Wasserstein for learning image regularisers

Carola-Bibiane Schönlieb

Department for Applied Mathematics and Theoretical Physics Cantab Capital Institute for the Mathematics of Information EPSRC Centre for Mathematical Imaging in Healthcare Alan Turing Institute University of Cambridge, UK

Banff, 11 December 2018

Wasserstein learned regularisers

What is an inverse problem?

Forward problem: knowing physical quantity compute the measurements Inverse problem: measuring the datum compute the physical quantity.

Mathematically: compute u from f = T(u) + n. CT images from LUNA dataset https://lunal6.grand-challenge.org

Schönlieb (DAMTP)

Wasserstein learned regularisers

Inverse problems in imaging?

Multi-sensor image analysis for forest conservation

J. Lee, CBS, D. Coomes, et al. '15-

Positron emission tomography

Burger et al. '08; Ehrhardt, Markiewicz, CBS '17, '18

Unveiling the invisible for art conservation

Weickert '13; D'Autume, Panayotova, Ricciardi, CBS '17

3D conversion

Bertalmio et al. '98; Morel, Masnou '98; Chan, Kang, Shen '00; Burger, He, CBS, SIAM Imaging Science '09; CBS, CUP '15J. Hocking, CBS et al. Heritage Sciences '18

Schönlieb (DAMTP)

Wasserstein learned regularisers

III-posedness

Schönlieb (DAMTP)

Wasserstein learned regularisers

Banff 11/12/2018

æ

<ロ> <同> <同> < 同> < 同>

The variational approach

General task: restore ${\bf u}$ from an observed datum ${\bf f}$ where

Variational approach: Compute u as a minimizer of

where

- R(u) is a prior/regularizer that models a-priori information on u weighted by positive α, e.g., R(u) = ||∇u||₁ (in infinite dimensions |Du|(Ω))
- $D(\cdot, \cdot)$ is a distance function, e.g. $D(Tu, g) = ||Tu f||_2^2$ and B suitable Banach space, e.g., $B = BV(\Omega)$.

Engl, Hanke, Neubauer '96; Rudin, Osher, Fatemi, Physica D '92; Natterer, Wübbeling '01; Candes, Romberg, Tao, IEEE Trans Inf Theory '06; Kaltenbacher, Neubauer, Scherzer '08; Schuster, Kaltenbacher, Hofmann, Kazimierski '12

Schönlieb (DAMTP)

Wasserstein learned regularisers

4D MRI from sub-sampled data

4D Bregman-TV Reconstruction from 20% line-sampling

Acquire $\mathcal{SF}(u) \Rightarrow \text{ reconstruct } u(x,t) = \operatorname{argmin}_{v} \alpha \|\nabla v\|_{1} + \|\mathcal{SF}(v) - f\|_{2}^{2}$

 M. Benning, A. Sederman, CBS, L. Gladden, et al.; M. Benning, L. Gladden, D. Holland, CBS, and T. Valkonen, J. Magnetic Resonance 238, pp. 26 - 43, 2014; Osher, Burger et al. '05; M.

 Lustig et al. '07

 Schönlieb (DAMTP)

 Wasserstein learned regularisers

 Banff 11/12/2018

4D MRI from sub-sampled data

Fourier inversion from 20% line-sampling

Acquire $SF(u) \Rightarrow$ reconstruct u(x, t) by zero-filling.

M. Benning, A. Sederman, CBS, L. Gladden, et al.

Schönlieb (DAMTP)

Wasserstein learned regularisers

Banff 11/12/2018

• • • • • • • • •

4D MRI from sub-sampled data

4D Bregman-TV Reconstruction from 20% line-sampling

Acquire $\mathcal{SF}(u) \Rightarrow \text{ reconstruct } u(x,t) = \operatorname{argmin}_{v} \alpha \|\nabla v\|_{1} + \|\mathcal{SF}(v) - f\|_{2}^{2}$

 M. Benning, A. Sederman, CBS, L. Gladden, et al.; M. Benning, L. Gladden, D. Holland, CBS, and T. Valkonen, J. Magnetic Resonance 238, pp. 26 - 43, 2014; Osher, Burger et al. '05; M.

 Lustig et al. '07

 Schönlieb (DAMTP)

 Wasserstein learned regularisers

 Banff 11/12/2018

Connection to nonlinear PDEs

Nonlinear image smoothing with total variation regularisation

$$\alpha \|\nabla u\|_1 + \frac{1}{2} \|u - f\|^2 \to \min_u$$

with steepest descent

$$u_t = \alpha \ p + (u - f), \quad p \in \partial \|\nabla u\|_1, \quad \text{in } \Omega,$$

TV scale space

Perona, Malik '90; Rudin, Osher, Fatemi, Physica D '92; and various contributions from Ambrosio, Caselles, Chambolle, Lions, Morel, Novaga, ...

Schönlieb (DAMTP)

Wasserstein learned regularisers

Connection to nonlinear PDEs

Nonlinear image smoothing with total variation regularisation

$$\alpha \|\nabla u\|_1 + \frac{1}{2} \|u - f\|^2 \to \min_u$$

with steepest descent for $|\nabla u| \neq 0$

$$u_t = \alpha \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) + (u - f), \quad \text{in } \Omega,$$

TV scale space

Perona, Malik '90; Rudin, Osher, Fatemi, Physica D '92; and various contributions from Ambrosio, Caselles, Chambolle, Lions, Morel, Novaga, ...

Schönlieb (DAMTP)

Wasserstein learned regularisers

What is the right sparsity?

$\min_{u} \left\{ \alpha \|\nabla u\|_1 + \|u - f\|_2^2 \right\}$

Noisy image

TV denoised image

Image courtesy of K. Papafitsoros

References: Rudin, Osher, Fatemi '92; Hinterberger, Scherzer, Computing '06; Bredies, Kunisch, Pock, SIAM Imaging '10; Papafitsoros, CBS, J. Math. Imaging & Vision, '13 ...

Schönlieb (DAMTP)

Wasserstein learned regularisers

Banff 11/12/2018

< ロ > < 同 > < 回 > < 回 >

What is the right sparsity?

$\min_{u} \left\{ \alpha \|\nabla^2 u\|_1 + \|u - f\|_2^2 \right\}$

Noisy image

TV² denoised image

Image courtesy of K. Papafitsoros

References: Rudin, Osher, Fatemi '92; Hinterberger, Scherzer, Computing '06; Bredies, Kunisch, Pock, SIAM Imaging '10; Papafitsoros, CBS, J. Math. Imaging & Vision, '13 ...

< ロ > < 同 > < 回 > < 回 >

What is the right sparsity?

 $\min_{u} \left\{ \min_{w} \{ \alpha_1 \| \nabla u - w \|_1 + \alpha_2 \| E w \| \} + \| u - f \|_2^2 \right\}$

Noisy image

TGV² denoised image

Image courtesy of K. Papafitsoros

References: Rudin, Osher, Fatemi '92; Hinterberger, Scherzer, Computing '06; Bredies, Kunisch, Pock, SIAM Imaging '10; Papafitsoros, CBS, J. Math. Imaging & Vision, '13 ...

< ロ > < 同 > < 回 > < 回 >

Regulariser zoo

No 'one fit all' solution

- Multi-resolution analysis, wavelets (e.g. Daubechies, Mallat, Unser, Kutyniok, Foucart & Rauhut, ...).
- Other Banach-space norms, e.g. Sobolev norms, Besov norms, etc. (e.g. Lassas, Siltanen 09)
- Higher-order total variation regularisation (Infimal convolution Chambolle, Lions 97; Setzer, Steidl, Teuber 11, Total Generalised Variation Bredies, Kunisch, Pock 10, ...)
- Non-local regularisation (non-local TV Osher, Gilboa, ...; non-local means Morel ...)
- Anisotropic regularisation Weickert98
- Free-discontinuity problems Mumford, Shah; Tomarelli et al.
- and mixtures of the above ... and probably more which I have forgotten ...

Introductory books to variational & PDE imaging Chan & Shen 05; Scherzer 10; Bredies & Lorenz 11 – currently only in German.

Schönlieb (DAMTP)

Wasserstein learned regularisers

Deep neural networks as regularizers

Joint work with Sebastian Lunz and Ozan Öktem

S. Lunz, O. Öktem, CBS, Adversarial Regularizers in Inverse Problems, NIPS 2018

Schönlieb (DAMTP)

Wasserstein learned regularisers

Existing methods for deep inversion

Existing Approaches

- Fully Learned Models
- Post Processing¹
- Iterative Schemes²³⁴

Variational formulation could resolve some shortcomings of existing algorithms (e.g., provable notion of stability of regularisation)

¹Kyong Hwan Jin et al. "Deep convolutional neural network for inverse problems in imaging". In: *IEEE Transactions on Image Processing* 26.9 (2017), pp. 4509–4522. ²Jonas Adler and Ozan Öktem. "Learned primal-dual reconstruction". In: *arXiv preprint arXiv:1707.06474* (2017).

³Tim Meinhardt et al. "Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems". In: *arXiv preprint arXiv:1704.03488* (2017).

⁴Kerstin Hammernik et al. "Learning a variational network for reconstruction of accelerated MRI data". In: *Magnetic resonance in medicine* (2017). 2 > (2 > (2 > 2)

Schönlieb (DAMTP)

Wasserstein learned regularisers

Data-driven regulariser

A bit of motivation / assumption:

- Design of regularisation functional *R*(*x*) does not require solving the variational problem.
- Heuristic: Design regularisation functional to distinguish between artifact-free images (ground truth) and images with artifacts (e.g. noisy images, images with streak artifacts ...).
- How: train regulariser on image distributions, utilising both true image distribution π and distribution of corrupted images ρ.⁵
- If available, can pick ρ distribution of pseudo-inverse

⁵Martin Benning et al. "Learning Filter Functions in Regularisers by Minimising Quotients". In: *Scale Space and Variational Methods in Computer Vision*. Ed. by François Lauze, Yiqiu Dong and Anders Bjorholm Dahl. Cham: Springer International Publishing, 2017, pp. 511–523; Sebastian Lunz, Ozan Öktem and Carola-Bibiane Schönlieb. "Adversarial Regularizers in Inverse Problems". In: *NIPS 2018, arXiv preprint arXiv:1805.11572* (2018); Housen Li et al. "NETT: Solving Inverse Problems with Deep Neural Networks". In: *arXiv preprint arXiv:*4803.00092 (2018).

Schönlieb (DAMTP)

Learned regulariser

Going back to the variational framework we want to replace

$$\underset{x}{\arg\min} \|Tx - y\|_2^2 + \lambda R(x)$$

by

$$\underset{x}{\arg\min} ||Tx - y||_2^2 + \lambda \Psi_{\Theta}(x),$$

where $\Psi_{\Theta}(x)$ is large for 'undesirable' x (coming from ρ) and small for 'desirable' x (coming from π).

Use loss functional of the form

$$\mathbb{E}_{X \sim \pi} \Psi_{\Theta}(X) - \mathbb{E}_{X \sim \rho} \Psi_{\Theta}(X)$$

for training Ψ_{Θ} .

Schönlieb (DAMTP)

Consider minimising for an appropriately parametrised Ψ_Θ (deep neural network of some kind) the Wasserstein loss functional 6

$$\mathbb{E}_{X \sim \pi} \Psi_{\Theta}(X) - \mathbb{E}_{X \sim \rho} \Psi_{\Theta}(X) + \lambda \cdot \mathbb{E} \left(\left\| \nabla_x \Psi_{\Theta}(X) \right\| - 1 \right)_{+}^2.$$

Approximation to solution of

$$\sup_{f\in 1-Lip} \mathbb{E}_{X\sim\rho}f(X) - \mathbb{E}_{X\sim\pi}f(X).$$

Motivation: Kantorovich duality for optimal transport.

⁶Martín Arjovsky, Soumith Chintala and Léon Bottou. "Wasserstein Generative Adversarial Networks". In: *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017*. 2017, pp. 214–223. URL: http://proceedings.mlr.press/v70/arjovsky17a.html.html.

Schönlieb (DAMTP)

Wasserstein learned regularisers

Distributional Interpretation

Assume Ψ_{Θ} achieves minimal Wasserstein loss.

Question: does gradient descent on Ψ_{Θ} take us closer to desired image distribution π ?

For x sampled from ρ define

$$g_{\epsilon}(x) = x - \epsilon \cdot \nabla_x \Psi_{\Theta}(x)$$
$$\rho_{\epsilon} := (g_{\epsilon})_*(\rho)$$

Theorem

Under sufficient regularity assumptions

$$\frac{\partial}{\partial \epsilon} \operatorname{Wass}(\pi, \rho_{\epsilon})|_{\epsilon=0} = -\mathbb{E}_{X \sim \rho} \|\nabla_x \Psi_{\Theta}(X)\|_2^2$$

Schönlieb (DAMTP)

Wasserstein learned regularisers

Banff 11/12/2018

Image: A math

Data Manifold Distance Theorem

Assumption (Data Manifold Assumption)

There is a weakly compact set \mathcal{M} such that $\operatorname{supp}(\pi) \subset \mathcal{M}$

Theorem

Assume DMA. Denote by P the L^2 projection onto the data manifold. Assume

$$P_*(\rho) = \rho \circ P^{-1} = \pi$$

Then, the distance function to the data manifold

 $x \mapsto \min_{y \in \mathcal{M}} \|x - y\|_2$

is a maximizer to the Wasserstein Loss

$$\sup_{f\in 1-Lip} \mathbb{E}_{X\sim\rho}f(X) - \mathbb{E}_{X\sim\pi}f(X).$$

Existence and weak stability

Under appropriate assumptions we can prove

Theorem

A minimiser of $||Tx - y||^2 + \lambda \Psi_{\Theta}(x)$ exists.

Theorem

Let y_n be a sequence in Y with $y_n \to y$ in the norm topology and x_n sequence of minimizers of the functional

$$\underset{x \in X}{\operatorname{arg\,min}} \|Tx - y_n\|^2 + \lambda \Psi_{\Theta}(x)$$

Then x_n has a weakly convergent subsequence and its limit x is a minimizer of

$$||Tx - y||^2 + \lambda \Psi_{\Theta}(x).$$

Train Regulariser via:

$$\sum_{i} \Psi_{\Theta}(x_{i}) - \Psi_{\Theta}(T^{\dagger}y_{i}) + \gamma \cdot \left(\|\nabla_{x}\Psi_{\Theta}(\epsilon_{i}x_{i} + (1-\epsilon_{i})T^{\dagger}y_{i})\| - 1 \right)_{+}^{2}$$

 ϵ_i is sampled uniformly in [0,1]. Reconstruct via:

$$\underset{x}{\arg\min} \|Tx - y\|_{2}^{2} + \lambda \Psi_{\Theta}(x)$$

for appropriately chosen (estimated) $\lambda.$ Minimization problem is solved using gradient descent.

< ロ > < 同 > < 回 > < 回 > .

Figure: From left to right: Ground truth, FBP, TV, Post-Processing, Adversarial Reg. Below the Sinogram used for reconstruction.

Wasserstein learned regularisers

Banff 11/12/2018

・ 同 ト ・ ヨ ト ・ ヨ

(a) Ground Truth

(b) Adversarial Reg.

Figure: Reconstruction from simulated CT measurements LIDC

(a) FBP

(b) Adversarial Reg.

Figure: Reconstruction from simulated CT measurements LIDC

Wasserstein learned regularisers

Figure: Reconstruction from simulated CT measurements LIDC

(a) Post-Processing

(b) Adversarial Reg.

Figure: Reconstruction from simulated CT measurements on LIDC

Method	PSNR (dB)	SSIM
Model-based		
Filtered Backprojection	14.9	.227
Total Variation	27.7	.890
Unsupervised		
Adversarial Reg. (ours)	30.5	.927
SUPERVISED		
Post-Processing	31.2	.936

Table: CT reconstruction on LIDC data, high noise

Learning of variational models by learning appropriate parametrisation of regulariser

 Wasserstein GAN regulariser parametrising with distributions of 'desirable' and 'undesirable' solutions (deep)

Learning of variational models by learning appropriate parametrisation of regulariser

- Wasserstein GAN regulariser parametrising with distributions of 'desirable' and 'undesirable' solutions (deep)
- Advantages:
 - Data term allows to insert knowledge about forward operator and noise model very directly
 - Stability theory (even if weak)
 - GAN: Loss on distributions rather than images directly
 - GAN: No paired training data necessary
- Disadvantages: computational complexity. forward

・ロト ・同ト ・ヨト ・ヨト

Philosophy: learning structured but adaptive imaging models with guarantees See also forthcoming Acta Numerica 2019.

Schönlieb (DAMTP)

Wasserstein learned regularisers

Cambridge Image Analysis

- Dr Angelica Aviles-Rivero
- Dr Noemie Debroux
- Dr Yury Korolev
- Dr Lukas Lang
- Dr Pan Liu
- Dr Jingwei Liang
- Dr Matt Thorpe
- Thomas Buddenkotte
- Veronica Corona
- Tamara Grossmann
- Sebastian Lunz
- Lisa Kreusser
- Simone Parisotto
- Erlend Riis
- Philip Sellars
- Ferdia Sherry
- Rob Tovey
- Jon Williams

Sponsored by EPSRC, London Mathematical Society, The Leverhulme Trust, Alan Turing Institute, Horizon2020, and The Royal Society.

Visit us at http://www.damtp.cam.ac.uk/ research/cia/

and check out our IMAGES network at

http://www.images.group.cam.ac.uk

More information see:

http://www.ccimi.maths.cam.ac.uk
http://www.cmih.maths.cam.ac.uk
http://www.damtp.cam.ac.uk/research/cia/
Email: cbs31@cam.ac.uk