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Suppose p(z) = +e~V® is a probability density on R?, but Z is unknown.

How can we distribute points z1,...xxy € R so that
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Stein Variational Gradient Descent was proposed in context of machine

learning and Bayesian posterior approximation, as a deterministic algorithm for

distributing the points z1, ..., zN:
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%xz(t) =—% ;VK(ZEZ — xp) — N ;K(azZ —x0)VV(zy), i=1,...,N
pla) = ze V.

K(z) : R? — R is a smooth, positive-definite kernel (e.g. a Gaussian).
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Let {z;(t)}Y, C R? solve
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pla) = ze V).

K(z) : R? — R is a smooth, positive-definite kernel (e.g. a Gaussian).



Let {z;(t)}Y, C R? solve
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K(z) : RY — R is a smooth, positive-definite kernel (e.g. a Gaussian).

The first term in the ODE is —V,;E(x), where E is the interaction energy
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Let {z;(t)}Y, C R? solve

d | & 1 o
o —__;v}( — ) _ﬁ;K i —x)VV(x), i=1,...
pla) = ze V.

K(z) : R — R is a smooth, positive-definite kernel (e.g. Gaussian).

The first term in the ODE is —V,;E(x), where E is the interaction energy
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The second term in the ODE is an average of —VV

_ / K(z; — y)VV(y)du™ (y)



Compare this to overdamped Langevin dynamics:

dX;(t) = V2dB;(t) — VV(X;)dt

—V

for which p(x) ~ e™" is an invariant distribution. Fokker-Planck equation for the

density of a particle:

g =Ag+V-(¢gVV) (%)
(*) corresponds to the gradient flow for relative entropy (KL-divergence)
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with respect to Wasserstein-2 metric.

SVGD also has formal structure of gradient flow, but with respect to a different

metric, involving a RKHS with kernel K.
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Formal derivation of SVGD:
Suppose 0,q + V - (qgb) = 0 for some b(t,z) € V. Then

d

ﬁEnt(q\p)z—/q(v-b—b-VV)dx

So, choose b to optimize

Sup/q(v-b—b-VV)d:C

beV

If V is an RKHS with kernel K, then the optimal b is

b=VKxq+ K *(qVV)
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Questions about SVGD: Behavior as N — oo? Behavior of system as t — oo?

The scaling limit as N — oo involves a nonlocal, nonlinear pde

0=V - (¢(VK xq+ K% (VVyq)))

First result: Assuming suitable control V, DV, and D?*V as |z| — oo (e.g.
polynomial growth) and regularity of go(x), this PDE has a unique, global classical
solution with ¢(0,z) = qo(x).



Second result: Convergence of 1 to the PDE solution as N — oo. Let q(t, x)
satisfy

0q=V-(¢(VKxq+ K *(VVq))), q(0,z) = qo(z)
Then
Sup Wp(:uz]fva q(t,-)) < CWP(MéVv qo(-))

te[0,T]



Third result: Convergence of the PDE solution as t — .

0q =V (¢(VK xq+ K x(VVq)))

_v. (qm (qvlog (%»)

Assume the kernel K is Gaussian and that Ent(qy | p) < co. Then

q(t,z) = p= —e '

weakly as t — oo.

Ent(q | p) is a Lyapunov function, but we lack a Poincaré or log-Sobolev type

inequality to get a rate of convergence.

diEnt (q]p) // (qVIog ) r) K(x —v) (qV log %) (y) dzx dy



Unresolved Issues

1. Large time behavior of the particle system. The finite particle system doesn’t

have gradient structure, and there may be multiple stationary solutions.
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2. Rates of convergence for the non-local, nonlinear PDE as t — oo. Formally,

when K = ¢g, equation takes the form

0q=V-(qVqe) +V-(°VV)



A related work: The “Blob Method” for the Fokker-Planck equation

is based on the regulariztion

Eut(q|p) = [
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For this functional, Wasserstein-2 gradient flow perserves atomic measures, but p is

not invariant. Evolution is described by

0iq =V - (q(vm*( 4 )+V”€*q>>+v-(qvm
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J. Carrillo, K. Craig, S. Patacchini Francesco (2017).



This is the end!
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