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» Alternative name: Restricted Max Min Fair Allocation
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Based on [Haxell ’95]’s hypergraph matching technique

» Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]
Here:

» An extension to matroids
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» Ground set X
» Independent sets Z C 2%
» M = (X,7) is matroid if
(i) Non-emptyness: () € Z;
(i) Monotonicity: For Y € Z and Z C Y one has Z € T;
(iii) Exchange property: For all Y, Z € 7 with |Y| < |Z| there is
an element z € Z\ 'Y so that Y U {z} € .
» A basis S C X is a maximal independent set
> Base polytope Pp(u) = conv{x(S) : S is basis}
» Example: Graphical matroid (E,Z) (G = (V, E) connected
graph)
P> 7 = subset of forests

» bases = spanning trees
» base polytope = spanning tree polytope
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Matroid Max Min Fair Allocation

» Input: Matroid (X,Z), graph G = (XUR, E), resources R
with sizes p;

» Goal: Find basis S and assignment ¢ : R — S to maximize
minies Yo ()= Pj

Linear program

X R
S >o 222 T € PB(M)‘
ijyw > T.-x;Vie X
p3 =1 JEN(3)
pa= y(0(j)) < 1VjeR
ps =1 0<wy; < x;V(i,j)eE
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» [Cheng-Mao ’18] obtain (6 + ¢)-apx by directly modifying
[AKS’15]
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One phase of the augmentation
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Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.
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Running time analysis

Termination:

» Define s; := number of blocking edges in step 1, ...

» Observation: Vector (s1,52,--.,50(ogn)) 18
lexicographically decreasing)!

» First updated s; drops by constant factor
= polynomial number of iterations
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Application to Santa Claus
children gifts

> Fix 0 < 0 < 1. Call gifts of size ° I/@\\
pj > 6 - OPT large; '
small otherwise

» 7 :={S C children|S can
all receive one large gift}
(children, 7) is a matroid! Ser

» Let (children,Z*) be co-matroid

large
\\D/I pj > 6-OPT
=~

» Find basis S of co-matroid and assignment of value
(3 —e)OPT —6-OPT.
» Overall happiness of children is
1 s=% /1
min {5 .OPT, (5 —e- 5) OPT} = <6 - 5) OPT

= (6 + ¢)-apx in poly-time (also gap for O(n?)-size LP)
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Thanks for your attention



