Adams' inequality with the exact growth

Federica Sani Università degli Studi di Milano

Physical, Geometrical and Analytical Aspects of Mean Field Systems of Liouville Type Banff, 1/6 April 2018

Theorem [Nader Masmoudi, F.S. 2017]

Let m be a positive integer with 2 < m < N. Then

$$\int_{\mathbb{R}^N} \frac{exp_{\lceil \frac{N}{m}-2\rceil} \left\{ \; \beta_{N,m} |u|^{\frac{N}{N-m}} \; \right\}}{(\; 1+|u|\;)^{\frac{N}{N-m}}} \; dx \leqslant C_{N,m} \|u\|^{\frac{N}{m}}_{\frac{N}{m}} \quad \forall u \in W^{m,\frac{N}{m}}(\mathbb{R}^N) \text{, } \|\nabla^m u\|_{\frac{N}{m}} \leqslant 1 \; .$$

The above inequality fails if the power $\frac{N}{N-m}$ in the denominator is replaced with any $p<\frac{N}{N-m}.$

Here

$$\bullet \ \exp_k(t) := e^t - \sum_{i=0}^k \frac{t^j}{j!} \ , \quad k \in \mathbb{N};$$

- $\lceil x \rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$;
- \bullet $\beta_{N,m}$ is the sharp exponent of Adams' inequality on bounded domains;
- $\nabla^m \mathfrak{u} := (-\Delta)^{\frac{m}{2}} \mathfrak{u}$ if m is even, and $\nabla^m \mathfrak{u} := \nabla (-\Delta)^{\frac{m-1}{2}} \mathfrak{u}$ if m is odd.

Idea: It is possible to reach a limiting sharp higher order inequality exploiting refined limiting and non-limiting second order inequalities.

Let us consider first order Sobolev spaces in the limiting case of Sobolev embeddings

$$(W_0^{1,N}(\Omega), \|\nabla\cdot\|_N)$$

where $\Omega \subset \mathbb{R}^N$, $N \geqslant 2$, is a bounded domain. In this framework,

$$\mathsf{TM}(\alpha) := \sup_{\mathbf{u} \in W_0^{1,N}(\Omega), \, \|\nabla \mathbf{u}\|_{\mathsf{N}} \leqslant 1} \int_{\Omega} e^{\alpha |\mathbf{u}|^{\frac{\mathsf{N}}{\mathsf{N}-1}}} \, \mathrm{d} x, \quad \alpha > 0$$

- Sobolev embeddings:
 - $W_0^{1,N}(\Omega) \subset L^q(\Omega) \quad \forall q \geqslant 1$
 - but $W_0^{1,N}(\Omega) \nsubseteq L^{\infty}(\Omega)$

In particular, for any
$$q\geqslant 1, \quad \sup_{u\in W_0^{1,N}(\Omega),\,\|\nabla u\|_N\leqslant 1}\int_{\Omega}|u|^q\;dx<+\infty$$

- S. I. Pohozaev (1965) and N. S. Trudinger (1967):
 - If $\gamma > \frac{N}{N-1}$ then there exists $u \in W_0^{1,N}(\Omega)$ with $\|\nabla u\|_N \leqslant 1$ such that

$$\int_{\Omega} e^{\alpha |u|^{\gamma}} dx = +\infty, \quad \alpha > 0$$

- \bullet there exists $\alpha=\alpha(N)>0$ small such that $TM(\alpha)<+\infty$
- J. Moser (1970): $\alpha_N := N\omega_{N-1}^{1/(N-1)}$, ω_{N-1} surface measure of $S^{N-1} \subset \mathbb{R}^N$

Trudinger-Moser inequality

J. Moser found the sharp exponent and proved the following result

Theorem [Moser 1970]

Let $\Omega\subset\mathbb{R}^N$, $N\geqslant 2$, be a bounded domain. There exists a constant $C_N>0$ such that

$$\sup_{\mathbf{u} \in W_0^{1,N}(\Omega), \|\nabla \mathbf{u}\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha |\mathbf{u}|^{\frac{N}{N-1}}} dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \alpha_N \\ = +\infty & \forall \alpha > \alpha_N \end{cases}$$

where $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1}\subset\mathbb{R}^N.$

Key ideas of the proof of the critical inequality

$$\sup_{\mathbf{u} \in W_0^{1,N}(\Omega), \, \|\nabla \mathbf{u}\|_N \leqslant 1} \, \int_{\Omega} e^{\alpha_N \, |\mathbf{u}|^{\frac{N}{N-1}}} \, \mathrm{d} x \leqslant C_N |\Omega|$$

- Reduction of the problem to the radial case
- Moser's change of variable+

Moser's one-dimensional Lemma

Trudinger-Moser inequality

J. Moser found the sharp exponent and proved the following result

Theorem [Moser 1970]

Let $\Omega\subset\mathbb{R}^N,\ N\geqslant 2,$ be a bounded domain. There exists a constant $C_N>0$ such that

$$\sup_{u \in W_0^{1,N}(\Omega), \|\nabla u\|_N \leqslant 1} \int_{\Omega} e^{\alpha |u|^{\frac{N}{N-1}}} dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \alpha_N \\ = +\infty & \forall \alpha > \alpha_N \end{cases}$$

where $\alpha_N := N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^N$.

Key ideas of the proof of the critical inequality

$$\sup_{u \in W_0^{1,N}(\Omega), \|\nabla u\|_N \leqslant 1} \int_{\Omega} e^{\alpha_N |u|^{\frac{N}{N-1}}} \, dx \leqslant C_N |\Omega|$$

- Reduction of the problem to the radial case
- Moser's change of variable

Moser's one-dimensional Lemma

Reduction of the problem to the radial case

Key ingredient: Schwarz symmetrization

$$\begin{split} u:\Omega \to \mathbb{R} & \rightsquigarrow \ u^*:(0,|\Omega|] \to [0,+\infty) \\ & \rightsquigarrow \ u^{\sharp}:\Omega^{\sharp} \to [0,+\infty), \ u^{\sharp}(x) := u^*\Big(\frac{\omega_{N-1}}{N}|x|^N\Big) \end{split}$$

If $\mathfrak{u}\in W^{1,N}_0(\Omega)$ then $\mathfrak{u}^\sharp\in W^{1,N}_0(\Omega^\sharp)$ and

$$\bullet \int_{\Omega} e^{\alpha_N |u|^{\frac{N}{N-1}}} dx = \int_{\Omega^{\sharp}} e^{\alpha_N [u^{\sharp}]^{\frac{N}{N-1}}} dx$$

• (Pólya-Szegö inequality) $\|\nabla u^{\sharp}\|_{N} \leqslant \|\nabla u\|_{N}$

Moser's change of variable and one-dimensional Lemma

Let $\Omega \subset \mathbb{R}^N$ and let R > 0 be such that $|B_R| = |\Omega|$, i.e. $\Omega^{\sharp} := B_R$.

• Given any $u \in W_0^{1,N}(\Omega)$ with $\|\nabla u\|_N \leq 1$, we have

$$\int_{\Omega} e^{\alpha_N |u| \frac{N}{N-1}} dx = \int_{\mathbb{R}} e^{\alpha_N [u^{\sharp}] \frac{N}{N-1}} dx \quad \text{and} \quad \|\nabla u^{\sharp}\|_N \leqslant 1$$

② Performing the change of variable $r = |x| = Re^{-\frac{t}{N}}$ and setting $w(t) := \alpha_N^{\frac{N-1}{N}} u^{\sharp}(r)$,

$$\int_{\mathbb{R}} e^{\alpha_N [u^{\sharp}] \frac{N}{N-1}} dx = |B_R| \int_{0}^{+\infty} e^{w \frac{N}{N-1} - t} dt \quad \text{and} \quad \|\nabla u^{\sharp}\|_{N}^{N} = \int_{0}^{+\infty} [w']^{N} dt$$

One-dimensional Lemma [Moser 1970]

There exists $c_N>0$ such that for any non-negative measurable function $\varphi:[0,+\infty)\to[0,+\infty)$ satisfying

$$\int_{0}^{+\infty} \phi^{N}(t) dt \leqslant 1$$

the following inequality holds

$$\int_0^{+\infty} \exp\left\{ \left(\int_0^t \varphi(s) \, ds \right)^{\frac{N}{N-1}} - t \right\} dt \leqslant c_N,$$

23

Trudinger-Moser inequality

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^N$, $N \geqslant 2$, be a bounded domain. There exists a constant $C_N > 0$ such that

$$\sup_{\mathbf{u} \in W_0^{1,N}(\Omega), \|\nabla \mathbf{u}\|_{N} \leqslant 1} \int_{\Omega} e^{\alpha |\mathbf{u}| \frac{N}{N-1}} dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \alpha_N \\ = +\infty & \forall \alpha > \alpha_N \end{cases}$$

where $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1}\subset\mathbb{R}^N.$

Related results can be found in several papers:

Adachi, Adams, Adimurthi, Bahouri, Carleson, Chang, Cianchi, de Figueiredo, do Ó, Dolbeault, Druet, Esteban, Flucher, Fontana, Ibrahim, Ishiwata, Kozono, Lam, Li, Lin, Lu, Majdoub, Malchiodi, Martinazzi, Masmoudi, Morpurgo, Nakanishi, Ogawa, Ozawa, Ruf, Strichartz, Struwe, Tanaka, Tarantello, Tintarev, Yang, ...

Remark:

$$\begin{aligned} & \bullet & J_{N,\alpha}(u) := \int_{\mathbb{R}^N} \exp_N(\alpha |u|^{\frac{N}{N-1}}) \, dx \\ & \bullet & \exp_N(t) := e^t - \sum_{i=1}^{N-2} \frac{t^i}{i!} \end{aligned}$$

Trudinger-Moser inequality

Theorem [Moser 1970]

Let $\Omega \subset \mathbb{R}^N$, $N \geqslant 2$, be a bounded domain. There exists a constant $C_N > 0$ such that

$$\sup_{u \in W_0^{1,N}(\Omega), \|\nabla u\|_N \leqslant 1} \int_{\Omega} e^{\alpha |u| \frac{N}{N-1}} \ dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \alpha_N \\ = +\infty & \forall \alpha > \alpha_N \end{cases}$$

where $\alpha_N := N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^N$.

Related results can be found in several papers:

Adachi, Adams, Adimurthi, Bahouri, Carleson, Chang, Cianchi, de Figueiredo, do Ó, Dolbeault, Druet, Esteban, Flucher, Fontana, Ibrahim, Ishiwata, Kozono, Lam, Li, Lin, Lu, Majdoub, Malchiodi, Martinazzi, Masmoudi, Morpurgo, Nakanishi, Ogawa, Ozawa, Ruf, Strichartz, Struwe, Tanaka, Tarantello, Tintarev, Yang, ...

Remark:

•
$$J_{N,\alpha}(u) := \int_{\mathbb{R}^N} \exp_N(\alpha |u|^{\frac{N}{N-1}}) dx$$

$$\bullet \quad \exp_N(t) := e^t - \sum_{k=0}^{N-2} \frac{t^j}{j!}$$

The problem on the whole space \mathbb{R}^N with $N \ge 2$

$$\text{Let} \quad \text{exp}_N(t) := \varepsilon^t - \sum_{k=0}^{N-2} \frac{t^j}{j!} \quad \text{ and } \quad J_{N,\alpha}(u) := \int_{\mathbb{R}^N} \text{exp}_N(\alpha |u|^{\frac{N}{N-1}}) \, dx.$$

• S. Adachi – K. Tanaka (2000): For any $\alpha \in (0, \, \alpha_N)$ there exists $C_{\alpha,N}>0$ such that

$$J_{N,\alpha}(u)\leqslant C_{\alpha,N}\|u\|_N^N\quad\forall u\in W_0^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1. \tag{AT}$$

The sharp exponent $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ is excluded in (AT): $\boxed{\alpha<\alpha_N}$

B. Ruf (2005) and **Y. Li – B. Ruf (2008)**:
$$\| \mathbf{u} \|_{W^{1,N}}^{N} := \| \nabla \mathbf{u} \|_{N}^{N} + \| \mathbf{u} \|_{N}^{N}$$

$$\sup_{\mathbf{u} \in W^{1,N}(\mathbb{R}^{N}), \| \mathbf{u} \|_{W^{1,N}} \leq 1} J_{N,\alpha}(\mathbf{u}) \begin{cases} <+\infty & \forall \ 0 < \alpha \leqslant \alpha_{N}, \\ =+\infty & \forall \alpha > \alpha_{N}. \end{cases}$$

• S. Ibrahim – N. Masmoudi – K. Nakanishi (2015) and N. Masmoudi – F. S. (2015): There exists $C_{\rm N}>0$ such that

$$\int_{\mathbb{R}^N} \frac{\exp_N(\alpha_N |u|^{\frac{N}{N-1}})}{(1+|u|)^{\frac{N}{N-1}}} dx \leqslant C_N \|u\|_N^N \quad \forall u \in W^{1,N}(\mathbb{R}^N), \ \|\nabla u\|_N \leqslant 1$$

The problem on the whole space \mathbb{R}^N with $N \ge 2$

$$\text{Let} \quad \text{exp}_N(t) := \varepsilon^t - \sum_{k=0}^{N-2} \frac{t^j}{j!} \quad \text{ and } \quad J_{N,\alpha}(u) := \int_{\mathbb{R}^N} \text{exp}_N(\alpha |u|^{\frac{N}{N-1}}) \, dx.$$

• S. Adachi – K. Tanaka (2000): For any $\alpha \in (0,\,\alpha_N)$ there exists $C_{\alpha,N}>0$ such that

$$J_{N,\alpha}(u)\leqslant C_{\alpha,N}\|u\|_N^N\quad\forall u\in W_0^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1. \tag{AT}$$

The sharp exponent $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ is excluded in (AT): $\boxed{\alpha<\alpha_N}$

• B. Ruf (2005) and Y. Li – B. Ruf (2008): $\|u\|_{W^{1,N}}^N := \|\nabla u\|_N^N + \|u\|_N^N$

$$\sup_{u \in W^{1,N} \, (\mathbb{R}^N), \, \|u\|_{W^{1,N} \, \leqslant 1}} \, J_{N,\alpha}(u) \left\{ <+\infty \quad \forall \, 0 < \alpha \leqslant \alpha_N \text{,} \right. \\ \left. = +\infty \quad \forall \alpha > \alpha_N \text{.} \right.$$

• S. Ibrahim – N. Masmoudi – K. Nakanishi (2015) and N. Masmoudi – F. S. (2015): There exists $C_{\rm N}>0$ such tha

$$\int_{\mathbb{R}^N} \frac{\exp_N(\alpha_N |u|^{\frac{N}{N-1}})}{(1+|u|)^{\frac{N}{N-1}}} dx \leqslant C_N \|u\|_N^N \quad \forall u \in W^{1,N}(\mathbb{R}^N), \ \|\nabla u\|_N \leqslant 1$$

The problem on the whole space \mathbb{R}^N with $N \geqslant 2$

$$\text{Let} \quad \text{exp}_N(t) := e^t - \sum_{k=0}^{N-2} \frac{t^j}{j!} \quad \text{ and } \quad J_{N,\alpha}(u) := \int_{\mathbb{R}^N} \text{exp}_N(\alpha |u|^{\frac{N}{N-1}}) \ dx.$$

• S. Adachi – K. Tanaka (2000): For any $\alpha \in (0, \, \alpha_N)$ there exists $C_{\alpha,N}>0$ such that

$$J_{N,\alpha}(u)\leqslant C_{\alpha,N}\|u\|_N^N\quad\forall u\in W_0^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1. \tag{AT}$$

The sharp exponent $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ is excluded in (AT): $\boxed{\alpha<\alpha_N}$

• B. Ruf (2005) and Y. Li – B. Ruf (2008): $\|u\|_{W^{1,N}}^N := \|\nabla u\|_N^N + \|u\|_N^N$

$$\sup_{u \in W^{1,N} \, (\mathbb{R}^N), \, \|u\|_{W^{1,N} \, \leqslant 1}} \, J_{N,\alpha}(u) \left\{ <+\infty \quad \forall \, 0 < \alpha \leqslant \alpha_N \text{,} \right. \\ \left. = +\infty \quad \forall \alpha > \alpha_N \text{.} \right.$$

S. Ibrahim – N. Masmoudi – K. Nakanishi (2015) and
 N. Masmoudi – F. S. (2015): There exists C_N > 0 such that

$$\int_{\mathbb{R}^N} \frac{\exp_N(\alpha_N |u|^{\frac{N}{N-1}})}{(1+|u|)^{\frac{N}{N-1}}} dx \leqslant C_N \|u\|_N^N \quad \forall u \in W^{1,N}(\mathbb{R}^N), \ \|\nabla u\|_N \leqslant 1$$

The problem on the whole space \mathbb{R}^N with $N \geqslant 2$

$$\text{Let} \quad \text{exp}_N(t) := e^t - \sum_{k=0}^{N-2} \frac{t^j}{j!} \quad \text{ and } \quad J_{N,\alpha}(u) := \int_{\mathbb{R}^N} \text{exp}_N(\alpha |u|^{\frac{N}{N-1}}) \ dx.$$

• S. Adachi – K. Tanaka (2000): For any $\alpha \in (0, \, \alpha_N)$ there exists $C_{\alpha,N}>0$ such that

$$J_{N,\alpha}(u)\leqslant C_{\alpha,N}\|u\|_N^N\quad\forall u\in W_0^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1. \tag{AT}$$

The sharp exponent $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ is excluded in (AT): $\boxed{\alpha<\alpha_N}$

• B. Ruf (2005) and Y. Li – B. Ruf (2008): $\|u\|_{W^{1,N}}^N := \|\nabla u\|_N^N + \|u\|_N^N$

$$\sup_{u \in W^{1,N} \, (\mathbb{R}^N), \, \|u\|_{W^{1,N}} \, \leqslant 1} \, J_{N,\alpha}(u) \left\{ \begin{matrix} <+\infty & \forall \, \, 0 < \alpha \leqslant \alpha_N \text{,} \\ =+\infty & \forall \alpha > \alpha_N \text{.} \end{matrix} \right.$$

• S. Ibrahim – N. Masmoudi – K. Nakanishi (2015) and N. Masmoudi – F. S. (2015): There exists $C_{\rm N}>0$ such that

$$\int_{\mathbb{R}^N} \frac{\exp_N(\alpha_N |u|^{\frac{N}{N-1}})}{(1+|u|)^{\frac{N}{N-1}}} dx \leqslant C_N \|u\|_N^N \quad \forall u \in W^{1,N}(\mathbb{R}^N), \ \|\nabla u\|_N \leqslant 1$$

Trudinger-Moser inequality on \mathbb{R}^N with the exact growth condition, $N\geqslant 3$

Let $F: \mathbb{R} \to [0, +\infty)$ be continuous and let us consider $u \mapsto J(u) := \int_{\mathbb{R}^N} F(u) dx$.

Boundedness [Ibrahim-Masmoudi-Nakanishi N=2 and Masmoudi-S. $N\geqslant 3$]

The following conditions are equivalent:

$$\bullet \lim_{|s| \to +\infty} \frac{|s|^{N/(N-1)} F(s)}{e^{\alpha_N |s|^{N/(N-1)}}} < +\infty \quad \text{ and } \quad \lim_{s \to 0} \frac{F(s)}{|s|^N} < +\infty$$

2 There exists $C_{F,N} > 0$ such that

$$J(u)\leqslant C_{F,N}\|u\|_N^N\quad\forall u\in W^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1$$

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi N=2 and Masmoudi-S. $N\geqslant 3$]

The following conditions are equivalent:

$$\bullet \lim_{|s| \to +\infty} \frac{|s|^{N/(N-1)} F(s)}{e^{\alpha_N |s|^{N/(N-1)}}} = 0 \quad \text{ and } \quad \lim_{s \to 0} \frac{F(s)}{|s|^N} = 0$$

② For any sequence $\{u_k\}_k \subset W^{1,N}(\mathbb{R}^N)$ of radial functions satisfying $\|\nabla u_k\|_N \leqslant 1$ and weakly converging to some $\mathfrak u$ in $W^{1,N}(\mathbb{R}^N)$, we have $J(\mathfrak u_k) \to J(\mathfrak u)$ as $k \to +\infty$.

Trudinger-Moser inequality on \mathbb{R}^N with the exact growth condition, $N\geqslant 3$

Let $F: \mathbb{R} \to [0, +\infty)$ be continuous and let us consider $u \mapsto J(u) := \int_{\mathbb{R}^N} F(u) dx$.

Boundedness [Ibrahim-Masmoudi-Nakanishi N=2 and Masmoudi-S. $N\geqslant 3$]

The following conditions are equivalent:

$$\bullet \lim_{|s| \to +\infty} \frac{|s|^{N/(N-1)} F(s)}{e^{\alpha_N |s|^{N/(N-1)}}} < +\infty \quad \text{ and } \quad \lim_{s \to 0} \frac{F(s)}{|s|^N} < +\infty$$

2 There exists $C_{F,N} > 0$ such that

$$J(u)\leqslant C_{F,N}\|u\|_N^N\quad\forall u\in W^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1$$

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi N=2 and Masmoudi-S. $N\geqslant 3$]

The following conditions are equivalent:

$$\bullet \lim_{|s| \to +\infty} \frac{|s|^{N/(N-1)} F(s)}{e^{\alpha_N |s|^{N/(N-1)}}} = 0 \quad \text{ and } \quad \lim_{s \to 0} \frac{F(s)}{|s|^N} = 0$$

② For any sequence $\{u_k\}_k \subset W^{1,N}(\mathbb{R}^N)$ of radial functions satisfying $\|\nabla u_k\|_N \leqslant 1$ and weakly converging to some $\mathfrak u$ in $W^{1,N}(\mathbb{R}^N)$, we have $J(\mathfrak u_k) \to J(\mathfrak u)$ as $k \to +\infty$.

Trudinger-Moser inequality on \mathbb{R}^N with the exact growth condition, $N\geqslant 3$

Let $F: \mathbb{R} \to [0, +\infty)$ be continuous and let us consider $u \mapsto J(u) := \int_{\mathbb{R}^N} F(u) dx$.

Boundedness [Ibrahim-Masmoudi-Nakanishi N=2 and Masmoudi-S. $N\geqslant 3$]

The following conditions are equivalent:

$$\bullet \lim_{|s| \to +\infty} \frac{|s|^{N/(N-1)} F(s)}{e^{\alpha_N |s|^{N/(N-1)}}} < +\infty \quad \text{ and } \quad \lim_{s \to 0} \frac{F(s)}{|s|^N} < +\infty$$

2 There exists $C_{F,N} > 0$ such that

$$J(u)\leqslant C_{F,N}\|u\|_N^N\quad\forall u\in W^{1,N}(\mathbb{R}^N)\text{ with }\|\nabla u\|_N\leqslant 1$$

Moreover

Compactness [Ibrahim-Masmoudi-Nakanishi N=2 and Masmoudi-S. $N\geqslant 3$]

The following conditions are equivalent:

② For any sequence $\{u_k\}_k \subset W^{1,N}(\mathbb{R}^N)$ of radial functions satisfying $\|\nabla u_k\|_N \leqslant 1$ and weakly converging to some $\mathfrak u$ in $W^{1,N}(\mathbb{R}^N)$, we have $J(\mathfrak u_k) \to J(\mathfrak u)$ as $k \to +\infty$.

Trudinger-Moser and Adams inequality

Theorem [Moser 1970]

Let $\Omega\subset\mathbb{R}^N,\ N\geqslant 2,$ be a bounded domain. There exists a constant $C_N>0$ such that

$$\sup_{u \in W_0^{1,N}(\Omega), \|\nabla u\|_N \leqslant 1} \int_{\Omega} e^{\alpha |u|^{\frac{N}{N-1}}} \, dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \alpha_N \\ = +\infty & \forall \alpha > \alpha_N \end{cases}$$

where $\alpha_N:=N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1}\subset\mathbb{R}^N.$

Theorem [Adams 1988]

Let $\mathfrak m$ be an integer and let $\Omega\subset\mathbb R^N$ with $\mathfrak m< N$. There exists a constant $C_{\mathfrak m,\,N}>0$ such that

$$\sup_{u \in W_0^{m, \frac{N}{m}}(\Omega), \|\nabla^m u\|_{N} \le 1} \int_{\Omega} e^{\beta |u| \frac{N}{N-m}} dx \begin{cases} \leqslant C_{m, N} |\Omega| & \forall \beta \leqslant \overline{\beta}, \\ = +\infty & \forall \beta > \overline{\beta}, \end{cases}$$

where $\overline{\beta} = \beta_{N,m}$ is explicitly known

Here $abla^m\mathfrak{u}:=(-\Delta)^{rac{m}{2}}\mathfrak{u}$ if \mathfrak{m} is even, and $abla^m\mathfrak{u}:=
abla(-\Delta)^{rac{m-1}{2}}\mathfrak{u}$ if \mathfrak{m} is odd.

Trudinger-Moser and Adams inequality

Theorem [Moser 1970]

Let $\Omega\subset\mathbb{R}^N,\ N\geqslant 2,$ be a bounded domain. There exists a constant $C_N>0$ such that

$$\sup_{u \in W_0^{1,N}(\Omega), \|\nabla u\|_N \leqslant 1} \int_{\Omega} e^{\alpha |u|^{\frac{N}{N-1}}} \, dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \alpha_N \\ = +\infty & \forall \alpha > \alpha_N \end{cases}$$

where $\alpha_N := N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the surface measure of $S^{N-1} \subset \mathbb{R}^N$.

Theorem [Adams 1988]

Let $\mathfrak m$ be an integer and let $\Omega\subset\mathbb R^N$ with $\mathfrak m< N.$ There exists a constant $C_{\mathfrak m,\,N}>0$ such that

$$\sup_{u\in W_0^{\mathfrak{m},\,\frac{N}{\mathfrak{m}}}(\Omega),\,\|\nabla^{\mathfrak{m}}u\|_{\frac{N}{\mathfrak{m}}}\leqslant 1}\,\int_{\Omega}e^{\beta|u|^{\frac{N}{N-\mathfrak{m}}}}\,dx \begin{cases}\leqslant C_{\mathfrak{m},\,N}|\Omega| &\forall\beta\leqslant\overline{\beta}\text{ ,}\\ =+\infty &\forall\beta>\overline{\beta}\text{ ,}\end{cases}$$

where $\overline{\beta} = \beta_{N,m}$ is explicitly known.

Here $\nabla^{\mathfrak{m}}\mathfrak{u}:=(-\Delta)^{\frac{\mathfrak{m}}{2}}\mathfrak{u}$ if \mathfrak{m} is even, and $\nabla^{\mathfrak{m}}\mathfrak{u}:=\nabla(-\Delta)^{\frac{\mathfrak{m}-1}{2}}\mathfrak{u}$ if \mathfrak{m} is odd.

Adams' inequality: the particular case of $W_0^{2,2}(\Omega)$

Let $\Omega\subset\mathbb{R}^N$ be a bounded domain. For Sobolev spaces of the form $W^{2,2}_0(\Omega)$, the Sobolev embedding theorem says that if N>4 then

$$W^{2,2}_0(\Omega)\subset L^{\frac{2N}{N-4}}(\Omega)$$

and hence the limiting case is N = 4.

Theorem [Adams 1988]

Let $\Omega \subset \mathbb{R}^4$ be bounded. There exists a constant C > 0

$$\sup_{u \in W_0^{2,2}(\Omega), \, \|\Delta u\|_2 \leqslant 1} \, \int_{\Omega} e^{\alpha u^2} \, dx \begin{cases} \leqslant C |\Omega| & \forall \alpha \leqslant 32\pi^2 \; , \\ = +\infty & \forall \alpha > 32\pi^2 \; . \end{cases}$$

Main difficulty of the proof: how to reduce the problem to the radial case?

Problem: given $\mathfrak{u}\in W_0^{2,2}(\Omega)$, we do not know whether or not $\mathfrak{u}^\sharp\in W_0^{2,2}(\Omega^\sharp)$; even in the case $\mathfrak{u}^\sharp\in W_0^{2,2}(\Omega^\sharp)$, we would have to establish inequalities between $\|\Delta\mathfrak{u}\|_2$ and $\|\Delta\mathfrak{u}^\sharp\|_2$ and such estimates are unknown in general.

Adams' idea:
$$u \in \mathcal{C}_0^\infty(\Omega)$$
, $f := -\Delta u \Rightarrow u(x) = cI_2 * f(x) = c\int_{\mathbb{R}^4} \frac{f(y)}{|x-y|^2} \, dy$ $\Rightarrow u^*(t) \leqslant u^{**}(t) := \frac{1}{t} \int_0^t u^*(s) \, ds \leqslant tI_2^{**} f^{**} + \int_t^{+\infty} I_2^* f^* \, ds$

Adams inequality

 $\text{Let} \quad \nabla^m \mathfrak{u} := (-\Delta)^{\frac{m}{2}} \mathfrak{u} \quad \text{ if } \mathfrak{m} \text{ is even,} \quad \text{and} \quad \nabla^m \mathfrak{u} := \nabla (-\Delta)^{\frac{m-1}{2}} \mathfrak{u} \quad \text{ if } \mathfrak{m} \text{ is odd.}$

Theorem [Adams 1988]

Let $\mathfrak m$ be an integer and let $\Omega \subset \mathbb R^N$ with $\mathfrak m < N.$ There exists a constant $C_{\mathfrak m,\,N}>0$ such that

$$\sup_{u\in W_0^{\mathfrak{m},\;\frac{N}{\mathfrak{m}}}(\Omega),\,\|\nabla^{\mathfrak{m}}u\|_{\frac{N}{\mathfrak{m}}}\leqslant 1}\,\int_{\Omega}e^{\beta|u|^{\frac{N}{N-\mathfrak{m}}}}\;dx \begin{cases}\leqslant C_{\mathfrak{m},\,N}|\Omega| &\forall\beta\leqslant\beta_{N,\mathfrak{m}}\;,\\ =+\infty &\forall\beta>\beta_{N,\mathfrak{m}}\;.\end{cases}$$

Theorem [Fontana, Morpurgo 2018

Let $\mathfrak m$ be a positive integer with $2\leqslant \mathfrak m<\mathfrak n.$ There exists a constant $C_{N,\mathfrak m}>0$ such that

$$\sup_{\substack{u \in W^{m,\frac{N}{m}}(\mathbb{R}^N), \\ r^m u \| \frac{N}{N} + \|u\| \frac{N}{N} \leq 1}} \int_{\mathbb{R}^N} \exp_{\lceil \frac{N}{m} - 2 \rceil} \left\{ \beta |u|^{\frac{N}{N-m}} \right\} dx \begin{cases} \leqslant C_{N,m} & \text{if } \beta \leqslant \beta_{N,m}, \\ = +\infty & \text{if } \beta > \beta_{N,m}. \end{cases}$$

(See Lam-Lu for the case m = 2!)

Adams inequality

Let $\nabla^{\mathfrak{m}}\mathfrak{u}:=(-\Delta)^{\frac{\mathfrak{m}}{2}}\mathfrak{u}$ if \mathfrak{m} is even, and $\nabla^{\mathfrak{m}}\mathfrak{u}:=\nabla(-\Delta)^{\frac{\mathfrak{m}-1}{2}}\mathfrak{u}$ if \mathfrak{m} is odd.

Theorem [Adams 1988]

Let $\mathfrak m$ be an integer and let $\Omega \subset \mathbb R^N$ with $\mathfrak m < N.$ There exists a constant $C_{\mathfrak m,\,N}>0$ such that

$$\sup_{\mathbf{u} \in W_0^{\mathfrak{m}, \frac{N}{m}}(\Omega), \, \|\nabla^{\mathfrak{m}}\mathbf{u}\|_{\frac{N}{M}} \leqslant 1} \int_{\Omega} e^{\beta |\mathbf{u}|^{\frac{N}{N-m}}} \, dx \begin{cases} \leqslant C_{\mathfrak{m}, \, N} |\Omega| & \forall \beta \leqslant \beta_{N, \mathfrak{m}} \text{ ,} \\ = +\infty & \forall \beta > \beta_{N, \mathfrak{m}} \text{ .} \end{cases}$$

Theorem [Fontana, Morpurgo 2018]

Let $\mathfrak m$ be a positive integer with $2\leqslant \mathfrak m<\mathfrak n.$ There exists a constant $C_{N,\mathfrak m}>0$ such that

$$\sup_{\substack{u \,\in\, W^{m,\frac{N}{m}}(\mathbb{R}^N),\\ \|\nabla^m u\|\frac{N}{m} + \|u\|\frac{N}{m} \leqslant 1}} \, \int_{\mathbb{R}^N} \text{exp}_{\left\lceil\frac{N}{m}-2\right\rceil} \left\{ \,\beta |u|^{\frac{N}{N-m}} \,\right\} dx \begin{cases} \leqslant C_{N,m} & \text{if } \beta \leqslant \beta_{N,m},\\ = +\infty & \text{if } \beta > \beta_{N,m}. \end{cases}$$

(See Lam-Lu for the case m = 2!)

The particular case of $W^{2,2}(\mathbb{R}^4)$

- $\bullet \ \ \| \mathbf{u} \|_{W^{2,2}}^2 := \| (-\Delta + \mathbf{I}) \mathbf{u} \|_2^2 := \| \Delta \mathbf{u} \|_2^2 + 2 \| \nabla \mathbf{u} \|_2^2 + \| \mathbf{u} \|_2^2$
 - * D. R. Adams (1988): What happens on bounded domains $\Omega \subset \mathbb{R}^4$ if we consider functions belonging to $W^{2,2}(\mathbb{R}^4)$?

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|_{W^{2,2}}\leqslant 1}\int_{\Omega}(e^{\alpha u^2}-1)\;dx \begin{cases} < C|\Omega| & \forall \; 0<\alpha\leqslant 32\pi^2,\\ =+\infty & \forall \alpha>32\pi^2. \end{cases}$$

(Bessel potential representation formula)

* B. Ruf and F. S. (2013):

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|_{W^{2,2}\leqslant 1}}\int_{\mathbb{R}^4}(\,e^{\alpha u^2}-1)\,dx \begin{cases} <+\infty & \forall\,\,0<\alpha\leqslant 32\pi^2,\\ =+\infty & \forall\,\alpha>32\pi^2. \end{cases}$$

(Comparison principle)

• N. Lam and G. Lu (2013): $\|u\|^2 := \|\Delta u\|_2^2 + \|u\|_2^2$

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|\leqslant 1}\,\int_{\mathbb{R}^4}(e^{\alpha u^2}-1)\,dx \begin{cases} <+\infty &\forall\ 0<\alpha\leqslant 32\pi^2,\\ =+\infty &\forall\alpha>32\pi^2. \end{cases}$$

- Adachi-Tanaka type inequality in $W^{2,2}(\mathbb{R}^4)$?
- Ibrahim-Masmoudi-Nakanishi type inequality in $W^{2,2}(\mathbb{R}^4)$?

The particular case of $W^{2,2}(\mathbb{R}^4)$

- $\bullet \boxed{ \|\mathbf{u}\|_{W^{2,2}}^2 := \|(-\Delta + I)\mathbf{u}\|_2^2 := \|\Delta\mathbf{u}\|_2^2 + 2\|\nabla\mathbf{u}\|_2^2 + \|\mathbf{u}\|_2^2 }$
 - * D. R. Adams (1988): What happens on bounded domains $\Omega \subset \mathbb{R}^4$ if we consider functions belonging to $W^{2,2}(\mathbb{R}^4)$?

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|_{W^{2,2}}\leqslant 1}\int_{\Omega}(e^{\alpha u^2}-1)\;dx \begin{cases} < C|\Omega| & \forall\; 0<\alpha\leqslant 32\pi^2,\\ =+\infty & \forall\, \alpha>32\pi^2. \end{cases}$$

(Bessel potential representation formula)

* B. Ruf and F. S. (2013):

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|_{W^{2,2}\leqslant 1}}\int_{\mathbb{R}^4}(e^{\alpha u^2}-1)\;dx\begin{cases}<+\infty&\forall\;0<\alpha\leqslant 32\pi^2,\\=+\infty&\forall\;\alpha>32\pi^2.\end{cases}$$

(Comparison principle)

• N. Lam and G. Lu (2013): $\|u\|^2 := \|\Delta u\|_2^2 + \|u\|_2^2$

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|\leqslant 1}\,\int_{\mathbb{R}^4}(e^{\alpha u^2}-1)\,dx \begin{cases} <+\infty &\forall\ 0<\alpha\leqslant 32\pi^2,\\ =+\infty &\forall\alpha>32\pi^2. \end{cases}$$

- Adachi-Tanaka type inequality in $W^{2,2}(\mathbb{R}^4)$?
- Ibrahim-Masmoudi-Nakanishi type inequality in $W^{2,2}(\mathbb{R}^4)$?

The particular case of $W^{2,2}(\mathbb{R}^4)$

$$\bullet \boxed{ \|\mathbf{u}\|_{W^{2,2}}^2 := \|(-\Delta + I)\mathbf{u}\|_2^2 := \|\Delta\mathbf{u}\|_2^2 + 2\|\nabla\mathbf{u}\|_2^2 + \|\mathbf{u}\|_2^2 }$$

* D. R. Adams (1988): What happens on bounded domains $\Omega \subset \mathbb{R}^4$ if we consider functions belonging to $W^{2,2}(\mathbb{R}^4)$?

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|_{W^{2,2}}\leqslant 1}\int_{\Omega}(e^{\alpha u^2}-1)\;dx \begin{cases} < C|\Omega| & \forall\; 0<\alpha\leqslant 32\pi^2,\\ =+\infty & \forall\, \alpha>32\pi^2. \end{cases}$$

(Bessel potential representation formula)

* B. Ruf and F. S. (2013):

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|_{W^{2,2}\leqslant 1}}\int_{\mathbb{R}^4}(\,e^{\alpha u^2}-1)\;dx \begin{cases} <+\infty & \forall\,\,0<\alpha\leqslant 32\pi^2,\\ =+\infty & \forall\,\alpha>32\pi^2. \end{cases}$$

(Comparison principle)

• N. Lam and G. Lu (2013): $\|u\|^2 := \|\Delta u\|_2^2 + \|u\|_2^2$

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|\leqslant 1}\,\int_{\mathbb{R}^4}(e^{\alpha u^2}-1)\,dx \begin{cases} <+\infty &\forall\ 0<\alpha\leqslant 32\pi^2,\\ =+\infty &\forall\alpha>32\pi^2. \end{cases}$$

- Adachi-Tanaka type inequality in $W^{2,2}(\mathbb{R}^4)$?
- Ibrahim-Masmoudi-Nakanishi type inequality in $W^{2,2}(\mathbb{R}^4)$?

Theorem [Masmoudi, S. 2014]

There exists a constant C > 0 such that

$$\int_{\mathbb{R}^4} \frac{e^{32\pi^2 u^2} - 1}{(1 + |u|)^2} \, \mathrm{d}x \leqslant C \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1. \tag{*}$$

Moreover, this fails if the power 2 in the denominator is replaced with any p < 2.

Remark:

• It is easy to see that inequality (*) implies that for any $\alpha \in (0, 32\pi^2)$ there exists $C_\alpha > 0$ such that

$$\int_{\mathbb{R}^4} (e^{\alpha u^2} - 1) \, \mathrm{d} x \leqslant C_\alpha \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1$$

Theorem [Masmoudi, S. 2014]

There exists a constant C > 0 such that

$$\int_{\mathbb{R}^4} \frac{e^{32\pi^2 u^2} - 1}{(1 + |u|)^2} \, dx \leqslant C \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1. \tag{*}$$

Moreover, this fails if the power 2 in the denominator is replaced with any p < 2.

Remark:

• It is easy to see that inequality (*) implies that for any $\alpha \in (0,32\pi^2)$ there exists $C_\alpha > 0$ such that

$$\int_{\mathbb{R}^4} (e^{\alpha u^2} - 1) \, dx \leqslant C_\alpha \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1$$

It is interesting to notice that (*) implies

$$\sup_{u\in W^{2/(\mathbb{R}^d)},\,\|u\|\leq 1}\int_{\mathbb{R}^d}\left(e^{\alpha u^2}-1\right)dx\begin{cases}<+\infty&\forall\;0<\alpha\leqslant 32\pi^2,\\ =+\infty&\forall\alpha>32\pi^2.\end{cases}$$

with $\|\mathbf{u}\|^2 := \|\Delta \mathbf{u}\|_2^2 + \|\mathbf{u}\|_2^2$ (see also N. Lam and G. Lu (2013))

Theorem [Masmoudi, S. 2014]

There exists a constant C > 0 such that

$$\int_{\mathbb{R}^4} \frac{e^{32\pi^2 u^2} - 1}{(1 + |u|)^2} \, dx \leqslant C \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1. \tag{*}$$

Moreover, this fails if the power 2 in the denominator is replaced with any p < 2.

Remark:

• It is easy to see that inequality (*) implies that for any $\alpha\in(0,32\pi^2)$ there exists $C_\alpha>0$ such that

$$\int_{\mathbb{R}^4} (e^{\alpha u^2} - 1) \, dx \leqslant C_\alpha \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1.$$

It is interesting to notice that (*) implies

$$\sup_{\mathbf{u} \in W^{2,2}(\mathbb{R}^4), \, \|\mathbf{u}\| \leqslant 1} \, \int_{\mathbb{R}^4} (e^{\alpha \mathbf{u}^2} - 1) \, \mathrm{d} x \begin{cases} <+\infty & \forall \, 0 < \alpha \leqslant 32\pi^2, \\ =+\infty & \forall \alpha > 32\pi^2. \end{cases}$$

with $\|\mathbf{u}\|^2 := \|\Delta \mathbf{u}\|_2^2 + \|\mathbf{u}\|_2^2$ (see also N. Lam and G. Lu (2013))

Theorem [Masmoudi, S. 2014]

There exists a constant C > 0 such that

$$\int_{\mathbb{R}^4} \frac{e^{32\pi^2 u^2} - 1}{(1 + |u|)^2} \, \mathrm{d}x \leqslant C \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1. \tag{*}$$

Moreover, this fails if the power 2 in the denominator is replaced with any p < 2.

Remark:

• It is easy to see that inequality (*) implies that for any $\alpha \in (0,32\pi^2)$ there exists $C_\alpha>0$ such that

$$\int_{\mathbb{R}^4} (e^{\alpha u^2}-1) \ dx \leqslant C_\alpha \|u\|_2^2 \quad \forall u \in W^{2,2}(\mathbb{R}^4) \text{ with } \|\Delta u\|_2 \leqslant 1.$$

• It is interesting to notice that (*) implies

$$\sup_{u\in W^{2,2}(\mathbb{R}^4),\,\|u\|\leqslant 1}\,\int_{\mathbb{R}^4}(e^{\alpha u^2}-1)\,dx \begin{cases} <+\infty & \forall\ 0<\alpha\leqslant 32\pi^2\text{,}\\ =+\infty & \forall\alpha>32\pi^2\text{.}\end{cases}$$

with $\|u\|^2 := \|\Delta u\|_2^2 + \|u\|_2^2$ (see also N. Lam and G. Lu (2013))

Main difficulty: how to reduce the problem to the radial case?

Schwarz symmetrization

Problem: given $\mathfrak{u}\in W^{2,2}(\mathbb{R}^4)$, we do not know whether or not $\mathfrak{u}^\sharp\in W^{2,2}(\mathbb{R}^4)$; even in the case $\mathfrak{u}^\sharp\in W^{2,2}(\mathbb{R}^4)$, we would have to establish inequalities between $\|\Delta\mathfrak{u}\|_2$ and $\|\Delta\mathfrak{u}^\sharp\|_2$ and such estimates are unknown in general

Comparison principle

 $\{v\in W_0\mid (D_R)\}$ in $u^l\leqslant v$. This comparison principle is a suitable tool if one works with the Dirichlet norm in fact $\|\Delta u\|_2=\|\Delta v\|_2$. Problem: $\|u\|_2\leqslant \|v\|_2$!

Main difficulty: how to reduce the problem to the radial case?

Schwarz symmetrization

Problem: given $\mathfrak{u}\in W^{2,2}(\mathbb{R}^4)$, we do not know whether or not $\mathfrak{u}^\sharp\in W^{2,2}(\mathbb{R}^4)$; even in the case $\mathfrak{u}^\sharp\in W^{2,2}(\mathbb{R}^4)$, we would have to establish inequalities between $\|\Delta\mathfrak{u}\|_2$ and $\|\Delta\mathfrak{u}^\sharp\|_2$ and such estimates are unknown in general

Comparison principle

Theorem [Talenti 1976]

Let $B_R\subset \mathbb{R}^4$ be the ball of radius R>0 centered at the origin. Let $\mathfrak u,\, \nu$ be weak solutions of

$$(P) \begin{cases} -\Delta u = f & \text{in } B_R \\ u \in W_0^{1,2}(B_R) & \end{cases} \qquad (P^\sharp) \begin{cases} -\Delta \nu = f^\sharp & \text{in } B_R \\ \nu \in W_0^{1,2}(B_R) & \end{cases}$$

then $u^{\sharp} \leqslant \nu$.

This comparison principle is a suitable tool if one works with the Dirichlet norm, in fact $\|\Delta u\|_2 = \|\Delta v\|_2$.

Problem: $\|u\|_{2} \leq \|v\|_{2}!$

Main difficulty: how to reduce the problem to the radial case?

Schwarz symmetrization

Problem: given $\mathfrak{u}\in W^{2,2}(\mathbb{R}^4)$, we do not know whether or not $\mathfrak{u}^\sharp\in W^{2,2}(\mathbb{R}^4)$; even in the case $\mathfrak{u}^\sharp\in W^{2,2}(\mathbb{R}^4)$, we would have to establish inequalities between $\|\Delta\mathfrak{u}\|_2$ and $\|\Delta\mathfrak{u}^\sharp\|_2$ and such estimates are unknown in general

Comparison principle

Theorem [Talenti 1976]

Let $B_R\subset \mathbb{R}^4$ be the ball of radius R>0 centered at the origin. Let $\mathfrak u,\, \nu$ be weak solutions of

$$(P) \begin{cases} -\Delta u = f & \text{in } B_R \\ u \in W_0^{1,2}(B_R) & \end{cases} \qquad (P^\sharp) \begin{cases} -\Delta \nu = f^\sharp & \text{in } B_R \\ \nu \in W_0^{1,2}(B_R) & \end{cases}$$

then $u^{\sharp} \leqslant \nu$.

This comparison principle is a suitable tool if one works with the Dirichlet norm, in fact $\|\Delta u\|_2 = \|\Delta v\|_2$.

Problem: $\|u\|_{2} \leq \|v\|_{2}!$

Reduction of the problem to the radial case: a key tool

Given $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^4)$, we denote by

$$f := -\Delta u$$
 in \mathbb{R}^4 .

Let

$$f^{**}(s) := \frac{1}{s} \int_0^s f^*(t) \, dt.$$

Talenti's inequality

If $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^4)$ then

$$u^{\sharp}(r_1) - u^{\sharp}(r_2) \leqslant \frac{\sqrt{2}}{16\pi} \int_{|B_{T_1}|}^{|B_{T_2}|} \frac{f^{**}(\xi)}{\sqrt{\xi}} \, d\xi \quad \text{ for } \ 0 < r_1 \leqslant r_2. \tag{T}$$

Remark: the key ingredients in the proof of (T) are

- coarea formula
- isoperimetric inequality

Consequently the constant
$$\dfrac{\sqrt{2}}{16\pi}$$
 is sharp!

Reduction of the problem to the radial case: a key tool

Given $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^4)$, we denote by

$$f := -\Delta u$$
 in \mathbb{R}^4 .

Let

$$f^{**}(s) := \frac{1}{s} \int_0^s f^*(t) dt.$$

Talenti's inequality

If $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^4)$ then

$$u^{\sharp}(r_1) - u^{\sharp}(r_2) \leqslant \frac{\sqrt{2}}{16\pi} \int_{|B_{T_1}|}^{|B_{T_2}|} \frac{f^{**}(\xi)}{\sqrt{\xi}} \, d\xi \quad \text{ for } \ 0 < r_1 \leqslant r_2. \tag{T}$$

Remark: the key ingredients in the proof of (T) are

- coarea formula
- isoperimetric inequality

Consequently the constant $\frac{\sqrt{2}}{16\pi}$ is sharp!

Reduction of the problem to the radial case: a key tool

Given $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^4)$, we denote by

$$f := -\Delta u$$
 in \mathbb{R}^4 .

Let

$$f^{**}(s) := \frac{1}{s} \int_0^s f^*(t) dt.$$

Talenti's inequality

If $u \in \mathcal{C}_0^{\infty}(\mathbb{R}^4)$ then

$$u^{\sharp}(r_1) - u^{\sharp}(r_2) \leqslant \frac{\sqrt{2}}{16\pi} \int_{|B_{T_1}|}^{|B_{T_2}|} \frac{f^{**}(\xi)}{\sqrt{\xi}} d\xi \quad \text{ for } 0 < r_1 \leqslant r_2. \tag{T}$$

Remark: the key ingredients in the proof of (T) are

- coarea formula
- isoperimetric inequality

Consequently the constant $\frac{\sqrt{2}}{16\pi}$ is sharp!

Optimal descending growth condition

Talenti's inequality enables us to obtain the following result

Theorem [Masmoudi, S. 2014]

Let $\mathfrak{u}\in \mathcal{C}_0^\infty(\mathbb{R}^4)$ and let R>0. If $\mathfrak{u}^\sharp(R)>1$ and $f:=-\Delta\mathfrak{u}$ in \mathbb{R}^4 satisfies

$$\int_{|B_R|}^{+\infty} [f^{**}(s)]^2 \, \mathrm{d}s \leqslant 4K$$

for some K > 0, then we have

$$\frac{\text{exp}\Big(\frac{32\pi^2}{K}[u^{\sharp}(R)]^2\Big)}{[u^{\sharp}(R)]^2}R^4\leqslant \frac{C}{K^2}\|u^{\sharp}\|_{L^2(\mathbb{R}^4\setminus B_R)}^2,$$

where C is a universal constant independent of u, R and K.

Here

$$f^{**}(s) := \frac{1}{s} \int_{0}^{s} f^{*}(t) dt$$

and

$$\int_0^{+\infty} [f^{**}(s)]^2 \, ds \leqslant 4 \int_0^{+\infty} [f^*(s)]^2 \, ds$$

Optimal descending growth condition

Talenti's inequality enables us to obtain the following result

Theorem [Masmoudi, S. 2014]

Let $\mathfrak{u}\in \mathcal{C}_0^\infty(\mathbb{R}^4)$ and let R>0. If $\mathfrak{u}^\sharp(R)>1$ and $f:=-\Delta\mathfrak{u}$ in \mathbb{R}^4 satisfies

$$\int_{|B_R|}^{+\infty} [f^{**}(s)]^2 \, \mathrm{d}s \leqslant 4K$$

for some K > 0, then we have

$$\frac{\text{exp}\Big(\frac{32\pi^2}{K}[u^{\sharp}(R)]^2\Big)}{[u^{\sharp}(R)]^2}R^4\leqslant \frac{C}{K^2}\|u^{\sharp}\|_{L^2(\mathbb{R}^4\setminus B_R)}^2,$$

where C is a universal constant independent of u, R and K.

Here

$$f^{**}(s) := \frac{1}{s} \int_{0}^{s} f^{*}(t) dt$$

and

$$\int_{0}^{+\infty} [f^{**}(s)]^{2} ds \leqslant 4 \int_{0}^{+\infty} [f^{*}(s)]^{2} ds$$

Key ingredients of the proof:

- Optimal descending growth condition
- ② Talenti's inequality + Moser's change of variable and one-dimensional Lemma

One-dimensional Lemma [Moser 1970]

There exists $c_0>0$ such that for any non-negative measurable function $\varphi:[0,+\infty)\to[0,+\infty)$ satisfying

$$\int_{0}^{+\infty} \varphi^{2}(t) dt \leqslant 1$$

the following inequality holds

$$\int_{a}^{+\infty}e^{F(t)}\,dt\leqslant c_{0},$$

$$F(t) := \left(\int_0^t \varphi(s) \, ds\right)^2 - t.$$

Key ingredients of the proof:

- Optimal descending growth condition
- 2 Talenti's inequality + Moser's change of variable and one-dimensional Lemma

One-dimensional Lemma [Moser 1970]

There exists $c_0>0$ such that for any non-negative measurable function $\varphi:\,[0,+\infty)\to[0,+\infty)$ satisfying

$$\int_{0}^{+\infty} \varphi^{2}(t) dt \leqslant 1$$

the following inequality holds

$$\int_0^{+\infty} e^{F(t)} \, dt \leqslant c_0,$$

$$F(t) := \left(\int_0^t \varphi(s) \, ds \right)^2 - t.$$

Adams' inequality with the exact growth condition: the second order Sobolev case

Remark: The key ingredients of the proof of Adams' inequality with the exact growth condition in $W^{2,2}(\mathbb{R}^4)$ are closely related to the properties of the Laplacian operator but they are not confined to the 4-dimensional case!

Indeed, for any $N\geqslant 4$, using the same arguments one can prove the existence of a constant $C_N>0$ such that

$$\int_{\mathbb{R}^N} \frac{\exp_{\lceil \frac{N}{2}-2 \rceil} \{ \left. \beta_{N,2} |u|^{\frac{N}{N-2}} \right. \}}{(1+|u|)^{\frac{N}{N-2}}} \, dx \leqslant C_N \|u\|_{\frac{N}{2}}^{\frac{N}{2}} \quad \forall u \in W^{2,\frac{N}{2}}(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2}} \leqslant 1$$

where

$$ullet \ \exp_{\mathbb{k}}(\mathsf{t}) := e^{\mathsf{t}} - \sum_{i=0}^k rac{\mathsf{t}^j}{j!} \,, \quad k \in \mathbb{N}$$

- $\lceil x \rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$
- \bullet $\beta_{N,2}$ is the sharp exponent of Adams' inequality on bounded domains

(See Lu-Tang-Zhu for the case $N \geqslant 3$ – In particular, the case N=3 reveals some non-trivial technical difficulties!)

Adams' inequality with the exact growth condition: the second order Sobolev case

Remark: The key ingredients of the proof of Adams' inequality with the exact growth condition in $W^{2,2}(\mathbb{R}^4)$ are closely related to the properties of the Laplacian operator but they are not confined to the 4-dimensional case!

Indeed, for any $N\geqslant 4,$ using the same arguments one can prove the existence of a constant $C_{\rm N}>0$ such that

$$\int_{\mathbb{R}^N} \frac{\exp_{\lceil \frac{N}{2}-2 \rceil} \{ \left. \beta_{N,2} |u|^{\frac{N}{N-2}} \right. \}}{(1+|u|)^{\frac{N}{N-2}}} \, dx \leqslant C_N \|u\|^{\frac{N}{2}}_{\frac{N}{2}} \quad \forall u \in W^{2,\frac{N}{2}}(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2}} \leqslant 1$$

where

$$\bullet \ \mathsf{exp}_k(\mathsf{t}) := e^\mathsf{t} - \sum_{\mathsf{j}=0}^k \frac{\mathsf{t}^\mathsf{j}}{\mathsf{j}!} \,, \quad k \in \mathbb{N}$$

- $\lceil x \rceil$ denotes the smallest integer grater than or equal to $x \in \mathbb{R}$
- \bullet $\beta_{N,2}$ is the sharp exponent of Adams' inequality on bounded domains

(See Lu-Tang-Zhu for the case $N\geqslant 3$ – In particular, the case N=3 reveals some non-trivial technical difficulties!)

Adams' inequality with the exact growth condition: the second order Sobolev case

Remark: The key ingredients of the proof of Adams' inequality with the exact growth condition in $W^{2,2}(\mathbb{R}^4)$ are closely related to the properties of the Laplacian operator but they are not confined to the 4-dimensional case!

Indeed, for any $N\geqslant 4,$ using the same arguments one can prove the existence of a constant $C_N>0$ such that

$$\int_{\mathbb{R}^N} \frac{\exp_{\lceil \frac{N}{2}-2 \rceil} \{ \left. \beta_{N,2} |u|^{\frac{N}{N-2}} \right. \}}{(1+|u|)^{\frac{N}{N-2}}} \, dx \leqslant C_N \|u\|^{\frac{N}{2}}_{\frac{N}{2}} \quad \forall u \in W^{2,\frac{N}{2}}(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2}} \leqslant 1$$

where

$$\bullet \ \exp_k(\mathsf{t}) := e^\mathsf{t} - \sum_{i=0}^k \frac{\mathsf{t}^j}{j!} \,, \quad k \in \mathbb{N}$$

- $\lceil \chi \rceil$ denotes the smallest integer grater than or equal to $\chi \in \mathbb{R}$
- \bullet $\beta_{N,2}$ is the sharp exponent of Adams' inequality on bounded domains

(See Lu-Tang-Zhu for the case $N \geqslant 3$ – In particular, the case N=3 reveals some non-trivial technical difficulties!)

Adams' inequality: the second order Lorentz-Sobolev case

Let $\Omega \subset \mathbb{R}^N$, $N \geqslant 3$, be a bounded domain.

• D. R. Adams (1988): There exists $C_N > 0$ such that

$$\sup_{u \in \mathcal{C}_0^\infty(\Omega), \, \|\Delta u\|_{\frac{N}{N}} \leqslant 1} \, \int_{\Omega} e^{\alpha |u|^{\frac{N}{N-2}}} \, dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \beta_{N,2} \text{ ,} \\ = +\infty & \forall \alpha > \beta_{N,2} \text{ .} \end{cases}$$

• A. Alberico (2008): Let $1 < q < +\infty$. There exists $C_{N,q} > 0$ such that

$$\sup_{u \in \mathcal{C}_0^\infty(\Omega), \|\Delta u\|_{\frac{N}{2}, q} \leqslant 1} \int_{\Omega} e^{\alpha |u|^{\frac{q}{q-1}}} dx \begin{cases} \leqslant C_{N, q} |\Omega| & \forall \alpha \leqslant \beta_{N, 2, q}, \\ = +\infty & \forall \alpha > \beta_{N, 2, q}, \end{cases}$$

where

$$\|\Delta u\|_{\frac{N}{2},q}^q:=\int_0^{+\infty} \left(\,t^{\frac{2}{N}}\;|\Delta u|^*\,\right)^q\,\frac{dt}{t}$$

and

$$\beta_{N,2,q} := [\beta_{N,2}]^{\frac{N-2}{N}} \frac{q}{q-1}$$

Theorem [Masmoudi, S. 2017]

Let $1 < q < +\infty$. There exists $C_{N,q} > 0$ such that

$$\int_{\mathbb{R}^N} \frac{exp_{\lceil q-2\rceil} \{\, \beta_{N,2,q} |u|^{\frac{q}{q-1}} \,\}}{(1+|u|)^{\frac{q}{q-1}}} \, dx \leqslant C_{N,q} \|u\|_q^q \quad \forall u \in C_0^\infty(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2},q} \leqslant 1$$

Adams' inequality: the second order Lorentz-Sobolev case

Let $\Omega \subset \mathbb{R}^N$, $N \geqslant 3$, be a bounded domain.

• D. R. Adams (1988): There exists $C_N > 0$ such that

$$\sup_{u \in \mathfrak{C}_0^\infty(\Omega), \, \|\Delta u\|_{\frac{N}{N}} \leqslant 1} \, \int_{\Omega} e^{\alpha |u|^{\frac{N}{N-2}}} \, dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \beta_{N,2} \text{ ,} \\ = +\infty & \forall \alpha > \beta_{N,2} \text{ .} \end{cases}$$

• A. Alberico (2008): Let $1 < q < +\infty$. There exists $C_{N,\alpha} > 0$ such that

$$\sup_{u\in \mathcal{C}_0^\infty(\Omega),\, \|\Delta u\|_{\frac{N}{2},\,q}\leqslant 1}\, \int_{\Omega} e^{\alpha|u|^{\frac{q}{q-1}}}\, dx \begin{cases} \leqslant C_{N,q}|\Omega| & \forall \alpha\leqslant \beta_{N,2,q} \text{ ,} \\ =+\infty & \forall \alpha>\beta_{N,2,q} \text{ ,} \end{cases}$$

where

$$\|\Delta u\|_{\frac{N}{2},q}^q := \int_0^{+\infty} \! \left(\, t^{\frac{2}{N}} \, |\Delta u|^* \, \right)^q \, \frac{dt}{t}$$

and

$$\beta_{N,2,q} := [\beta_{N,2}]^{\frac{N-2}{N} \frac{q}{q-1}}$$

Theorem [Masmoudi, S. 2017]

Let $1 < q < +\infty$. There exists $C_{N,q} > 0$ such that

$$\sum_{N} \frac{\exp_{\left\lceil q-2\right\rceil} \{ \left\lceil \beta_{N,2,q} |u|^{\frac{q}{q-1}} \right\rceil}{(1+|u|)^{\frac{q}{q-1}}} \, dx \leqslant C_{N,q} \|u\|_q^q \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2},q} \leqslant 1$$

Adams' inequality: the second order Lorentz-Sobolev case

Let $\Omega \subset \mathbb{R}^N$, $N \geqslant 3$, be a bounded domain.

• D. R. Adams (1988): There exists $C_N > 0$ such that

$$\sup_{u \in \mathfrak{C}_0^\infty(\Omega), \, \|\Delta u\|_{\frac{N}{N}} \leqslant 1} \, \int_{\Omega} e^{\alpha |u|^{\frac{N}{N-2}}} \, dx \begin{cases} \leqslant C_N |\Omega| & \forall \alpha \leqslant \beta_{N,2} \text{ ,} \\ = +\infty & \forall \alpha > \beta_{N,2} \text{ .} \end{cases}$$

• A. Alberico (2008): Let $1 < q < +\infty$. There exists $C_{N,\alpha} > 0$ such that

$$\sup_{u \in \mathcal{C}_0^\infty(\Omega), \, \|\Delta u\|} \int_{\Omega} e^{\alpha |u|^{\frac{q}{q-1}}} \; dx \begin{cases} \leqslant C_{N,q} |\Omega| & \forall \alpha \leqslant \beta_{N,2,q} \; \text{,} \\ = +\infty & \forall \alpha > \beta_{N,2,q} \; \text{,} \end{cases}$$

where

$$\|\Delta u\|_{\frac{N}{2},q}^q := \int_0^{+\infty} \left(\, t^{\frac{2}{N}} \, |\Delta u|^* \, \right)^q \, \frac{dt}{t}$$

and

$$\beta_{N,2,q} := [\beta_{N,2}]^{\frac{N-2}{N}} \frac{q}{q-1}$$

Theorem [Masmoudi, S. 2017]

Let $1 < q < +\infty$. There exists $C_{N,q} > 0$ such that

$$\int_{\mathbb{R}^N} \frac{ exp_{\lceil q-2\rceil} \{ \, \beta_{N,2,q} |u|^{\frac{q}{q-1}} \, \}}{(1+|u|)^{\frac{q}{q-1}}} \, dx \leqslant C_{N,q} \|u\|_q^q \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2},q} \leqslant 1$$

Adams' inequality with the exact growth condition: the higher order Sobolev case

Let

$$\nabla^{\mathfrak{m}}\mathfrak{u} := \begin{cases} (-\Delta)^{\frac{\mathfrak{m}}{2}}\mathfrak{u} & \text{if } \mathfrak{m} \text{ is even,} \\ \\ \nabla (-\Delta)^{\frac{\mathfrak{m}-1}{2}}\mathfrak{u} & \text{if } \mathfrak{m} \text{ is odd.} \end{cases}$$

Theorem [Masmoudi, S. 2017]

Let m be a positive integer with 2 < m < N. Then

$$\int_{\mathbb{R}^N} \frac{exp_{\lceil \frac{N}{m}-2\rceil} \left\{ \; \beta_{N,m} |u|^{\frac{N}{N-m}} \; \right\}}{\left(\; 1+|u| \; \right)^{\frac{N}{N-m}}} \; dx \leqslant C_{N,m} \|u\|_{\frac{N}{m}}^{\frac{N}{m}} \quad \forall u \in W^{m,\frac{N}{m}}(\mathbb{R}^N), \; \|\nabla^m u\|_{\frac{N}{m}} \leqslant 1 \; .$$

The above inequality fails if the power $\frac{N}{N-m}$ in the denominator is replaced with any $p<\frac{N}{N-m}.$

Idea: It is possible to reach a **limiting sharp higher order** inequality exploiting **refined limiting and non-limiting second order** inequalities.

Adams' inequality with the exact growth condition: the higher order Sobolev case

Let

$$\nabla^{\mathfrak{m}}\mathfrak{u} := \begin{cases} (-\Delta)^{\frac{\mathfrak{m}}{2}}\mathfrak{u} & \text{if } \mathfrak{m} \text{ is even,} \\ \\ \nabla (-\Delta)^{\frac{\mathfrak{m}-1}{2}}\mathfrak{u} & \text{if } \mathfrak{m} \text{ is odd.} \end{cases}$$

Theorem [Masmoudi, S. 2017]

Let m be a positive integer with 2 < m < N. Then

$$\int_{\mathbb{R}^N} \frac{\text{exp}_{\lceil \frac{N}{m}-2\rceil} \left\{ \ \beta_{N,m} |u|^{\frac{N}{N-m}} \ \right\}}{(\ 1+|u|\)^{\frac{N}{N-m}}} \ dx \leqslant C_{N,m} \|u\|_{\frac{N}{m}}^{\frac{N}{m}} \quad \forall u \in W^{m,\frac{N}{m}}(\mathbb{R}^N), \ \|\nabla^m u\|_{\frac{N}{m}} \leqslant 1 \ .$$

The above inequality fails if the power $\frac{N}{N-m}$ in the denominator is replaced with any $p<\frac{N}{N-m}.$

Idea: It is possible to reach a limiting sharp higher order inequality exploiting refined limiting and non-limiting second order inequalities.

Non-limiting sharp embeddings for Lorentz-Sobolev spaces

Theorem [Alvino 1977]

Assume $1 \leqslant p < N$ and $1 \leqslant q \leqslant p$. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain,

$$\text{if } \mathfrak{p}^* := \frac{N\mathfrak{p}}{N-\mathfrak{p}} \quad \Rightarrow \quad \|\mathfrak{u}\|_{\mathfrak{p}^*,\mathfrak{q}} \leqslant \frac{\mathfrak{p}}{N-\mathfrak{p}} \left(\frac{N}{\omega_{N-1}}\right)^{\frac{1}{n}} \|\nabla \mathfrak{u}\|_{\mathfrak{p},\mathfrak{q}} \quad \forall \mathfrak{u} \in W^1_0L^{\mathfrak{p},\mathfrak{q}}(\Omega) \ .$$

Theorem [Tarsi 2012]

Assume N > 2, 1 1. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and let

$$\text{if } \mathfrak{p}^* := \frac{N\mathfrak{p}}{N-2\mathfrak{p}} \quad \Rightarrow \quad \|\mathfrak{u}\|_{\mathfrak{p}^*,q} \leqslant l_{N,\mathfrak{p}} \|\Delta u\|_{\mathfrak{p},q} \quad \forall u \in W^2 L^{\mathfrak{p},q}(\Omega) \cap W_0^1 L^{\mathfrak{p},q}(\Omega) \text{ ,}$$

where $l_{N,p}$ is explicitly known.

As a by-product of the argument introduced by Tarsi: if 2 < m < N, we have

$$\|\Delta u\|_{\frac{N}{2},\frac{N}{m}}\leqslant \; \alpha_{N,m} \; \|\nabla^m u\|_{\frac{N}{m}} \quad \forall u \in \mathfrak{C}_0^\infty(\mathbb{R}^N)$$

$$\alpha_{N,m} := \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}}$$

Non-limiting sharp embeddings for Lorentz-Sobolev spaces

Theorem [Alvino 1977]

Assume $1 \leqslant p < N$ and $1 \leqslant q \leqslant p$. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain,

$$\text{if } \mathfrak{p}^* := \frac{N\mathfrak{p}}{N-\mathfrak{p}} \quad \Rightarrow \quad \|\mathfrak{u}\|_{\mathfrak{p}^*,\mathfrak{q}} \leqslant \frac{\mathfrak{p}}{N-\mathfrak{p}} \left(\frac{N}{\omega_{N-1}}\right)^{\frac{1}{n}} \|\nabla \mathfrak{u}\|_{\mathfrak{p},\mathfrak{q}} \quad \forall \mathfrak{u} \in W^1_0L^{\mathfrak{p},\mathfrak{q}}(\Omega) \ .$$

Theorem [Tarsi 2012]

Assume N > 2, 1 1. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain and let

$$\text{if } \mathfrak{p}^* := \frac{N\mathfrak{p}}{N-2\mathfrak{p}} \quad \Rightarrow \quad \|\mathfrak{u}\|_{\mathfrak{p}^*,q} \leqslant l_{N,\mathfrak{p}} \|\Delta u\|_{\mathfrak{p},q} \quad \forall u \in W^2 L^{\mathfrak{p},q}(\Omega) \cap W_0^1 L^{\mathfrak{p},q}(\Omega) \text{ ,}$$

where $l_{N,p}$ is explicitly known.

As a by-product of the argument introduced by Tarsi: if 2 < m < N, we have

$$\|\Delta u\|_{\frac{N}{2},\frac{N}{m}}\leqslant \, \alpha_{N,\mathfrak{m}}\,\|\nabla^{\mathfrak{m}}u\|_{\frac{N}{m}}\quad \, \forall u\in \mathfrak{C}_{0}^{\infty}(\mathbb{R}^{N})$$

$$\alpha_{N,m} := \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}}$$

Summarizing, if 2 < m < N

$$\boxed{ \left\| \Delta u \right\|_{\frac{N}{2},\frac{N}{m}} \leqslant \ \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}} \left\| \nabla^m u \right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N) }$$

① Let $u\in \mathcal{C}_0^\infty(\mathbb{R}^n)$ be such that $\|
abla^m u\|_{rac{N}{m}}\leqslant 1$ and set

$$\nu := \ \frac{\beta_{N,m}^{(N-m)/N}}{\beta_{N,2}^{(N-2)/N}} \ \mathfrak{u} \ , \quad \text{ so that } \quad \|\Delta\nu\|_{\frac{N}{2},\frac{N}{m}} \leqslant 1$$

Summarizing, if $2 < \mathfrak{m} < N$

$$\left\|\Delta u\right\|_{\frac{N}{2},\frac{N}{m}}\leqslant \ \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}} \left\|\nabla^m u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N)$$

① Let $u\in \mathcal{C}_0^\infty(\mathbb{R}^n)$ be such that $\|\nabla^m u\|_{\frac{N}{m}}\leqslant 1$ and set

$$\nu := \frac{\beta_{N,m}^{(N-m)/N}}{\beta_{N,2}^{(N-2)/N}} \, u \,, \quad \text{ so that } \quad \|\Delta \nu\|_{\frac{N}{2},\frac{N}{m}} \leqslant 1$$

22 /

Summarizing, if $2 < \mathfrak{m} < N$

$$\left\|\Delta u\right\|_{\frac{N}{2},\frac{N}{m}}\leqslant \ \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}} \left\|\nabla^m u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N)$$

① Let $u\in \mathcal{C}_0^\infty(\mathbb{R}^n)$ be such that $\|\nabla^m u\|_{\frac{N}{m}}\leqslant 1$ and set

$$\nu := \frac{\beta_{N,m}^{(N-m)/N}}{\beta_{N,2}^{(N-2)/N}} \, u \,, \quad \text{ so that } \quad \|\Delta \nu\|_{\frac{N}{2},\frac{N}{m}} \leqslant 1$$

Remark:

$$\int_{\mathbb{R}^N} \frac{exp_{\lceil q-2\rceil} \{\, \beta_{N,2,q} | u|^{\frac{q}{q-1}} \,\}}{(1+|u|)^{\frac{q}{q-1}}} \, dx \leqslant C_{N,q} \|u\|_q^q \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2},q} \leqslant \mathbb{R}^N$$

Summarizing, if $2 < \mathfrak{m} < N$

$$\left\|\Delta u\right\|_{\frac{N}{2},\frac{N}{m}}\leqslant \ \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}} \left\|\nabla^m u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N)$$

① Let $u\in \mathcal{C}_0^\infty(\mathbb{R}^n)$ be such that $\|\nabla^m u\|_{\frac{N}{m}}\leqslant 1$ and set

$$\nu := \frac{\beta_{N,m}^{(N-m)/N}}{\beta_{N,2}^{(N-2)/N}} \, u \,, \quad \text{ so that } \quad \|\Delta \nu\|_{\frac{N}{2},\frac{N}{m}} \leqslant 1$$

$$\begin{array}{l} \bullet \int_{\mathbb{R}^{N}} \frac{\exp_{\lceil\frac{N}{m}-2\rceil}\left\{\left.\beta_{N,m}|u|^{\frac{N}{N-m}}\right.\right\}}{\left(\left.1+|u|\right.\right)^{\frac{N}{N-m}}} \, dx \lesssim \int_{\mathbb{R}^{N}} \frac{\exp_{\lceil\frac{N}{m}-2\rceil}\left\{\left.\beta_{N,2}^{(N-2)/(N-m)}|v|^{\frac{N}{N-m}}\right.\right\}}{\left(\left.1+|v|\right.\right)^{\frac{N}{N-m}}} \, dx \\ \left(\left.\beta_{N,2,\frac{N}{m}}=[\beta_{N,2}]^{\frac{N-2}{N-m}}\right.\right) &= \int_{\mathbb{R}^{N}} \frac{\exp_{\lceil\frac{N}{m}-2\rceil}\left\{\left.\beta_{N,2,\frac{N}{m}}|v|^{\frac{N}{N-m}}\right.\right\}}{\left(\left.1+|v|\right.\right)^{\frac{N}{N-m}}} \, dx \end{array}$$

Remark:

$$\int_{\mathbb{R}^N} \frac{\exp_{\lceil q-2\rceil} \{ \left. \beta_{N,2,q} |u|^{\frac{q}{q-1}} \right. \}}{(1+|u|)^{\frac{q}{q-1}}} \, dx \leqslant C_{N,q} \|u\|_q^q \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2},q} \leqslant 1$$

Summarizing, if $2 < \mathfrak{m} < N$

$$\left\|\Delta u\right\|_{\frac{N}{2},\frac{N}{m}}\leqslant \ \frac{\beta_{N,2}^{(N-2)/N}}{\beta_{N,m}^{(N-m)/N}} \left\|\nabla^m u\right\|_{\frac{N}{m}} \quad \forall u \in \mathcal{C}_0^\infty(\mathbb{R}^N)$$

① Let $u\in \mathcal{C}_0^\infty(\mathbb{R}^n)$ be such that $\|\nabla^m u\|_{\frac{N}{m}}\leqslant 1$ and set

$$\nu := \frac{\beta_{N,m}^{(N-m)/N}}{\beta_{N,2}^{(N-2)/N}} \, u \,, \quad \text{ so that } \quad \|\Delta \nu\|_{\frac{N}{2},\frac{N}{m}} \leqslant 1$$

$$\begin{split} & \quad \bullet \int_{\mathbb{R}^N} \frac{\exp_{\lceil \frac{N}{m}-2 \rceil} \left\{ \; \beta_{N,m} |u|^{\frac{N}{N-m}} \; \right\}}{\left(\; 1+|u| \; \right)^{\frac{N}{N-m}}} \; dx \lesssim \int_{\mathbb{R}^N} \frac{\exp_{\lceil \frac{N}{m}-2 \rceil} \left\{ \; \beta_{N,2}^{(N-2)/(N-m)} |v|^{\frac{N}{N-m}} \; \right\}}{\left(\; 1+|v| \; \right)^{\frac{N}{N-m}}} \; dx \\ & \quad \left(\; \beta_{N,2,\frac{N}{m}} = [\beta_{N,2}]^{\frac{N-2}{N-m}} ^{\frac{N}{N-m}} \; \right) \quad = \int_{\mathbb{R}^N} \frac{\exp_{\lceil \frac{N}{m}-2 \rceil} \left\{ \; \beta_{N,2,\frac{N}{m}} |v|^{\frac{N}{N-m}} \; \right\}}{\left(\; 1+|v| \; \right)^{\frac{N}{N-m}}} \; dx \end{split}$$

Remark:

$$\int_{\mathbb{R}^N} \frac{exp_{\lceil q-2\rceil} \{ \ \beta_{N,2,q} |u|^{\frac{q}{q-1}} \ \}}{(1+|u|)^{\frac{q}{q-1}}} \ dx \leqslant C_{N,q} \|u\|_q^q \quad \forall u \in C_0^\infty(\mathbb{R}^N) \text{ with } \|\Delta u\|_{\frac{N}{2},q} \leqslant 1$$

Thank you!