Statistical Learning
 Or, From Nonparametric Regression to Deep Learning in an Hour

Chad M. Schafer

Department of Statistics \& Data Science
Carnegiè Mellon University February 2018

Outline

- Motivation: Representing Data
- Nonparametric Regression
- Curse of Dimensionality
- Additive Models
- Neural Nets
- Deep Learning

The LSST ISSC

- Informatics and Statistics one of eight LSST Science Collaborations
- Over 75 members and growing: data scientists and astronomers
- http://issc.science.Isst.org

LSST Basics

- 10-year photometric survey
- 3.2 Gigapixel camera
- 32 trillion observations of 40 billion objects
- Science Goals
- Cataloging the Solar System
- Exploring the Changing Sky
- Milky Way Structure \& Formation
- Understanding Dark Matter and Dark Energy

Ivezić, et al. (2014)

Common Themes

- General implementation challenges
- Existing procedures to LSST scales
- Expanding sophistication of analysis procedures in use
- Making the most of available data

Representations

- A recurring challenge is representing observables in forms amenable to standard analysis tools
- The fundamental challenge of "Big Data"
- What summary statistic retains the important information in the data?
- Separating signal from noise

Classifying Variables

Eyer and Mowlavi (2008)

Classifying Variables

Blazars versus CVs

Cataclysmic Variables (CV) - binary system in Milky Way with matter transfer from secondary (normal) star to primary white dwarf

Blazars - Quasars with "jet" of energy pointed at Earth

Both produce light curves with irregular variability, lacking periodic structure

Blazars versus CVs

Light Curves from Catalina Real-Time Transient Survey (Drake 2009)

Blazars versus CVs

Absolute Time Difference

Summarizing the SF

Typical to fit model to structure function

- Power Law Form (Schmidt et al.)
- Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional representation, avoiding the curse of dimensionality

Summarizing the SF

Figure 2 in Peters et al. Quasar light curve and SF

Summarizing the SF

Typical to fit model to structure function

- Power Law Form (Schmidt et al.)
- Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional representation, avoiding the curse of dimensionality

Ideally, could utilize higher-dimensional representation

Nonparametric Regression

Important smoothing technique
Regression as a summary tool

What is Nonparametric?

Data

Assumptions

In the parametric case, the influence of assumptions is fixed

What is Nonparametric?

Data

Assumptions

Estimate

In the nonparametric case, the influence of assumptions is controlled by smoothing parameter h which shrinks with more data

Nonparametric Regression

Here we consider local linear regression

- Fits a sequence of local linear models
- Each local model only fits within a neighborhood. Size of neighborhood is the smoothing parameter

Step One: Fix the target point x_{0}.

Our objective is to estimate the regression function at x_{0}.

Step Two: Create the neighborhood around x_{0}.
A common way to choose the neighborhood size is to choose is large enough to capture proportion α of the data. This parameter α is often called the span. A typical choice is $\alpha \approx 0.5$.

Step Three: Weight the data in the neighborhood.

Values of x which are close x_{0} will receive a larger weight than those far from x_{0}. Denote by w_{i} the weight placed on observation i. The default choice is the tri-cube weight function:

$$
w_{i}= \begin{cases}\left(1-\left|\frac{x_{i}-x_{0}}{\text { max dist }}\right|^{3}\right)^{3}, & \text { if } x_{i} \text { in the neighborhood of } x_{0} \\ 0, & \text { if } x_{i} \text { is not in neighborhood of } x_{0}\end{cases}
$$

Step Four: Fit the local regression line.
This is done by finding β_{0} and β_{1} to minimize the weighted sum of squares

$$
\sum_{i=1}^{n} w_{i}\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right)^{2}
$$

Step Five: Estimate $f\left(x_{0}\right)$.

This is done using the fitted regression line to estimate the regression function at x_{0} :

$$
\widehat{f}\left(x_{0}\right)=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{0}
$$

Bias-Variance Tradeoff

Choose smoothing parameter to achieve balance between

- Too simple - high bias: precise but not accurate
- Too complex - high variance: accurate, but not precise
This is the classic bias-variance tradeoff
Could be called the accuracy-precision tradeoff

Bias-Variance Tradeoff

Bias-Variance Tradeoff

Estimate the risk

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\widehat{f}\left(X_{i}\right)-f\left(X_{i}\right)\right)^{2}
$$

with the leave-one-out cross-validation score:

$$
C V=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\widehat{f}_{(-i)}\left(X_{i}\right)\right)^{2}
$$

where $\widehat{f}_{(-i)}$ is the estimator obtained by omitting the $i^{\text {th }}$ pair $\left(X_{i}, Y_{i}\right)$.

Curse of Dimensionality

Despite the promise of nonparametrics, fitting models in high dimensions is a challenge

These fits require ample data in the "neighborhood" to be reliable, and data become sparse in high dimensions

Choosing neighborhoods larger reduces the value of the approach

Curse of Dimensionality

Curse of Dimensionality

Curse of Dimensionality

Figure 2.6 from Hastie, Tibshirani, and Friedman

Curse of Dimensionality

Figure 2.6 from Hastie, Tibshirani, and Friedman

Curse of Dimensionality

Figure 2.6 from Hastie, Tibshirani, and Friedman

Additive Models

Additive models avoid the curse of dimensionality by making a strong, but not overly restrictive assumption regarding the relationship between the response and predictors

Additive Models

The fully nonparametric model:

$$
Y=f\left(x_{1}, x_{2}, \ldots, x_{p}\right)+\epsilon
$$

with the f estimated from the data.

The additive nonparametric model:

$$
Y=\beta_{0}+f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{p}\left(x_{p}\right)+\epsilon
$$

with each of the f_{i} estimated from the data. (Each f_{i} is shifted so that it is centered around zero. The intercept β_{0} accounts for the overall mean of the response.)

Additive Models

The general estimation strategy is called backfitting.

In this process, each f_{k} is estimated nonparametrically, in a rotation, and the process is repeated until there is convergence.

When estimating $f_{k}(\cdot)$, the other $f_{j}(\cdot)$ are held fixed at their current best estimates, and we set up a one-dimensional nonparametric estimation problem, on which one could use either local linear regression, smoothing splines, or other approach.

Additive Models

A generalization of this model is the projection pursuit regression model, which can be written as

$$
Y=\beta_{0}+\sum_{k=1}^{M} \beta_{k} f_{k}\left(\boldsymbol{\alpha}_{k}^{T} \mathbf{x}\right)+\epsilon
$$

where each of the $\boldsymbol{\alpha}_{k}$ are a vector of length p. These $\boldsymbol{\alpha}_{k}$ are the projection direction vectors.

The functions f_{k}, called the ridge functions, are estimated nonparametrically. These functions are scaled to have mean zero and variance one when applied to the observed sample.

Additive Models

term 3

Additive Models

Neural Networks

The term neural network has evolved to encompass a large class of models and learning methods. Here we describe the most widely used "vanilla" neural net, sometimes called the single hidden layer back-propogation network, or single layer perceptron. There has been a great deal of hype surrounding neural networks, making them seem magical and mysterious. As we make clear in this section, they are just nonlinear statistical models, much like the projection pursuit regression model discussed above.

Neural Networks

The single hidden layer back-propogation network regression model can be written as follows:

$$
Y=\beta_{0}+\sum_{k=1}^{M} \beta_{k} \phi\left(\alpha_{0 k}+\boldsymbol{\alpha}_{k}^{T} \mathbf{x}\right)+\epsilon
$$

where the β and α are parameters to be estimated, but the function ϕ is not estimated.

Neural Networks

Some terms commonly used in conjunction with neural networks:

- The function ϕ is called the activation function. The standard choice is the sigmoid function

$$
\phi(u)=\frac{1}{1+\exp (-u)} .
$$

- The elements $\phi\left(\alpha_{0 k}+\boldsymbol{\alpha}_{k}^{T} \mathbf{x}\right)$ for $k=1,2, \ldots, M$ comprise the hidden layer.
- The intercept terms $\alpha_{0 k}$ are called the biases.
- The entire collection of α and β parameters are called the weights.

Neural Networks

If least squares is used alone, however, the solution is unstable, and the nonconvex optimization problem that is solved is sensitive to the starting values used in the iterative search algorithm.

Hence, a regularization penalty is often added onto the residual sum of squares. A standard choice is the same penalty used in ridge regression, i.e., minimize

$$
\mathrm{RSS}+\lambda \sum_{k=1}^{M}\left[\beta_{k}^{2}+\sum_{i=0}^{p} \alpha_{i k}^{2}\right] .
$$

The parameter λ is commonly called the decay parameter.

Neural Networks

Of course, now we have two parameters that control the complexity of the model: M and λ. These should both be chosen carefully in order to avoid overfitting. Like other nonparametric estimation methods, neural networks have trememdous capacity to overfit to the observed data.

We will use k -fold cross-validation to choose the tuning parameters M and λ (the decay parameter).

Adding Layers

Deep Learning

"Deep learning is a particular kind of machine learning that achieves great power and flexibility by representing the world as a nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones."
--Page 8 in Deep Learning,
Goodfellow, Bengio, and Courville

Deep Learning

"Deep learning is a particı machine learning that ach power and flexibility by re world as a nested hierarcl with each concept defined simpler concepts, and mo representations computed less abstract ones."
--Page 8 in Deep Learning,
Goodfellow, Bengio, and Courville

DEEP LEARNING

 lan Goodfellow, Yoshua Bengio, and Aaron Courville
www.deeplearningbook.org

Deep Learning

What makes it "deep?"

Deep Learning

What makes it "deep?"
The number of hidden layers is typically large, allowing for the modeling of complex relationships.

This can be viewed as an extension/ resurrection of neural networks

Resurgence of NN

Multiple factors contributed to growth of interest in Deep Learning:

- Increase in training set sizes
- Improved algorithms for training deeper networks (e.g., Hinton, et al. in 2006)
- Growth in computational resources
- Successes

Flexibility

A primary appeal of the approach is the flexibility in constructing the layers

- How many units are there in each layer?
- What is the mapping from one layer to the next?
- How is the output constructed from the final hidden layer?

Flexibility

A primary appeal of the approach is the flexibility in constructing the layers

- How many units are there in each layer?
- What is the mapping from one layer to the next?
- How is the output constructed from the final hidden layer?

Fully Connected Layer

A standard mapping is a fully connected layer, simply a linear combination of the input (either the data or the output of the preceding layer)

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$$
b+\sum_{i=1}^{d} w_{i} x_{i}
$$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$b+\mathbf{w}^{T} \mathbf{x}$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$b_{1}+\mathbf{w}_{1}^{T} \mathbf{x} \quad b_{2}+\mathbf{w}_{2}^{T} \mathbf{x}$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$b_{1}+\mathbf{w}_{1}^{T} \mathbf{x}$
$b_{2}+\mathbf{w}_{2}^{T} \mathbf{x}$
$b_{m}+\mathbf{w}_{m}^{T} \mathbf{x}$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

First Layer

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m_{1}}\right)
$$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

First Layer

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m_{1}}\right)
$$

Second Layer

$$
b_{1}+\mathbf{w}_{1}^{T} \mathbf{u} \quad b_{2}+\mathbf{w}_{2}^{T} \mathbf{u}
$$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$\phi\left(b_{1}+\mathbf{w}_{1}^{T} \mathbf{x}\right) \quad \phi\left(b_{2}+\mathbf{w}_{2}^{T} \mathbf{x}\right) \quad \cdots \quad \phi\left(b_{m}+\mathbf{w}_{m}^{T} \mathbf{x}\right)$

$\phi(\cdot)$ is the activation function, a simple nonlinear mapping

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

$\phi\left(b_{1}+\mathbf{w}_{1}^{T} \mathbf{x}\right) \quad \phi\left(b_{2}+\mathbf{w}_{2}^{T} \mathbf{x}\right) \quad \cdots \quad \phi\left(b_{m}+\mathbf{w}_{m}^{T} \mathbf{x}\right)$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

First Layer

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m_{1}}\right)
$$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

First Layer

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m_{1}}\right)
$$

Second Layer
$\phi\left(b_{1}+\mathbf{w}_{1}^{T} \mathbf{u}\right) \quad \phi\left(b_{2}+\mathbf{w}_{2}^{T} \mathbf{u}\right) \quad \cdots \quad \phi\left(b_{m_{2}}+\mathbf{w}_{m_{2}}^{T} \mathbf{u}\right)$

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

First Layer

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m_{1}}\right)
$$

Second Layer
$\phi\left(b_{1}+\mathbf{w}_{1}^{T} \mathbf{u}\right) \quad \phi\left(b_{2}+\mathbf{w}_{2}^{T} \mathbf{u}\right) \quad \cdots \quad \phi\left(b_{m_{2}}+\mathbf{w}_{m_{2}}^{T} \mathbf{u}\right)$

Additional Hidden Layers

Input
Layer

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

First Layer

$$
\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{m_{1}}\right)
$$

Second Layer

$\phi\left(b_{1}+\mathbf{w}_{1}^{T} \mathbf{u}\right) \quad \phi\left(b_{2}+\mathbf{w}_{2}^{T} \mathbf{u}\right) \quad \because \quad \phi\left(b_{m_{2}}+\mathbf{w}_{m_{2}}^{T} \mathbf{u}\right)$

Additional Hidden Layers

Output Layer

y

Output Layer

There are standard choices for generating the output from the final hidden layer

Output Layer

There are standard choices for generating the output from the final hidden layer

If the output is continuous, then simply taking a linear combination is typical:

$$
\mathbf{y}=b+\mathbf{w}^{T} \mathbf{u}
$$

Output Layer

There are standard choices for generating the output from the final hidden layer

If the output is continuous, then simply taking a linear combination is typical:

$$
\mathbf{y}=b+\mathbf{w}^{T} \mathbf{u}
$$

Result of final hidden layer

Output Layer

If the output is binary, then transformation to a probability is done via the logistic sigmoid function:

$$
\mathbf{y}=\frac{1}{1+\exp \left(-\left(b+\mathbf{w}^{T} \mathbf{u}\right)\right)}
$$

Output Layer

If the output is multinomial, then transformation to a probability is done via the softmax function:

$$
\operatorname{softmax}(\mathbf{z})_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j} \exp \left(z_{j}\right)}
$$

where

$$
\mathbf{z}=\mathbf{W}^{T} \mathbf{u}+\mathbf{b}
$$

Some Code

R using package mxnet:

fc1 = mx.symbol.FullyConnected(data, name="fc1", num_hidden=128)
act1 $=m x$.symbol.Activation(fc1, name="relu1", act_type="relu")
fc2 = mx.symbol.FullyConnected(act1, name="fc2", num_hidden=128)
act2 = mx.symbol.Activation(fc2, name="relu2", act_type="relu")
fc3 = mx.symbol.FullyConnected(act2, name="fc3", num_hidden=2)
fullnetwork = mx.symbol.Softmax0utput(fc3, name="sm")

Flexibility

A primary appeal of the approach is the flexibility in constructing the layers

- How many units are there in each layer?
- What is the mapping from one layer to the next?
- How is the output constructed from the final hidden layer?

Flexibility

A primary appeal of the approach is the flexibility in constructing the layers

- How many units are there in each layer?
- What is the mapping from one layer to the next?
- How is the output constructed from the final hidden layer?
There are alternatives to fully connected layers, e.g. convolutional networks and recurrent networks

How Does it Work?

Instead of carefully constructing a model to relate the input to the output, deep learning exploits a large collection of simple components to make a prediction

What is the role of expert knowledge?

How Does it Work?

Universal Approximation Theorem (Hornik, et al.): With enough units, a single hidden layer can approximate to arbitrary precision any "nice" function.

But: Deeper networks use units more efficiently, are easier to fit, and generalize better

How Does it Work?

But: Deeper networks use units more efficiently, are easier to fit, and generalize better

Montufar, et al.." "[f]or deep models, the maximal number of linear regions grows exponentially fast with the number of parameters, whereas, for shallow models, it grows polynomially fast with the number of parameters."

Fitting the Model

A cost function is optimized to estimate the parameters (weights)

Choose cost function to maximize appropriate likelihood

Stochastic gradient descent with back propagation to estimate gradient

Regularization

Overfitting is a huge concern
Approaches to regularization (smoothing) manage the bias/variance tradeoff

The model is parametric, so L^{2} (ridge) or L^{1} (lasso) penalties on the cost function are commonly used

Regularization

Dropout is a novel approach to regularization

Units are randomly included/excluded during training, approximating averaging over all possible submodels

Variant of bagging
Reduces potential influence of any individual unit

Blazars versus CVs

Absolute Time Difference

Summarizing the SF

Figure 2 in Peters et al. Quasar light curve and SF

Summarizing the SF

Typical to fit model to structure function

- Power Law Form (Schmidt et al.)
- Damped Random Walk (Kelly et al.)

Effort to find a low-dimensional representation, avoiding the curse of dimensionality

Ideally, could utilize higher-dimensional representation

Blazars versus CVs

Absolute Time Difference
Quantile regression fits

Blazar versus CV

Fit model with three hidden layers, using Dropout

128 nodes per layer
Rectified linear units as the activation functions

958 CVs, 318 Blazars from Catalina RealTime Transient Survey

Blazar versus CV

Performance on test set:

Blazar versus CV

Performance on test set:

Deep Learning

	Blazar	CV
Blazar	18	10
CV	8	91

Random Forest

	Blazar	CV
Blazar	12	8
CV	14	93

Potential of Deep Learning

Best suited to situations where highdimensional input is required

Avoid the curse of dimensionality
Seems particularly relevant for classification challenges

Can be extended to unsupervised learning - autoencoders

Summary

- Motivation: Representing Data
- Nonparametric Regression
- Curse of Dimensionality
- Additive Models
- Neural Nets
- Deep Learning

References

Drake, AJ, et al. ApJ (696): 870
Eyer L, and Mowlavi, N. 2008. Variable Stars across the Observational HR
Diagram. Journal of Physics Conference Series
Goodfellow, Bengio, and Courville. Deep Learning
Hastie, Tibshirani, and Friedman, Elements of Statistical Learning
Hornik, et al. Neural Networks (3): 551
Kelly, et al. ApJ (698): 895
Montufar, et al. NIPS 2014
Peters, et al. ApJ (811): 95
Schmidt et al. ApJ (714): 1194

