Unified optimization for self-learning robust penalties.

Aleksandr Aravkin!
Peng Zheng 2

1Applied Math & eSciences, UW
2Applied Math, UW
0/32

Classic vs. unified approach to scientific discovery.

experimental ("gata collection
esign

!

data—driven
models

probabilistic/
physics models

statistical
models

Classic vs. unified approach to scientific discovery.

experimental
design
experimental (44 collection
esign
' data—driven error
models models
data—driven SPELLEE IO
models Lo o
", outlier detection’s
. data interpolation |
side " ine/inversi D hysics—based
probabilistic/ information —*, learning/inversion . PAYICS
physics models s error analysis, ¢
Unified Optimization
anomaly uncertainty
analysis quantification

statistical
models

Inversion & Learning Problems

min p1(Ax —b) + p2(Cx)
x
st. Fx < f.
= Data misfit: good results in the face of large measurement errors

= Regularization: prior information e.g. sparsity.

= Constraints: use information about feasible region

Penalties with Parameters

(a) huber, k=1 (b) elastic net, o = 0.5

(c) quantile, 7 = 0.3 (d) quantile huber

Figure: Piecewise linear-quadratic penalties with shape parameters.

Central Theme: Learning the Learning Criterion

qirsm)y=Q —=71)ry +7r_.

min q(Az —b;7) + 777
T€[0,1]

Tuning Parameters

= Tuning parameters is difficult.

= Current methods:

= cross-validation
= random search
= Bayesian optimization

= We can simultaneously solve for shape parameters and the model x.

6/32

Statistical View

We assume ¢; are drawn from density

p(r;0) =

1
g elprO), nel) = / expl—p(r:0)) dr

where 6 controls the shape, and n.(0) is a normalization constant.

32

Maximum Likelihood

The joint maximum likelihood (in « and 6) is equivalent to:

m1n Z p(yi — (as, x);0) + mlog[n.(0)].

Self-tuning quantile penalty formulation:

m

1
min q(yi — {ai,z);7) + mlog (f +
z,7€[0,1] 4 -y T

1
1—7

)

Self-Tuned Quantile Result

30 T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Figure: true generator (black), least squares (blue), self-tuned quantile huber (red).

32

Restricting the Problem Class

Assumption
Consider p(r;0) : D x R — R, such that
1. p(r;0) >0 foranyr € R and 6 € D.
2. Forany 0 € D, n.(0) = fR exp[—p(r; 0)] dr < occ.

3. For any 6y € D, p(r;8) is C* around 6y for almost every r € R.

Smoothness

Theorem (smoothness of n.(6))

For n.(6) = fm exp[—p(r; 0)] dr, if Assumption holds and for any 0y € D, there
exist functions g (r), k = 1,2, such that,

1. for any unit v, | (Vg exp[—p(r;0)],v) | < g1(r) for all 6 in nbhd of 6y,
2. for any unit v, |<V§ exp|—p(r; 0)]v,v>’ < g2(r) for all 6 in nbhd of 6,
3. [ogr(r)dr < oo, k=1,2.

then n.(0) is C* in nbhd of y and,

Vne(6o) :/Ve exp[—p(r; 0o)] dr, Vznc(ﬁo) Z/V§ exp[—p(r; 6o)] dr.

Examples

= Piecewise linear quadratic (PLQ) penalties, e.g. huber, quantile,

quantile-huber, ¢2, £1 and elastic net.

= Other robust penalties, e.g. negative log-likelihood of Student's T:

Figure: Student’s T: p(r;v) = log(1 + 22 /v)

12/32

Convexity

Theorem (convexity of log(n.(f)))

Suppose Assumption holds, and let p(r;0) be a coercive convex non-negative
function of r for every 6. We have the following results:

1. If p(r;0) is convex in r and 0, then log[n.(0)] is a concave function of 6.

2. If p(r;0) is concave with respect to 6 for every r, then log[n.(0)] is a

convex function.

Bottom Line

The joint optimization problem is never convex. However, in many cases local

search finds global optima.

Figure: Level sets for value function v(0) := ming p(z, 8) for the quantile Huber
model. The blue star is the maximum likelihood estimator, while the red dot
represents the true parameters in the simulation.

First and second order methods

.exact |s.

backtrack

ng l.s.

0 200

PALM

To apply PALM? to the joint maximum likelihood problem for smooth p, take

m

H(z,0) =Y ply: — (ai,2);0),

=1

ri(z) = g(z), r2(0) = 6p(0) + mlogln.(0)].

where where § is indicator function and g is'prox-friendly’ regularizer.

Algorithm 1 PALM

Input: A, y
Initialize: z°, ¢°
1: while not converge do

2: F Tt prox,—1,. [xk — c,;IVZH(wk,Hk)]

k
3: OF ! ProxX,—1,, [Hk — d;1V9H(wk+1,9k)]
Output: "1, g++!)

3Bolte, Sabach & Teboulle, 2014

16

32

PALM Pros and Cons

Pros:

= Flexibility.

= Low per-iteration cost (we use it for larger examples).

Cons:

= Requires smooth H (so quantile is out.)

= Needs many iterations (first-order method).

17 /32

PLQ Penalties

All PLQ penalties have a simple dual representation:
» Quantile:
. —TTi, r; < 0
armn = Y = sup {ulr}
i=1 1-=7)ri, 7>0 wel-r,a-7)™
= Huber:
m 2
RITi| — K 2, ri| > K 1
o =S A Ry e L)
i=1 T'2/2, |712‘ <K UE[—K,k]™ 2
» Quantile-Huber:

1
qh(T; [7—7 HD - sup {uTr — §UTMU}

weE[—7k,(1—7)r]™

PLQ Class

PLQ class with explicit shape parameters 0:

. T
p(r; B,be, C, o, M) = sup {uT(Br —bp) — iuTMu | CTu < 59}4,5

bo

GTO+b, co=H'0+c°

4Rockafe|lar and Wets, Variational Analysis, 2009.

5A., Burke, and Pillonetto. "Sparse/robust estimation and kalman smoothing with nonsmooth log-concave

densities: Modeling, computation, and theory.” The Journal of Machine Learning Research 14.1 (2013): 2689-2728.

GZheng, P., A., and Ramamurthy, K. "Shape Parameter Estimation.” arXiv preprint arXiv:1706.01865 (2017).

32

Interior Point Approach

Our full problem (in z,8) is given by

min sup {uT[B(Am —y) =G0 —b] - luTMu} + mlog[n.(0)].

2,8T0<s oTu<HT0+4¢ 2
= 1z are (original) regression variables.
= w are ‘conjugate’ variables from PLQ representation.

= () encode shape parameters.
Overview of Interior Point:
= 2= (z,u,0).
= Replace constraints using logarithmic barrier, e.g. > 0 with —p In(z).

= Define relaxed KKT system F,(z).

= solve F,(z) = 0 using Newton while taking p to 0.

KKT System

And our KKT system could be written as,
Dq— ul

Fu(z) = ATBTy

B(Az —y)—GT0—b—Mu+ [-C 0]q

—Gu + mV log[n.(0)] + [H S] q

And the Jacobian matrix of the system is,

[_CT HT
D Q Q
0 —sT
VE,(z) = [—c o} M | BA| —G"
ATBT
{H S} -G mvzlog(nc)

IP Pros and Cons

Pros:

= Solves PLQ problems and estimates PLQ shape parameters.

= Has a superlinear local convergence rate
Cons:

= Restricted to PLQ functions (for now).

= High per-iteration cost for large scale problems (for now).

Speed Comparison

Convergence rates for self-tuning Quantile Huber:

10*

0 20 0 60 80 100
iterations

Figure: PALM: linear rate (green); IPsolve: super linear rate (blue).

Timing Comparison

Synthetic Data:

= ¢; i.i.d. quantile huber errors

* A =randn(m,n), v+ = randn(n), y = Az + ¢

m | n |PALM: T/#iter|IP: T/#iter| foam — fip
100 | 50 4.12/96 3.11/15 7.25e-12
500 | 50 5.24/197 4.86/16 1.38e-08
1000/ 50 | 5.97/112 | 11.68/14 | 1.52¢-.08
2000|100 11.41/129 69.85/16 1.30e-08
2000|200 22.72/225 72.89/16 9.61e-08
2000|500 66.30/394 87.85/18 3.86e-08

Table: Timing comparison (sec) of PALM and IP for the quantile Huber family. C2, 3
show total run time and number of iterations of PALM and IP; C3 plots difference in
final objective values. IP finds lower values; PALM is faster for larger problems.

Quality of results

[T¢, Kt 7", k"] r(z*) | r(zrs) | r(zm)
[0.1,1.0] | [0.09,1.17] | 0.14 | 041 | 0.26
[0.2,1.0] | [0.20,1.07] | 0.10 0.16 0.13
[0.5,1.0] | [0.50,0.95] | 0.08 0.12 0.09
[0.8,1.0] | [0.81,1.04] | 0.00 | 019 | o0.11
[0.9,1.0] | [0.91,1.17] | 0.12 0.38 0.36

Table: Joint inference of the shape and model parameters for quantile Huber

regression. r(z) = ||z — x¢||/||x¢|| denotes relative error. C2 contains T, k estimated

using joint optimization (compare to C1). C3 shows relative error of the new estimate;

compare to C4, 5 which are relative errors for LS and 1-norm estimates.

25 /32

RPCA

Consider the foreground/background
separation problem.

We want to separate background
(low rank L) from moving

objects in foreground (sparse S).
The dataset is built from 202 frames
from a video clip, which are shaped
into a matrix Y ¢ R20480x202

Inexact RPCA deconvolves S and L:

o1 2
- _ L«
m,1n2||l)—|—S Y|z +&|S+ AL

26 /32

Huber in RPCA

RPCA is equivalent to a low rank Huber formulation:

inp(U'V -Y;
Ig};lp(iR, 0)

U,V each have k columns.

where

prik,0) =

{/i|r/0| — k22, |r| > ko
(r/o)?/2, Ir| < ko

27 /32

Results for Self-Tuning Huber

Tuning k through cross-validation is expensive, instead we could automatically

tune k by our approach.

Figure: Left: huber with fixed k = 2 x 1073, = 1 (INIT)
Right: self-tuned huber starting from INIT; final x = 1.94 x 1072, 0 = 8.28 x 10— %

28 /32

Huberized Student’s T (Tiber)

We introduce a new penalty, huberized student’s ¢ (Tiber)":

%(M — ko) +log(1+ %), |r| > ko

P(T; [[@70'}) = log(l + 7'2/0'2), |T| < ko

Figure: Huberized Student’s t (thick blue) interpolates between Student’s t (red
dash) and Huber (black dash).

7Zheng, P., A., Ramamurthy, K., and Thiagarajan, J. "Learning Robust Representations for Computer Vision."
RCL-ICCV, 2017. arXiv preprint arXiv:1708.00069.

29 /32

Results for Self-Tuned Tiber

Figure: Left: Tiber with k =2 x 1073, 0 = 1 (INIT)
Right: Self-tuned Tiber from INIT; final: k = 7.64,0 = 2.24 x 10~2

Self-Tuning Tiber RPCA: Escalator

— KO KO

(a) Tiber penalty (b) self-tuned Tiber RPCA®

i vvt — v, log[ne.([x, o])].
U,v,fi%’,@o”(; [k, 0]) + mnlog[ne([x, o])]

SZheng, Aravkin, Ramamurthy, “Shape parameter estimation”. https://arxiv.org/abs/1706.01865

Conclusions

Estimating densities for errors while fitting gives self-tuning formulations.

Examples include Huber, quantile, elastic net, variance estimation.

Simple examples have both real applications, and technical challenges.

Q: Can we do shape constrained estimation for regression problems?

	Theoretical Properties
	Application: Self-Tuning RPCA

