The Geometry of Hypothesis Testing over Convex Cones

Yuting Wei Department of Statistics, UC Berkeley

BIRS workshop on Shape-Constrained Methods Jan 30rd, 2018

joint work with:

Cone testing problem

• Observation model: $y = \theta + \sigma w$, $w \sim N(0, \mathbb{I}_d)$

Cone testing problem

- Observation model: $y = \theta + \sigma w$, $w \sim N(0, \mathbb{I}_d)$
- Inference problem: H_0 : $\theta \in C_0$ v.s. H_1 : $\theta \in C_1 \setminus C_0$

Cone testing problem

- Observation model: $y = \theta + \sigma w$, $w \sim N(0, \mathbb{I}_d)$
- Inference problem: H_0 : $\theta \in C_0$ v.s. H_1 : $\theta \in C_1 \setminus C_0$
- $C_0 \subset C_1$ closed, convex cones ($\forall x \in C$ then $ax \in C, \forall a \ge 0$)

In the fields of

- detection of treatment effects
- signal detection in radar processing
- trend detection in econometrics

- average treatment effect of d = 10 different dosages of a drug
- non-negative and un-ordered space

unknown average effect

• average treatment effect of d = 10 different dosages of a drug

 Y_{10}

non-negative and un-ordered space

- average treatment effect of d = 10 different dosages of a drug
- non-negative and un-ordered space

- average treatment effect of d = 10 different dosages of a drug
- monotonic space

unknown average effect

average treatment effect of *d* = 10 different dosages of a drug
monotonic space

average treatment effect of *d* = 10 different dosages of a drug
monotonic space

In the fields of

- detection of treatment effects
- signal detection in radar processing
- trend detection in econometrics

Bühlmann'03, Meinshausen'03, Meyer'03, Sen and Meyer 17'

In the fields of

- detection of treatment effects
- signal detection in radar processing
- trend detection in econometrics
- More statistical models

• linear regression
$$y = X\beta + w := \theta + w$$

*
$$C_0 := \{0\}$$
 v.s. $C_1 := \operatorname{range}(X)$

• fitness of a linear model: $y = f(x_1^n) + w := \theta + w$,

★
$$C_0 := \{X\beta \mid \beta \in \mathbb{R}^k\}$$
 v.s. $C_1 :=$ convex cone

Bühlmann'03, Meinshausen'03, Meyer'03, Sen and Meyer 17'

Q: How to **solve** these constrained testing problems?

- Q: How to quantify the hardness of a constrained testing problem?
- Q: How does the hardness depend on the geometry?

Generalized Likelihood Ratio Test

• Generalized Likelihood Ratio Test (GLRT)

$$\phi_{\beta}(y) := \begin{cases} 1 & \text{if } T(y) \geq \beta \\ 0 & \text{otherwise.} \end{cases}$$

where $T(y) := -2 \log \left(\frac{\sup_{\theta \in C_0} \mathbb{P}_{\theta}(y)}{\sup_{\theta \in C_1} \mathbb{P}_{\theta}(y)} \right).$

Robertson and Wegman'78, Raubertas et al.'86, Fan et al.'01...

Generalized Likelihood Ratio Test

• Generalized Likelihood Ratio Test (GLRT)

$$\begin{split} \phi_{\beta}(y) &:= \begin{cases} 1 & \text{if } \mathcal{T}(y) \geq \beta \\ 0 & \text{otherwise.} \end{cases} \\ \end{split} \\ \text{where } \mathcal{T}(y) &:= -2\log\left(\frac{\sup_{\theta \in C_0} \mathbb{P}_{\theta}(y)}{\sup_{\theta \in C_1} \mathbb{P}_{\theta}(y)}\right). \end{split}$$

• Cone based GLRT:

$$T(y) = \min_{\theta \in C_0} \|y - \theta\|_2^2 - \min_{\theta \in C_1} \|y - \theta\|_2^2$$
$$= \|\Pi_{C_1}(y)\|_2^2 - \|\Pi_{C_0}(y)\|_2^2$$

Robertson and Wegman'78, Raubertas et al.'86, Fan et al.'01...

Geometric analysis of hypothesis testing

 different aspects of GLRT e.g. Wilks phenomenon, fitness of parametric model... [Warrack and Robertson'84, Menéndez'92, Lehmann'06, Perlman and Wu'99, Barlow 72, Lehamnn and Romano'06, Fan et al.'01, '07]

- different aspects of GLRT e.g. Wilks phenomenon, fitness of parametric model... [Warrack and Robertson'84, Menéndez'92, Lehmann'06, Perlman and Wu'99, Barlow 72, Lehamnn and Romano'06, Fan et al.'01, '07]
- Cone testing
 - Raubertas, Lee & Nordheim studies the null distribution of GLRT
 - Hu and Wright characterizes GLRT equivalences for various pairs of cones

- different aspects of GLRT e.g. Wilks phenomenon, fitness of parametric model... [Warrack and Robertson'84, Menéndez'92, Lehmann'06, Perlman and Wu'99, Barlow 72, Lehamnn and Romano'06, Fan et al.'01, '07]
- Cone testing
 - Raubertas, Lee & Nordheim studies the null distribution of GLRT
 - Hu and Wright characterizes GLRT equivalences for various pairs of cones
 - Dümbgen'95, Robertson'78, Warrack and Robertson'84, Brown'86, Cohan and Sackrowitz'96, Rubertas et al'86, Menéndez'91

- different aspects of GLRT e.g. Wilks phenomenon, fitness of parametric model... [Warrack and Robertson'84, Menéndez'92, Lehmann'06, Perlman and Wu'99, Barlow 72, Lehamnn and Romano'06, Fan et al.'01, '07]
- Cone testing
 - Raubertas, Lee & Nordheim studies the null distribution of GLRT
 - Hu and Wright characterizes GLRT equivalences for various pairs of cones
 - Dümbgen'95, Robertson'78, Warrack and Robertson'84, Brown'86, Cohan and Sackrowitz'96, Rubertas et al'86, Menéndez'91

Minimax testing framework

- introduced in the seminal work of Ingster and co-authors
- different from the Neyman-Person testing framework

Testing radius

• Test $\theta \in C_0$ v.s. $C_1 \setminus C_0$

• Uniform error for test ψ :

$$\operatorname{error}(\psi, \epsilon) := \underbrace{\sup_{\theta \in C_0} \mathbb{E}_{\theta}[\psi(y)]}_{\text{type l error}} + \underbrace{\sup_{\theta \in C_1 \setminus B_2(\epsilon; C_0)} \mathbb{E}_{\theta}[1 - \psi(y)]}_{\text{type ll error}},$$

Testing radius

• Test $\theta \in C_0$ v.s. $C_1 \setminus C_0$

• Uniform error for test ψ :

• Testing radius $\epsilon_{\Psi} \equiv$ distance at which null/alternative are "just distinguishable" using class of tests Ψ

Minimax optimal testing radius

• Uniform error for test ψ :

$$\operatorname{error}(\psi, \ \epsilon) := \sup_{\substack{\theta \in C_0 \\ \text{type I error}}} \mathbb{E}_{\theta}[\psi(y)] + \sup_{\substack{\theta \in C_1 \setminus B_2(\epsilon; C_0) \\ \text{type II error}}} \mathbb{E}_{\theta}[1 - \psi(y)],$$

Minimax optimal testing radius

• Uniform error for test ψ :

$$\operatorname{error}(\psi, \ \epsilon) := \sup_{\substack{\theta \in C_0 \\ \text{type I error}}} \mathbb{E}_{\theta}[\psi(y)] + \sup_{\substack{\theta \in C_1 \setminus B_2(\epsilon; C_0) \\ \text{type II error}}} \mathbb{E}_{\theta}[1 - \psi(y)],$$

• Minimax testing radius:

$$\epsilon_{\mathsf{OPT}}(
ho) := \inf \left\{ \epsilon \ | \ \inf_{\psi} \ \mathsf{error}(\psi, \ \epsilon) \leq
ho
ight\}$$

[Ingster and Suslina'12, Ermakov'91, Lepski and Spokoiny'99, Lepski and Tsybakov'00]

Minimax optimal testing radius

• Uniform error for test ψ :

$$\operatorname{error}(\psi, \ \epsilon) := \underbrace{\sup_{\theta \in C_0} \mathbb{E}_{\theta}[\psi(y)]}_{\operatorname{type \ l \ error}} + \underbrace{\sup_{\theta \in C_1 \setminus B_2(\epsilon; C_0)} \mathbb{E}_{\theta}[1 - \psi(y)]}_{\operatorname{type \ ll \ error}},$$

• Minimax testing radius:

$$\epsilon_{\mathsf{OPT}}(
ho) := \inf \left\{ \epsilon \ | \ \inf_{\psi} \ \mathsf{error}(\psi, \ \epsilon) \leq
ho
ight\}$$

[Ingster and Suslina'12, Ermakov'91, Lepski and Spokoiny'99, Lepski and Tsybakov'00]

• critical testing radius: ϵ_{GLRT} and ϵ_{OPT}

Theorem (W, Wainwright & Guntuboyina '17)

The GLRT testing radius satisfies

 $\epsilon_{GLRT}^2 \simeq \sigma^2 \min \{ width \ term, \ geometric \ term \}.$

Main results

Theorem (W, Wainwright & Guntuboyina '17)

The GLRT testing radius satisfies

$$\epsilon_{GLRT}^2 \asymp \sigma^2 \min \left\{ \underbrace{\mathbb{E} \| \Pi_C w \|_2}_{width \ term}, \underbrace{\left(\frac{\mathbb{E} \| \Pi_C w \|_2}{\inf_{\eta \in C \cap S} \langle \eta, \ \mathbb{E} \Pi_C w \rangle} \right)^2}_{geometric \ term} \right\}.$$

•
$$C_0 = 0, \ C_1 = C$$

• $w \sim N(0, \mathbb{I}_d)$

•
$$\Pi_C w := \arg\min_{u \in C} \|g - u\|_2$$

• $S \rightarrow$ unit sphere in \mathbb{R}^d

Theorem (W, Wainwright & Guntuboyina '17) The GLRT testing radius satisfies

$$\epsilon_{GLRT}^{2} \asymp \sigma^{2} \min \left\{ \underbrace{\mathbb{E} \| \Pi_{C} w \|_{2}}_{width \ term}, \underbrace{\left(\frac{\mathbb{E} \| \Pi_{C} w \|_{2}}{\inf_{\eta \in C \cap S} \langle \eta, \ \mathbb{E} \Pi_{C} w \rangle} \right)^{2}}_{geometric \ term} \right\}.$$

- Width term $= \mathbb{E} \| \Pi_C w \|_2$ where $\Pi_C w := \arg \min_{u \in C} \| w u \|_2$
- $\mathbb{E} \| \Pi_C(w) \|_2 = \mathbb{W}(C \cap S)$ where

Gaussian width:
$$\mathbb{W}(A) := \mathbb{E}\left[\sup_{u \in A} \langle u, w \rangle\right]$$

Main results

Theorem (W, Wainwright & Guntuboyina '17)

The GLRT testing radius satisfies

$$\epsilon_{GLRT}^{2} \asymp \sigma^{2} \min \left\{ \underbrace{\mathbb{E} \| \Pi_{C} w \|_{2}}_{width \ term}, \underbrace{\left(\underbrace{\frac{\mathbb{E} \| \Pi_{C} w \|_{2}}{\inf_{\eta \in C \cap S} \langle \eta, \ \mathbb{E} \Pi_{C} w \rangle} \right)^{2}}_{geometric \ term} \right\}.$$

• Examples:

cone C	width term	geometric term
k-dimensional space	\sqrt{k}	∞
non-negative orthant	\sqrt{d}	d
monotone cone	$\sqrt{\log d}$	∞
ice cream cone	\sqrt{d}	1

Main results

Theorem (W, Wainwright & Guntuboyina '17)

The GLRT testing radius satisfies

$$\epsilon_{GLRT}^{2} \asymp \sigma^{2} \min \left\{ \underbrace{\mathbb{E} \| \Pi_{C} w \|_{2}}_{width \ term}, \underbrace{\left(\underbrace{\frac{\mathbb{E} \| \Pi_{C} w \|_{2}}{\inf_{\eta \in C \cap S} \langle \eta, \ \mathbb{E} \Pi_{C} w \rangle} \right)^{2}}_{geometric \ term} \right\}.$$

• Examples:

cone C	width term	geometric term
k-dimensional space	\sqrt{k}	∞
non-negative orthant	\sqrt{d}	d
monotone cone	$\sqrt{\log d}$	∞
ice cream cone	\sqrt{d}	1

Consequence for monotone cone

• $\mathcal{H}_0: \theta = \theta_0$, versus $\mathcal{H}_1: \theta \in \mathcal{M}$ (monotone increasing sequence)

optimal testing radius satisfies

$$\epsilon_{ ext{OPT}}^2(heta_0,\mathcal{M};
ho)\,\lesssim\,\sigma^2\sqrt{m{k}(heta_0)\log\left(rac{d}{m{k}(heta_0)}
ight)}$$

idea:

$$\mathcal{H}_0: \theta = 0, \quad \text{versus} \quad \mathcal{H}_1: \theta \in \mathcal{T}_{\mathcal{M}}(\theta_0)$$

tangent cone: $\mathcal{T}_{\mathcal{M}}(\theta_0):= \{u \in \mathbb{R}^d \mid \exists t > 0 \text{ such that } \theta_0 + tu \in \mathcal{M}\}.$

Theorem (W, Wainwright & Guntuboyina '17)

The minimax testing radius satisfies

$$\epsilon_{OPT}^{2} \gtrsim \sigma^{2} \min \left\{ \underbrace{\mathbb{E} \| \Pi_{C} w \|_{2}}_{width \ term}, \underbrace{\left(\underbrace{\frac{\mathbb{E} \| \Pi_{C} w \|_{2}}{\sup_{\eta \in C \cap S} \langle \eta, \ \mathbb{E} \Pi_{C} w \rangle} \right)^{2}}_{geometric \ term \ II} \right\}.$$

• geometric term =
$$\left(\frac{\mathbb{E}\|\Pi_C w\|_2}{\inf\limits_{\eta\in C\cap S} \langle \eta, \mathbb{E}\Pi_C w \rangle}\right)^2$$

• GLRT is optimal whenever

$$\inf_{\eta \in C \cap S} \langle \eta, \mathbb{E} \Pi_C w \rangle \asymp \sup_{\eta \in C \cap S} \langle \eta, \mathbb{E} \Pi_C w \rangle$$

• GLRT is minimax optimal (up to constants) in all these cases,

cone C	$\epsilon_{\rm GLRT}^2$
k-dimensional space	$\sigma^2 \sqrt{k}$
non-negative orthant	$\sigma^2 \sqrt{d}$
monotone cone	$\sigma^2 \sqrt{\log d}$
ice cream cone	$\sigma^2 \cdot 1$

Is GLRT always optimal?

• Consider a Cartesian product cone: Ice $\operatorname{Cream}_{d-1}(\alpha) \times \mathbb{R}$

Is GLRT always optimal?

• Consider a Cartesian product cone: Ice $\operatorname{Cream}_{d-1}(\alpha) \times \mathbb{R}$

•
$$\epsilon_{\text{GLRT}}^2 \simeq \sigma^2 \min\{\sqrt{d}, \infty\}$$

•
$$\epsilon_{\text{OPT}}^2 \simeq \sigma^2 \min\{\sqrt{d}, 1\}$$

Is GLRT always optimal?

• Consider a Cartesian product cone: Ice $\operatorname{Cream}_{d-1}(\alpha) \times \mathbb{R}$

• a simple test based on $||(Y_1, Y_d)||_2 \rightarrow \text{minimax optimal}$

 show difficulty of testing depends on geometry (very different from estimation)

- show difficulty of testing depends on geometry (very different from estimation)
- interesting consequence for testing in monotone cone

- show difficulty of testing depends on geometry (very different from estimation)
- interesting consequence for testing in monotone cone
- the GLRT is NOT always optimal, and can be very poor even for simple problems

• Y. Wei, M. J. Wainwright, and A. Guntuboyina. (2017) The geometry of hypothesis testing over convex cones: Generalized likelihood tests and minimax radii. *Under revision by the Annals of Statistics*.

Thanks! Questions?

Supplementary: general cones

• cone pairs (C_0, C_1) is said to be *non-oblique* if

 $\Pi_{C_0}(x) = \Pi_{C_0}(\Pi_{C_1}(x)) \qquad \text{for all } x \in \mathbb{R}^d.$

[Warrack et al.'84, Menéndez'92a,92b, Hu and Wright'94]

• $C = C_0^* \cap C_1$

polar cone of any C:

$$C^* := \left\{ v \in \mathbb{R}^d \mid \langle v, u \rangle \leq 0 \quad \text{for all } u \in C
ight\}$$

Supplementary: sub-optimality of GLRT

- Consider a Cartesian product cone: Ice $\operatorname{Cream}_{d-1}(\alpha) \times \mathbb{R}$
- Consider when signal lies only in the last coordinate: $(0, \ldots, 0, \theta_d)$
- Difference on GLRT under the null and the alternative:

 $\begin{aligned} \|\Pi_C(w_1, w_2, \dots, w_d)\|_2 - \|\Pi_C(w_1, w_2, \dots, \theta_d + w_d)\|_2 \\ = \|(\text{proj to ice cream}, w_d)\|_2 - \|(\text{proj to ice cream}, \theta_d + w_d)\|_2 \end{aligned}$

where proj to ice cream = $\prod_{IC}(w_1, \ldots, w_{d-1})$

• $|\theta_d| \ge \|\text{proj to ice cream}\|_2$

back