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Theorem [Nader Masmoudi, F.S. 2017]
Let m be a positive integer with 2 < m < N. Then

vue W™ m (RY), [V™Mulln <1.

3[zzz

N
EXPrN _5 { BN,m|u|N7m }
J e dx < Crumllu
R

(14 )"

N

N—m in the denominator is replaced with any

The above inequality fails if the power

N

Here
LI
ot v .
@ expi(t):=e Zj! , keN;
j=0
@ [x]| denotes the smallest integer grater than or equal to x € R;
@ 3N m is the sharp exponent of Adams’ inequality on bounded domains;

e V™u:=(—A)%u ifmiseven, and V™u:= V(fA)%;lu if m is odd.

Idea: It is possible to reach a limiting sharp higher order inequality exploiting
refined limiting and non-limiting second order inequalities.
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Let us consider first order Sobolev spaces in the limiting case of Sobolev embeddings
(We™N(Q), [V - In)

where Q Cc RN, N > 2, is a bounded domain. In this framework,

N
TM () := sup J e Ny, a>0
Q

uewg™N(Q), [Vuln <t
@ Sobolev embeddings:
o WHN(Q)CcLY(Q) Vg1
o but WyN(Q) € L®(Q

In particular, for any q > 1, sup

J [ul? dx < +oo
uewg N (Q), [Vuln <1 Q2

@ S. I. Pohozaev (1965) and N. S. Trudinger (1967):

o Ify > 5 then there exists u € WyN(Q) with |[Vu|n < 1 such that
J e dx = 400, a>0
Q

o there exists « = a(N) > 0 small such that TM(«x) < +00

@ J. Moser (1970): oy = Nwl/(N 1 , wn_1 surface measure of SN~ ¢ RN
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Trudinger-Moser inequality

J. Moser found the sharp exponent and proved the following result

Theorem [Moser 1970]

Let Q c RN, N > 2, be a bounded domain. There exists a constant Cr > 0 such that

sup j vcluIN T dax < CNIQ] Va < o
ueWON(Q ) IVufn <t YQ = +o0 Yo > ooy

1/N1

where o == Nwy and wn_; is the surface measure of SN-1 c RN,
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Theorem [Moser 1970]

Let Q c RN, N > 2, be a bounded domain. There exists a constant Cr > 0 such that

sup J vcluIN T dax < CNIQ] Va < o
ueWON(Q ) IVufn <t YQ = +o0 Yo > ooy
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where o = Nwy and wn_; is the surface measure of SN-1 c RN,

Key ideas of the proof of the critical inequality

sup J eNIUNTT gy < Q|
Q

uewy N (Q), [[Vuln <1

© Reduction of the problem to the radial case

@ Moser's change of variable

+

Moser's one-dimensional Lemma
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Reduction of the problem to the radial case

Key ingredient: Schwarz symmetrization

uw w

1.5

u:Q—-R ~ u*:(0,]Q] — [0, +00)
~ ufr QF 5 [0, 400), uf(x) == u*(%\xll\])
If ue We™N(Q) then uf € WyN(QF) and
N N
° J eoN N gy =J eoN AN gy
Q foX
o (Pélya-Szegb inequality) | Vuf||n < [|[VUlIn
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Moser’s change of variable and one-dimensional Lemma
Let Q C RY and let R > 0 be such that [Bg| = |Q], i.e. QF :=Bg.
© Given any u € Wy™N(Q) with |[Vul[n < 1, we have

N N
J eon ful N dx:J eN N g4y and [Vun <1
Q Br

t

@ Performing the change of variable r = [x| = Re” N and setting

N1
w(t) = N uH(r),
I NL +00 NL +oo
J eoNIWIN T gy — IBR\J e"N i tdt  and  |[VUWN = J wIN dt
Br 0 0

One-dimensional Lemma [Moser 1970]

There exists ¢y > 0 such that for any non-negative measurable function
¢ : [0, +00) — [0, +00) satisfying

+o0
J PN () dt <1
0

the following inequality holds

J+m exp{ (Jt d(s) ds) N } dt < cn,
0 0




Trudinger-Moser inequality

Theorem [Moser 1970]

Let Q C ]RN, N > 2, be a bounded domain. There exists a constant Cyn > 0 such that

sup
wewiN(Q), [Vuln <L

J o™ 4 [ ONIQL Ve ay
Q =400 Vo> an

where oy == Nw%\{gfl) and wy_; is the surface measure of SN-1 ¢ RN,

Related results can be found in several papers:

Adachi, Adams, Adimurthi, Bahouri, Carleson, Chang, Cianchi, de Figueiredo, do 0,
Dolbeault, Druet, Esteban, Flucher, Fontana, lbrahim, Ishiwata, Kozono, Lam, Li, Lin,
Lu, Majdoub, Malchiodi, Martinazzi, Masmoudi, Morpurgo, Nakanishi, Ogawa, Ozawa,
Ruf, Strichartz, Struwe, Tanaka, Tarantello, Tintarev, Yang, ...
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Let Q C ]RN, N > 2, be a bounded domain. There exists a constant Cyn > 0 such that

sup

J e“|u|NNT1 dx < CnIQ] Va < an
uewg™N (Q), [[Vulln <1 Y2

= +o0 Yoo > an

where oy == Nw%\{gfl) and wy_; is the surface measure of SN-1 ¢ RN,

Related results can be found in several papers:

Adachi, Adams, Adimurthi, Bahouri, Carleson, Chang, Cianchi, de Figueiredo, do 0,
Dolbeault, Druet, Esteban, Flucher, Fontana, lbrahim, Ishiwata, Kozono, Lam, Li, Lin,
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Remark:

o Tnalw = j expry (ol 1) dx
RN
N-—-2

o expy(t)i=e'— Z

il
k=0 ) 6/23
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The problem on the whole space RN with N > 2
N—-2
t)

Let expyn(t)i=e'— Z

and  Jno«(u) ::J expN(aIu\%) dx.
P )! RN

o S. Adachi — K. Tanaka (2000): For any « € (0, o) there exists Co n > 0 such
that
Ina() < CanlulN Vue WN(RN) with [|[Vu|n < 1. (AT)

The sharp exponent ay = Nwl/ N Y is excluded in (AT):
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Trudinger-Moser inequality on R with the exact growth condition, N > 3

Let F: R — [0, 4+00) be continuous and let us consider u — J(u) ::J F(u)dx.
IRN

Boundedness [Ibrahim-Masmoudi-Nakanishi N = 2 and Masmoudi-S. N > 3]

The following conditions are equivalent:

|s|N/(N"DF(s)
N/(N-1)

. F(s)
< 400 and lim — < 400
s—0 |s|N

Q@ Im

|s|—+00 exNIs

@ There exists C¢ n > 0 such that

JW < Cenfully Yue WENRY) with [[Vulln < 1

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi N = 2 and Masmoudi-S. N > 3]

The following conditions are equivalent:

N/(N-DF
Q@ Im u:o and lim

Is|—+oo e IsIN/(N—1) s—0

F(s)

=0
[sN

@ For any sequence {iy h, € WEN(RN) of radial functions satisfying ||V [n < 1
and weakly converging to some u in WYN(RYN), we have J(u,) — J(u) as
k — +o0. )
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Trudinger-Moser and Adams inequality

Theorem [Moser 1970]

Let Q c RN, N > 2, be a bounded domain. There exists a constant Cn > 0 such that

N—1
eul dx

sup
= +o00 Yoo > an

J T < CNIQ] Va < an
uewg ™ (Q), [[Vulln <1 Y2

where oy = Nw%\‘/gf_l) and wn_1 is the surface measure of SN c RN,
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Trudinger-Moser and Adams inequality

Theorem [Moser 1970]

Let Q c RN, N > 2, be a bounded domain. There exists a constant Cn > 0 such that

sup

J T < CNIQ] Va < an
uewg ™ (Q), [[Vulln <1 Y2

edINT gy
= +o00 Yoo > an

where o == Nw%\,@;‘_l)

and wn_1 is the surface measure of SN-1 ¢ RN,

Theorem [Adams 1988]

Let m be an integer and let Q C RN with m < N. There exists a constant C, n > 0
such that

| \

<CumnlQl VBB,

N
sup ePIUI ™= gy
= 400 VB>,

(Q), IV™u| N <1
m

N
uEWOm' m

where B = Bn.m is explicitly known.

Here V™u:=(—A)%u ifmiseven, and V™u:=V(-A)"7 u if mis odd.
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Adams’ inequality: the particular case of Wg'z(Q)

Let QO c RN be a bounded domain. For Sobolev spaces of the form WZ2(Q), the
Sobolev embedding theorem says that if N > 4 then

W52 (Q) € LV (Q)
and hence the limiting case is .

Theorem [Adams 1988]

Let Q c R* be bounded. There exists a constant C > 0

< ClQ] Vo <3272,
SUp J e“uzdx{ | ‘ x s
Q

= 2
ueWZ?(Q), [|Au|2<1 =400 Vo >327m2.

Main difficulty of the proof: how to reduce the problem to the radial case?

Problem: given u € W§'2(Q), we do not know whether or not uf € Wg'z(Qﬁ); even in
the case u* € W2?(Q!), we would have to establish inequalities between ||Aul|, and
|Auf]|, and such estimates are unknown in general.

Adams’ idea: u € CP(Q), f:=—Au = u(x) =clp * f(x) =c¢ [p % dy
= wi(t) Swt(t) =1 fiur(s)ds < I3+ [T I3 ds
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Adams inequality

Let V™u:i=(-A)%u ifmiseven, and V™u:=V(-A)"Z u if misodd.

Theorem [Adams 1988]

Let m be an integer and let Q C RN with m < N. There exists a constant C,, n > 0
such that

mmwﬁim < Cm,N|Q| VB < ﬁN,m '
sup e dx
N = 400 VB > Bnm -

uew, " ™ (Q), [V Myl N <1
m
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Adams inequality

m

Let V™u:=(—A)%u ifmiseven, and V™u:= V(fA)j;lu if m is odd.

Theorem [Adams 1988]

Let m be an integer and let Q C RN with m < N. There exists a constant C,, n > 0
such that

sup eﬁ\ulﬂfmd {<Cm,N|Q| VB ﬁN,m,

N = 400 VB > Brm -

UEW, T (Q), [VMu N <1

E
> Be
e
o
4
x
V
N
\,

Theorem [Fontana, Morpurgo 2018]

Let m be a positive integer with 2 < m < n. There exists a constant Cy , > 0 such
that

<Cnm i B < Brnm,

N
sup J exp[%_ﬂ{ Blu|N=m } dx
= =+00  if B> PBrnm-

N
uEW"‘m(]R

a\zs\z z

HV"‘uH T [lell

\

(See Lam-Lu for the case m = 2!)
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The particular case of W22(R%)

Iullfyez = I(=A+ Dull3 = [|Au]|3 + 2[ Vul3 + [lu[l3 |

+ D. R. Adams (1988): What happens on bounded domains Q C R* if we consider
functions belonging to W22 (R*)?
ClQl vo< 32
J (e“uzl)dx{< Q| o« < 3272
o

sup

UEW22(R4), HuHW22<1 = 400 Vo > 327’( .

(Bessel potential representation formula)
x B. Ruf and F. S. (2013):

sup (e*™ —1)dx
= +oo Vo > 327

j 2 {< +oo V0 < <3272,
ueW22(R*), ully,22<1 /R

(Comparison principle)

o N. Lam and G. Lu (2013): | [u]]? = | Auf + [u[3 |

2 <40 VO0<a< 3272,
sup (e®™ —1)dx
ueW22(R4), lul<1 JR* =400 Va>32m2
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Adams’ inequality with the exact growth condition on R*

Theorem [Masmoudi, S. 2014]

There exists a constant C > 0 such that

2,2

327w’ —1
————— dx < Cl[ul]p VYu e W22(RY) with ||Aul, < 1.
| o dx < I e WRRY) with 4w ()

Moreover, this fails if the power 2 in the denominator is replaced with any p < 2.
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3271%u?
— il

7(1 < C 2 V €W2’2 R4 th A < 1
JRA Tz &S Clulz Vo (R*) with [|Aul|2 (*)
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Main difficulty: how to reduce the problem to the radial case?

@ Schwarz symmetrization

Problem: given u € W22(R*), we do not know whether or not uf € W22(R*);
even in the case uf € W22(R*), we would have to establish inequalities between
| A2 and ||Auf||, and such estimates are unknown in general
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even in the case uf € W22(R*), we would have to establish inequalities between
| A2 and ||Auf||, and such estimates are unknown in general

@ Comparison principle

Theorem [Talenti 1976]

Let Bx € R* be the ball of radius R > 0 centered at the origin. Let 1, v be weak
solutions of

—Au="f in B —Av = ft in B
(P) L b (P%) L b
ue WO’ (BR) S WO’ (BR)

then uf < v.

This comparison principle is a suitable tool if one works with the Dirichlet norm,
in fact ||Aujlz = ||Av]],.
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Reduction of the problem to the radial case: a key tool
Given u € CP(R*), we denote by
fi=—Au in R*.

Let

Talenti’s inequality

If u € CP(R?) then

u?(ry) —uf(rp) < 7J' d§ for 0 <1y <. (T)
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Remark: the key ingredients in the proof of (T) are
@ coarea formula

@ isoperimetric inequality

2
Consequently the constant 16% is sharp!
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Optimal descending growth condition

Talenti's inequality enables us to obtain the following result

Theorem [Masmoudi, S. 2014]

Let u € CP(R?*) and let R > 0. If uf(R) > 1 and f:= —Au in R* satisfies

+o0
J‘ (£ ()2 ds < 4K

BRI
for some K > 0, then we have

327 it
o (FLRE) | < S e,
Wi (R)12 K2 MWl \Bg)

where C is a universal constant independent of u, R and K.

Here

fWQ:%EFMM

and

+00 +00
J [F*(s)]? ds <4J [f*(s)]? ds
0 0
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exp(%wm)?) c
— IR < W2 pe g
Wi (R)]2 K2 M lezee\Bg)
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1 S
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S Jo
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Adams’ inequality with the exact growth condition:
sketch of the proof

Key ingredients of the proof:
© Optimal descending growth condition

@ Talenti's inequality + Moser's change of variable and one-dimensional Lemma
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sketch of the proof

Key ingredients of the proof:
© Optimal descending growth condition

@ Talenti's inequality + Moser's change of variable and one-dimensional Lemma

One-dimensional Lemma [Moser 1970]

There exists ¢g > 0 such that for any non-negative measurable function
¢ : [0, +00) — [0, +00) satisfying

the following inequality holds

where
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Adams’ inequality with the exact growth condition:
the second order Sobolev case

Remark: The key ingredients of the proof of Adams’ inequality with the exact growth
condition in W22(R*) are closely related to the properties of the Laplacian operator
but they are not confined to the 4-dimensional case!
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the second order Sobolev case
Remark: The key ingredients of the proof of Adams’ inequality with the exact growth

condition in W22(R*) are closely related to the properties of the Laplacian operator
but they are not confined to the 4-dimensional case!

Indeed, for any N > 4, using the same arguments one can prove the existence of a
constant Cy > 0 such that

N
exprn _y{ Br2ful =2 } N
J %2 dx < Cullul? vu e W2 X (RN) with [ Aulx < 1
RN 2 =z

(14 hul) =
where
LI
ot v
@ expy(t):=e Zj! , keN
j=0
@ [x] denotes the smallest integer grater than or equal to x € R

@ 3N 2 is the sharp exponent of Adams’ inequality on bounded domains
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Adams’ inequality with the exact growth condition:
the second order Sobolev case
Remark: The key ingredients of the proof of Adams’ inequality with the exact growth

condition in W22(R*) are closely related to the properties of the Laplacian operator
but they are not confined to the 4-dimensional case!

Indeed, for any N > 4, using the same arguments one can prove the existence of a
constant Cy > 0 such that

N
exp(l},ﬂ{ Br2lul =2}
JRN

N
_ dx < Cnfuld Yue W22 (RN) with [|Aufn <1
(1+ ) v : :

where
LI
ot v
@ expy(t):=e Zj! , keN
j=0
@ [x] denotes the smallest integer grater than or equal to x € R

@ 3N 2 is the sharp exponent of Adams’ inequality on bounded domains

(See Lu-Tang-Zhu for the case N > 3 — In particular, the case N = 3 reveals some
non-trivial technical difficulties!)

18 / 23



Adams’ inequality: the second order Lorentz-Sobolev case
Let Q c RN, N > 3, be a bounded domain.
o D. R. Adams (1988): There exists Cn > 0 such that

J Ddu\‘Nl\Lz {§ CnIQl Vo < Bz,
e dx
Q

sup
= 400 Yoo > E)N’Q .

ueCqF (Q), [[Au]| Y <1
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Adams’ inequality: the second order Lorentz-Sobolev case

Let O C RN, N > 3, be a bounded domain.
o D. R. Adams (1988): There exists Cn > 0 such that

sup J e“‘“‘% dx S CNIQ V< B2,
ueeP(Q), [au) n <1 Jo =400 Vo> fBng2-
2

@ A. Alberico (2008): Let 1 < q < +o00. There exists Cn,q > 0 such that

J eocluqu;;1 dx < CN,q‘Q| Vo < BN,2,q ,
Q =too Vo> Bz

sup
ueeE (o) lau] y <1

where .
0 q dt
e N G A
2.4 0 t

and

Bn2q = [Bn.2] R
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Adams’ inequality: the second order Lorentz-Sobolev case
Let Q ¢ RN, N > 3, be a bounded domain.
o D. R. Adams (1988): There exists Cn > 0 such that

J aul Nz S CNIQ V< B2,
e dx
Q = +00 Vo > f)Nvg .

sup
U€ECH (Q), [|Au]l Y <1

@ A. Alberico (2008): Let 1 < q < +o00. There exists Cn,q > 0 such that
7L < CnglQl Va < '

sup J ea|u| q—1 dx N,q‘ | % ﬁN,2,q
ueeg Q). auly <1 Ja =400 Vo> Bn2g s

where .
0 q dt
e R
24 0 t
and

Bn2q = [Bn.2] R

Theorem [Masmoudi, S. 2017]

Let 1 < g < +oo. There exists Cn,q > 0 such that

T
eXP[q721{f3N,2,q|u|q } 0N s
dx < Cngllulld Vu e CF(R™) with [|[Aul|n , <1
.[RN (1+ u)at Nallulg 0 1Al 24
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Adams’ inequality with the exact growth condition:
the higher order Sobolev case

Let

(=A)zu if m is even,

V(-A) " if m is odd.

Theorem [Masmoudi, S. 2017]

Let m be a positive integer with 2 < m < N. Then

EXPrN o) { Bn,mlul N }
J]RN

< Crmllul]
(14 )~ "

Yu e W (RN, ), V™l x <

3[zzjz

The al])\‘ove inequality fails if the power Nﬂm in the denominator is replaced with any
12 < N—m
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Adams’ inequality with the exact growth condition:
the higher order Sobolev case

Let
(=A)zu if m is even,

V(-A) " if m is odd.

Theorem [Masmoudi, S. 2017]
Let m be a positive integer with 2 < m < N. Then

vu e W (RN, ), V™l <1

3[zzjz

N
EXPrN 5 { BN,mhllN_m }
[ dx < Crum
RN

(14 )~

N
N—m

The above inequality fails if the power in the denominator is replaced with any

N
p<N7m

Idea: It is possible to reach a limiting sharp higher order inequality exploiting
refined limiting and non-limiting second order inequalities.
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Non-limiting sharp embeddings for Lorentz-Sobolev spaces

Theorem [Alvino 1977]

Assume 1 <p <N and 1< q<p. Let Q c RN be a bounded domain,

3

: Np _pP ( N > 1
ifpf=—— = Ju — Vu Yu € W,LP9(Q) .
P “p [llp=.q < N P - Vullp.q 0 Q)

Theorem [Tarsi 2012]

Assume N >2, 1 <p <N/2and g >1. Let Q C R™ be a bounded domain and let

N
P = ol = [l < gAY € WALPAQ) A WELPS(Q),

where ly p, is explicitly known.

As a by-product of the argument introduced by Tarsi: if 2 < m < N, we have

||Au|\ N < onm [[VTUun Vue e (RN)
Tm m
where
B][\[Nz_z)/N
ONm = N m) /N

BNm
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N
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where
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Adams inequality with the exact growth:sketch of the proof

Summarizing, if 2<m < N

(N—2)/N
.2

[Aufly n < IV™hufx Ve e RN

(N—m)/N
N,m
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Summarizing, if 2<m < N

(N=2)/N
P2

[Auly ~ < BN

N,m

IV ullx  Vue CFRY)

Q Let u e CP(R™) be such that [V™u| n <1 and set

(N—m)/N
N,

v;:mmfmmu, so that ||Av||l}v%<l

Bn.2

N (N=2)/(N—m) | | N _
expry gy B mlulN=m exprn 11 B | =
J N 21{ m }dXSJ' N 2}{ N2 }dx
RN RN

(14 )~ow (1+)Nm
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Adams inequality with the exact growth:sketch of the proof

Summarizing, if 2<m < N

(N—2)/N

. BY

AN T (N—m)/N
BN,Tn

Ay IV™hufx Ve e RN

Q Let u e CP(R™) be such that [V™u| n <1 and set

(N—m)/N
N,m

Vi= —r——
(N—2)/N
BN,2

u, sothat ||Av||%vﬁ <1

N . — N
o J exp(%_ﬂ{ Br,mlul = } d <J' exp(%_ﬂ{ Bmz ANy N ¥
XN
BN (L4 fu)Nom RN (14 W)=

N
. eXPrN 511 B o N V[T
(BNzﬂZ[ﬁN,z]NNZNE"‘) :J ik ﬂ{ Nyzva }dx
o RN (1+)~v=—m

dx
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Adams inequality with the exact growth:sketch of the proof

Summarizing, if 2<m < N

(N=2)/N
P2

[Auly ~ < BN

N,m

IV ullx  Vue CFRY)

Q Let u e CP(R™) be such that [V™u| n <1 and set

pN—m/N
v;:“'\]“fmmu, so that ||Av||%%<1
Pn.2

N

N (N—=2)/(N—m)
eXPrN o1 Brmlu|N=m exprn 511 B [v|N=m
QJ y 2 { Brm }dX<J n 2{ B }
RN RN

~ dx
(14 ful)=m (14 )"
N
N— N eXpPrN 5 {BN,Z,E‘WW }
(Bszru = [ﬁN,Z] N2 N—m ) :J [ -2] mN dx
) RY (14 )=
Remark: N
exprq_o1l Bn,2,qt/ a1 } .
dx < Cnglluf|d Vu e CP(R™) with ||Aul|n <1
J]RN (1+ Puf)at qllullg b Ay



Thank you!
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