for Non-Intersecting Random Walks

Gorin—Petrov (2016): The model P = Pg., is a determinantal point process.
@ Explicit kernel amenable to analysis
o If the initial data is sufficiently regular, then universal local statistics
appear after running [P5 for short time
o Scaless | K UK T K VKN
o Initial dataa = (ay,as,...,ay), density p € (0, 1), integer xo € Z
o Assume |I Na| = pU, for any interval I C [xg — V,xo + V] of length U
Then the local statistics of the non-intersecting random walk model Pg.,, run
for time T, converge around site x to some measure i,
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Proof Outline
Outline

@ Tileable R=Ry =~ NR C T
@ Uniformly random tiling M = My with associated height function H : R — Z

@ Vertex v =vy ~ Nv of R
We will locally compare M around v with a IPg., path ensemble.

@ Local Law: Show H is approximately planar (with slope VH (v)) in
small disks around v. This verifies the regularity of the initial data of the
path ensemble to be coupled with M.

@ Comparison: Couple M with a random path ensemble P sampled under
some IPg.5, such that the two models likely coincide around v.

© Universality: Use results of Gorin—Petrov to show that the local statistics
of P around v are universal, and conclude that the same holds for M.

@ Reminiscent of Erd6s—Yau “three-step strategy” in random matrix theory, but
independent and with very different proofs

@ Method potentially also applies to other tiling models (such as domino ones)



Proof Outline
The Local Law

@ Assume R = 5; and By C R C By (but no assumptions on /)
@ Global law H : By — R with VH(v) = (s,1)
@ FixO<e<landassumee < s,t<s+t<1—¢

Proposition (A., 2019)

There exists C = C(e) > 1 such that, for ¢ = W:OO andany 1 <M < loIgVN’

P| max ‘M_l(H(u) —HW) =M 'u—v)- V?—l(n)‘ > (logM)™¢

lu—v|<M

—_

< CM™10,

Here, M can be taken independently of N.
@ If M is close to N, then this analyzes global behavior

o If M is close to 1, this analyzes local behavior



Proof Methods Comparison

Outline of the Comparison

Letv = (x,y) €R.

Fix an integer | < T < N ~ diam(R).

Define the vertex ug = v — (0,T) = (x0,y0 — T) € R.

Interpret M as an ensemble Q of non-intersecting paths, and let q denote
the locations where these paths intersect the horizontal line {y = yo — T'}.
Local law: Approximates density of q and drifts of paths in Q

14727



Proof Methods Comparison

Outline of the Comparison

@ Introduce particle configurations p and r that coincide with q near ug, but

are to the left and right of q, respectively, away from .

@ Define two random path ensembles P ~ P ., and R ~ Pg, .,
e Select 81 = 3, such that 3; < (3, and the drifts of the P-paths are less than

those of the Q-paths, which are less than those of the R-paths
@ Show that there exists a coupling between (P, Q, R) such that Q is likely

bounded between P and R.
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Proof Methods Comparison

Outline of the Comparison

@ Prove that the expected difference between the height functions for P and

R tends to 0 in a large neighborhood of u( (containing v).
e Based on explicit identities from Gorin—Petrov and the facts that 3; ~ (3,
P, = p, near u, and p, = p, everywhere

@ Using the ordering between (P, Q, R) and a Markov bound, conclude
that they can be coupled to coincide near v with high probability.
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Local Law
Local Law

@ Assume R = B; and By C R C By+: (but no assumptions on /)

@ Solution H : By — R of variational principle, with boundary data approximately (within
ON"HYof)y N~ 'h(N~")

@ Set VH(v) = (s,7) and assume e < s,t < s+t <1—¢

Proposition (A., 2019)

There exists C = C(g) > 1 such that, for ¢ = m andany 1 <M < loIgVN’

Pl max \M*l (H(u) — HO)) = M~ (1 —v) - V’H(n)‘ > (log M)~

| IS |

< CM10,

Proof uses a multi-scale analysis with effective global laws for the height
function of the tiling.



Local Law
Effective Global Laws

An effective global law is one of the form

P| max ‘N_lH(v) —HN"V)| > wy| < CNT',
VERN

for some explicit wy dependent on N.
@ Cohn-Kenyon—Propp (2000): Can take wy = ¢ > 0 independent of N
@ On all known exactly solvable domains, one has < N°~!, for any § > 0
@ Concentration estimates show

P| max
VERN

N~'H(v) —N*IE[H(V)]‘ > Nél/z} < CN™100,

but do not bound [N~'E[H(v)] — H(N~'v)|

Let us outline a proof of the local law assuming one has an effective local law
with wy = (log N)~17¢, for some ¢ > 0.



Local Law
Outline of the Local Law

@ Original domain R = R ~ By
@ Random height function H on R with boundary data & = A
@ Let R = By, NTand h'") = H|,50)

R=RO

@ Condition on the restriction of H to R \ R()
e The restriction of H to R()) is uniform over height functions with
boundary data 2"



Local Law
Outline of the Local Law

Define solutions of variational principle
@ Let H® : B — R have boundary data approximately N~ '4(*)(N-)
o Let FO : B, /2 — R have boundary data approximately N “Th(D(N-)

R©)



Local Law
Outline of the Local Law

R©)

1)

\/

o By the assumed effective global law,

[P’|: ma}({” ’N_lh(l)(v) — H(O)(N_lv)’ > (logN)—l—c:| < CN—lOO;
vEOR

IP’[ max ‘N*IH(V) - f(o)(Nflv)‘ > 2(10gN)IC} < CN7100,
vER



Local Law
Outline of the Local Law

Rescale and repeatedly apply this procedure.
Ni—1
2

@ Assume N = Nj is a power of 2, and set Ny = foreach k > 1

@ Define %) (z) = 2% (%), which solves the variational principle on B

RU—1) HO () = 2FED(3) RW

We would like to show that % *) is approximately linear with slope (s,1), for
large k.
] 22/27



Local Law
Gradient Stability Estimate

To that end, we bound the change in gradient upon passing from HO) to FO,
@ Assume (s,7) € [0,1)? satisfiese < s, <s+1<1—e.

Lemma

There exist constants C = C(e) > 1 and § = §(g) > 0 such that the following
holds. Suppose H1,Hy : By — R are solutions of the variational principle
with boundary data b1, b, : 0By — R, respectively. If b1, b, are within § of a
plane of slope (s, t), then

sup |VHi(z) — VHa(z)| < C sup {hl(z) - h2(2)].
ZEB|/2 €08,

Proof uses results of De Silva—Savin (2008) and known estimates on solutions of
uniformly elliptic partial differential equations.



Local Law
Outline of the Local Law

@ By the assumed effective global law,

]P’[ max ‘Nﬁlhm(v) - ’H(O)(Nflv)’ > (logN)flfc] < CN™'
vEOR

]P’[ max ‘Nle(v) —]-'(0)(N71v)| > 2(10gN)717‘} < CNT',

ver()

@ Therefore by the maximum principle, with probability 1 — 2CN 10,

sup {H(O)(z) — F(O)(z)] < 3(logN)~ 1.
ZG@B]/Z

@ Thus, the previous lemma gives, with probability 1 — 2CN 1%,

sup |V’H(O)(z) — V}'(O)(z)‘ < C(logN)~ !¢,
ZGaBl/4

o Since VH() (%) = VF()(z) this implies, with probability 1 — 2CN~1%,

sup VH@)(%) ~ VAW (2)| < ClogN)~'-.

16881/2




Local Law
Outline of the Local Law

Recall N is a power of 2 and N; = 27*N.
With probability 1 — CN~'%,

sup < C(logN)™'~

1€0By )y

vHO (3) - vHO @)

@ More generally, with probability 1 — CN, 100,

sup |VH® (E) — VH ()| < Clog Ni) ™' —°
€08y )y 2
@ Summing over k € [0, K — 1] gives, with probability 1 — CN'%,
sup |VH 0)( K+1> — VHED(2)| < C(log Nk)~¢
€08, )y 2

Forl < M < logN and M € [5¢57, 3¢ ). we have VHO )(2,(—11) ~ (s,1).
Thus, H &+ is approximately a plane of slope (s, ).
@ So, on scale M, we have H ~ &+ is nearly planar with slope (s, ).



Local Law
Improved Effective Global Law Without Facets

o Issue: We can only prove an effective global law for fully general
boundary data when w = (log N)~¢.

e However, for boundary data giving rise to a limit shape with no frozen
facets, we have an improved global law.

@ Integer N > 0, real number £ > 0, and domain R =~ By

@ Solution G : B; — R of the variational principle with boundary data
g:0B — R

@ Random height function H : Ry — Z with boundary data h : ORy — Z

We say that (h, g) is A-confined if the following holds.
e For each z € OR, we have g(z) < N™'h(z) < g(z) + \.
@ Foreachz € By, VG(z) = (s;,t;) satisfies e < s;,1, < s, +1. <1 —e.




Improved Effective Global Law
@ Integer N > 0, real number € > 0, and domain R ~ By

@ Solution G : By — R of the variational principle with boundary data g : 908; — R
@ Random height function H : Ry — Z with boundary data i : ORy — 7Z

Assume (h, g) is A\-confined. Then, for small ¢ > 0 and large C = C(e) > 1,

P| sup ‘N*IH(V) - Q(Nflv)‘ >A+ N <N,
VER

@ Proof closely follows work of Laslier—Toninelli (2013) and is based on local
comparison to hexagons, analyzed by Petrov (2012)

@ For A ~ (log N)~'=¢, provides an effective global law with wy ~ (logN)~!=¢

To establish the local law, show upon reducing scales that the confinement
property is retained and apply this improved global law.
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