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Motivation: Multi-Ethnic
PAGE Study

* The Population Architecture using Genomics
and Epidemiology (PAGE) study focuses on

exploring the genetics of underrepresented
populations.

 PAGE consists of 49,839 individuals of non-
European ancestry from mulfi-ethnic studies,

 Individuals were genotyped using the
approximately 1.3 million variants on the Multi-

Ethnic Global Array (MEGA) imputed to 1000
Genomes Phase 3
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Motivation: TOPMed
WGS Project

* NIH/NHLBI Trans-Omics for Precision Medicine
(TOPMed) Whole-genome-sequence (WGS)
project is generated deep whole genome
sequencing data for more than 170,000
individuals.

« Cohorts are from multi-ethnic populations with
well-defined phenotypes and existing clinical
outcomes data.



« 30X coverage lllumina

* 4 sequencing centers

TOPMed WGS Project:
Multi-Ethic Cohorts

X-10 sequencing

with harmonized
Protocols

Chart from TOPMed DCC



PAGE and TOPMed and PAGE:
Opportunities

 The PAGE and TOPMed WGS Project
offer unprecedented opportunities for:

= |dentification of population-specific variants as
well as novel low frequency and rare genetic
variants underlying phenotypic diversity

= Potential to provide new insights info human
health and health disparities of minority
populations for many complex diseases



TOPMed and PAGE : Challenges

» Challenges for analysis of PAGE and
TOPMed whole genome data:

= Multi-ethnic populations and confounding due to
highly heterogeneous genetic and environmental
backgrounds within and across cohorts

= Variety of study designs: case-conirol and cohort
studies, family-based studies, founder populations
(e.g., TOPMed includes the Framingham Heart Study,
Jackson Heart Study, and Amish samples).

= Computational burden for analysis of deep whole
genome sequence data for 120,000+ individuals

(TOPMed) and 50,000 individuals with 1000 Genomes
imputed genotypes (PAGE)



Linear Mixed Models

Linear mixed models (LMMs) have emerged
as a powerful and effective method of choice
for genetic association testing in the presence
of sample structure

LMMs have been used to simultaneously
account for both population structure, family
structure, and/or crypfic relatedness



Linear Mixed Models

« A number of LMMs have been proposed
including EMMAX proposed by Kang et al.[Nat
Genet, 2010], GEMMA proposed by Zhou and
Stephens [Nat Genet, 2012] and others:
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LMMs for Genetic
Assoclation Testing

Most LMM methods fit the following linear mixed model
Y =g.08; + X + € with ewN(O,EEJi\P—I—J?I)

where:
= Y is the vector of phenotype values
= g is the vector of genotypes at the SNP being tested,

= [, is the (scalar) association parameter of interest,
measuring the effect of genotype on phenotype

= X isa matrix of covariate values with vector Ocof
covariate effects

= s is an estimated genetic relationship matrix (GRM)
- capturing population structure and relatedness

= 0 4 is the additive genetic variance for polygenic effects
. | is the identity matrix

"0 2 presents non-genetic variance due to non-genetic
“effects assumed to be acting independently on
individuals



Standard GRM for LMMs

Average genotypic correlations across the genome
IS summarized with a single genetic relatedness
matrix (GRM)

« GRM entry for subjects iand jwho have M
genotyped markers across the autosomes:

m=1 Zﬁm(l—]/}m)

M
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Linear Mixed Models for Genetic
Assoclation Testing

LMMs have largely been evaluated in samples with
relatively subtle population structure, e.g., European
populations

Existing LMMs methods use a single empirical genetic
relationship matrix to model the entfire genealogy of
sampled individuals as part of the covariance structure of
the phenotype.

Samples from multi-ethnic cohorts offen have complex
genealogy due to ancestry admixture and both recent
and distant genetic relatedness

The genealogy of sampled individuals consists of:
o Distant genetic relatedness, such as population structure
o Recent genetfic relatedness: pedigree relationships of close relatives
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Recent versus Distant Genetic
Relatedness

« Distinguishing familial relatedness from ancestry using
genotype data in diverse populations is difficult, as
both manifest as genetic similarity through the sharing

of alleles.

Ancestral Population

o ® o ©® 0o 0 , o . o

Time Current Population

Conomos et al. (AJHG, 2016) o



Deconvolution of Genetic Relatedness

e« Conomos etal., Am J Hum Genet, 2016
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LMM-OPS for Multi-Ethnic

Populations

 Matt Conomos PhD dissertation work developed LI\/\I\/\ OPS |
for association mapping in ancestrally diverse populations

« LMM-OPS, linear mixed models with orthogonal partitioned
sfructure

« Appropriately accounts for the complex genealogy of
ancestrally diverse samples by partitioning sample structure
into two orthogonal components:

1. acomponent for the sharing of alleles inherited
identical by descent (IBD) from recent common
ancestors, which represents familial relatedness

2. and another component for allele sharing due to more
distant common ancestry, which represents population
sfructure.




LMM-OPS for Multi-
Ethnic Populations

« With LMM-OPS, a score test for association is

calculated based on the following linear mixed
model:

Y =g:8; +Xa+Vy+e with €e~N(0,X=03® + ol

where:
* & Iis an genetic relatedness matrix adjusted for
ancestry admixture (via the PCs) with PC-Relate

 V is a matrix with PCs from PC-AIR, and” is a
vector (unknown) ancestry effects on the phenotype

X is a matrix of covariate values with vector @ of
_covariate effects



PC-Relate GRMs for
LMM-OPS

Two possible GRMs we have considered for LMM-OPS are as follows, with the
following entries for subjects i and j who have M genotyped markers.

M

_2 (8 = 2D, )&y —2D,)
2P, (1= P,)\2P, (1= Py)

1 M
7 28 =25, )(80 = 2P0)

m=1

e ——
m=1

Both use individual specific allele frequencies, lsmi , calculated
from a regression analysis with the PCs from PC-AiR included
as predictors of genotype
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Simulations with Admixture: Genomic Control Inflation

Evaluation
Method Genome- Highly? Moderately® Weakly*

Wide Differentiated Differentiated Differentiated
LMM-OPS | 1.000 (0.0002) = 0.999 (0.0007) | 1.001 (0.0004) = 1.001 (0.0003)
EMMAX 1.001 (0.0002) | 1.098 (0.0011) | 1.016 (0.0004) | 0.979 (0.0003)
GEMMA 1.004 (0.0002) = 1.110 (0.0011)  1.020 (0.0005) 0.980 (0.0003)
Linear Reg. 1.026 (0.0006) 1.025 (0.0009) @ 1.027 (0.0007) | 1.026 (0.0006)
with PCs

@ Highly differentiated SNPs: D, =2 0.4 between the two populations
° Moderately differentiated SNPs: 0.4 > D, 2 0.2 between the two populations
¢ Weakly differentiated SNPs: D, < 0.2 between the two populations



Applications and Discoveries in

Hispanic/Latino Populations
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Association Analysis with Linear

Mixed Models

LMM-OPS worked well for WHI-SHARe Hispanics and
the Hispanic Community Health Study / Study of
Latinos

Applied LMM-OPS and standard LMM to PAGE and
TOPMed traits

Very perplexing results for many phenotypes!

One phenotype with badly behaved results if
fasting glucose



PAGE Analysis: Standard LMM
(EMMAX/GCTA)

» Results for PAGE fasting glucose with adjustment for BMI

Imputed SNPs INFO>=0.4 & effN>=30

lambda=1.0783

—logo(observed P




PAGE Analysis: LMM-OPS

 LMM-OPS Results for fasting glucose with adjustment for
BMI in PAGE

Imputed SNPs INFO>=0.4 & effN>=30
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Problems? Confounding due to combining

samples form multi-ethnic populations

« Ethnic groups (and subgroups) often share distinct
dietary habits and other lifestyle characteristics that
result in traits of interest having different distributions
that are correlated with genetic ancestry and/or

ethnicity.

association of interest
Genotype »|  Trait

association association



PAGE Glucose by Race/Ethnicity

PAGE Glucose Boxplots
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PAGE Principal
omponents Analysis
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PAGE Principal
Components Analysis
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PAGE Analysis: Standard LMM
(EMMAX/GCTA)

Recall the standard LMM model

Y =g.0; + X + € with ENN(O,EEUiW+O?|>

For glucose with BMI adjustment, variance
components were estimated

Residual variance component: 67 =0.258
Additive genetic variance component: 67 =0.063

A\

(& =20, (& —2P,)
mzi 2p,1=p,)




Standard GRM for PAGE

« Below is a figure of the diagonal elements of the
standard GRM for PAGE.
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LMM-OPS GRM for PAGE

Y =g.0, +Xa+Vy+e€  with GNN(O,ZEOi@+J?|)
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Heterogeneity in Phenotypic Variances

For multi-ethnic population samples, we should
expect confounding due to traits having different
means and variances.

Developed HEMMAT:. Heterogenous Effects Mixed
Model Association Test.

HEMMAT is an extension of LMM-OPS to allow for
multiple random effects to be included in the
model, in addifion to the PC-adjusted GRM.

HEMMAT incorporates additional random effects to
allow for heterogeneous variances by self-reported
race/ethnicity or by study (or any other discrete
classification)



Real Phenotype Data for
Methods Comparison

Variance components were estimated for BMI
adjusted fasting glucose

Additive genetic variaonce component is .032

Residual variance components for each
race/ethnicity:

Race/Ethnicity Sample Size Residual Variance

AA 6457 0.41
HS 13556 0.20
AS 1918 0.40
HI 1400 0.43
NA 412 0.24

Other 168 0.35



HEMMAT Association Analysis Results

 HEMMAT results for fasting glucose with adjustment of BMI

Homogenous Trait Variance Heterogeneous Trait Variance by
/ Ethnicity/Race \
Imputed SNPs INFO>=0.4 & effN>=30 Imputed SNPs INFO>=0.4 & effN>=30
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Linear Mixed Model with Standard GRM

and Heterogenous Variances

lambda=1.0133 (o)
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Comparison of HEMMAT and Standard

LMM with Heterogenous Variance

Both HEMMAT and LMM with a standard GRM and
heterogenous variances have proper control of
genomic inflation for fasting glucose in PAGE

HEMMAT: 168 genome-wide significant variants
(p<5e-08) for fasting glucose identified

LMM with standard GRM and heterogenous
variance: 146 genome-wide significant variants for
fasting glucose identified



Comparison of HEMMAT to LMM
with Heterogenous Variance

LOCUS Chr Position HEMMAT LMM with Standard
GRM and
Heterogenous
Variances

GCKR 2 27742603 1.03E-11 1.48e-10

rs780093

ABCB11 2 169774071 5.85e-25 1.64e-22

rs563694

GCK 7 44229068 3.94e-23 7.35e-22

rs1799884

TCF7L2 10 114758349 2.78e-08 1.47e-07

rs7903146

MTNR1B 11 92708710 3.50e-29 4.48e-28

rs10830963

FOXA2 20 22562326 3.24e-12 3.83e-11

rs3833331



TOPMed Hemoglobin Distributions by Study

Hemoglobin

Quantile Normalized Hemoglobin

Hemoglobin Boxplots
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BMI

Quantile Normalized BMI

TOPMed BMI Distributions by Study
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Heterogeneity in Hemoglobin Phenotypic
Variances: By Study

« HEMMAT results for hemoglobin: heterogeneous
phenotypic variances

Homogenous Residual Variance = Heterogeneous Residual Variances by Study

/ N\
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Heterogeneity in BMI Phenotypic Variances

« HEMMAT Association results for BMI: heterogeneous
phenotypic variances

Homogenous Residual Variance = Heterogeneous Residual Variances by Study

lambda = 1.411 lambda = 1.029

- .,

~logso(observed P)
~log;o(observed P)

4 4
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Heterogenous residual variances
for BMI

« Residual variance components of BMI for a few
studies in TOPMed

TopMed Cohort Study Phenotypic Residual
Variances

Jackson Heart Study 35.44
CFS 52.33
Framingham Heart Study 13.14
Amish 12.19
COPDGene 26.61
HVH 61.31



Allowing for heterogeneity in variances: By Self-

Reported Race

There are limitations with modeling heterogenous
variances by study in TOPMed.

A number of TOPMed studies have muliiple
ethnicities/ancestries.

Also explored the differences in BMI distribution by
self-reported race.



TOPMed BMI Distributions: By Race

BMI

Quantile Normalized BMI

BMI Boxplots by Self-Reported Race
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BMI Heterogeneity: Study vs. Self-Reported Race

« HEMMAT Association results for BMI: heterogeneous
phenotypic variances

Heterogenous Residual Variance by Study Heterogenous Residual Variance by Race
lambda = 1.029 lambda = 0.9982
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Novel Discoveries in Multi-
Ethnic PAGE Study

Conducted a GWAS of 26 clinical and
behavioral phenotypes in 49,839 non-European
individuals.

Allowed for heterogenous variances across all
phenotypes

574 GWAS catalog variants across these traits
were confirmed in PAGE

28 novel loci were identified.

Manuscript submitted to Nafure. Currently is in
revision and will be re-submitted soon.



GENESIS SOFTWARE

GENESIS: R software package is available from
Bioconductor

Installation in R:
» source("https://bioconductor.org/bioclite.R")
- bioclite("GENESIS")

Curren’r release of GENESIS:

PC-AIR
PC-Relate
LMM-OPS

HEMMAT (for multi-ethnic populations with heterogenous
variances)

Burden and SKAT tests have been extended, allow for population
structure/relatedness and heterogenous variances




Current/Future Work: X Chromosome analyses

GENETICS | INVESTIGATION mEmmmm

Detecting Heterogeneity in Population Structure
Across the Genome in Admixed Populations

Caitlin McHugh, Lisa Brown, and Timothy A. Thornton'
Department of Biostatistics, University of Washington, Seattle, Washington 98195

McHugh et al., Genetics, 2016




Current/Future Work: X Chromosome analyses

in TOPMed and PAGE

« Relatedness and population structure on the X-
chromosome is quite difference than the
autosomes in multi-ethnic populations

« Dr. Caitlin McHugh has been developing extension
of mixed methods for appropriate association
testing (single variant and testing multiple variants
simultaneously) on the X in multi-ethnic populations.

« Currently mplementing the methods in GENESIS and
will be applying to TOPMed and PAGE.
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