A Tale of Santa Claus, Hypergraphs,
and Matroids

Sami Davies, Thomas Rothvoss and Yihao Zhang

W

UNIVERSITY of
WASHINGTON

The Santa Claus Problem

» Input: Sets of children and gifts. Child ¢ has value
pij € {0,p;} for gift j.

children gifts
p1=1
p2 =95
p3 =1
pa=1
ps =4

pe =3

The Santa Claus Problem

» Input: Sets of children and gifts. Child ¢ has value
Dij € {0,pj} for gift j.
» Goal: Assign gifts to maximize least happiest child

Happiness of i = Zj assigned to i PJ

children gifts
p1=1
p2 =95
p3 =1
pa=1
ps =4

pe =3

The Santa Claus Problem

» Input: Sets of children and gifts. Child ¢ has value
Dij € {0,pj} for gift j.
» Goal: Assign gifts to maximize least happiest child

Happiness of i = Zj assigned to i PJ

children gifts
° p1=1
p2 =95
p3 =1
pa=1

o<— (=3

The Santa Claus Problem

» Input: Sets of children and gifts. Child ¢ has value
Dij € {0,pj} for gift j.
» Goal: Assign gifts to maximize least happiest child

Happiness of i = Zj assigned to i PJ

children gifts
® pr=1
p2 =25
ps=1

min happiness =

ps=1

o<—(Jps =3

The Santa Claus Problem

» Input: Sets of children and gifts. Child ¢ has value
Dij € {0,pj} for gift j.
» Goal: Assign gifts to maximize least happiest child

Happiness of i = Zj assigned to i PJ

children gifts
® pr=1
p2 =25
ps=1

min happiness =

ps=1

o<—(Jps =3

» Alternative name: Restricted Max Min Fair Allocation

What is known

What is known

» NP-hard to approximate better than 2

What is known

» NP-hard to approximate better than 2
» O(loglogn/logloglogn)-apx [Bansal, Sviridenko’06]
» Integrality gap is O(1) for configuration LP [Feige '08]

What is known

» NP-hard to approximate better than 2

» O(loglogn/logloglogn)-apx [Bansal, Sviridenko’06]

» Integrality gap is O(1) for configuration LP [Feige '08]

» Integrality gap < 4 [Asadpour, Feige, Saberi "12]
Based on [Haxell ’95]’s hypergraph matching technique

What is known

» NP-hard to approximate better than 2

» O(loglogn/logloglogn)-apx [Bansal, Sviridenko’06]

» Integrality gap is O(1) for configuration LP [Feige '08]
» Integrality gap < 4 [Asadpour, Feige, Saberi "12]
Based on [Haxell ’95]’s hypergraph matching technique

» Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]

What is known

» NP-hard to approximate better than 2

» O(loglogn/logloglogn)-apx [Bansal, Sviridenko’06]

» Integrality gap is O(1) for configuration LP [Feige '08]

» Integrality gap < 4 [Asadpour, Feige, Saberi "12]
Based on [Haxell ’95]’s hypergraph matching technique

» Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson '15]
Here:

» An extension to matroids

Matroid 101

Matroid 101

» Ground set X

Matroid 101

» Ground set X
» Independent sets Z C 2%

Matroid 101

» Ground set X
» Independent sets Z C 2%
» M = (X,7) is matroid if
(i) Non-emptyness: () € Z;
(i) Monotonicity: For Y € Z and Z C Y one has Z € T;
(iii) Exchange property: For all Y, Z € 7 with |Y| < |Z| there is
an element z € Z\ 'Y so that Y U {z} € .

Matroid 101

» Ground set X
» Independent sets Z C 2%
» M = (X,7) is matroid if
(i) Non-emptyness: () € Z;
(i) Monotonicity: For Y € Z and Z C Y one has Z € T;
(iii) Exchange property: For all Y, Z € 7 with |Y| < |Z| there is
an element z € Z\ 'Y so that Y U {z} € .

» A basis S C X is a maximal independent set

Matroid 101

» Ground set X
» Independent sets Z C 2%
» M = (X,7) is matroid if
(i) Non-emptyness: () € Z;
(i) Monotonicity: For Y € Z and Z C Y one has Z € T;
(iii) Exchange property: For all Y, Z € 7 with |Y| < |Z| there is
an element z € Z\ 'Y so that Y U {z} € .

» A basis S C X is a maximal independent set

> Base polytope Pp(u) = conv{x(S) : S is basis}

Matroid 101

» Ground set X
» Independent sets Z C 2%
» M = (X,7) is matroid if
(i) Non-emptyness: () € Z;
(i) Monotonicity: For Y € Z and Z C Y one has Z € T;
(iii) Exchange property: For all Y, Z € 7 with |Y| < |Z| there is
an element z € Z\ 'Y so that Y U {z} € .
» A basis S C X is a maximal independent set
> Base polytope Pp(u) = conv{x(S) : S is basis}
» Example: Graphical matroid (E,Z) (G = (V, E) connected
graph)
P> 7 = subset of forests

» bases = spanning trees
» base polytope = spanning tree polytope

Matroid Max Min Fair Allocation

» Input: Matroid (X,Z), graph G = (XUR, E), resources R
with sizes p;

X R
p1 =2
p2 =
p3 =1
P4 =
ps =1

Matroid Max Min Fair Allocation

» Input: Matroid (X,Z), graph G = (XUR, E), resources R
with sizes p;

» Goal: Find basis S and assignment ¢ : R — S to maximize
minies Yo ()= Pj

X R
p1 =2
p2 =
p3 =1
P4 =
ps =1

Matroid Max Min Fair Allocation

» Input: Matroid (X,Z), graph G = (XUR, E), resources R
with sizes p;

» Goal: Find basis S and assignment ¢ : R — S to maximize
minies Yo ()= Pj

X R

o p1 =2
p2 =
p3 =1
P4 =
ps =1

Matroid Max Min Fair Allocation

» Input: Matroid (X,Z), graph G = (XUR, E), resources R
with sizes p;

» Goal: Find basis S and assignment ¢ : R — S to maximize
minies Yo ()= Pj

X R
o p1 =2
>.Pi 2 Py =
p3 =1
P4 =
ps =1

Matroid Max Min Fair Allocation

» Input: Matroid (X,Z), graph G = (XUR, E), resources R
with sizes p;

» Goal: Find basis S and assignment ¢ : R — S to maximize
minies Yo ()= Pj

Linear program

X R
S >o 222 T € PB(M)‘
ijyw > T.-x;Vie X
p3 =1 JEN(3)
pa= y(0(j)) < 1VjeR
ps =1 0<wy; < x;V(i,j)eE

Our contributions

Our contributions

Theorem 1

Suppose LP feasible and p; = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (3 —¢) - T in
poly-time.

Our contributions

Theorem 1

Suppose LP feasible and p; = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (3 —¢) - T in
poly-time.

Theorem 11

Suppose LP feasible. Then can find solution for Matroid Max

Min Fair Allocation of value (3 —¢) -7 — max{p;} in poly-time.

Our contributions

Theorem 1

Suppose LP feasible and p; = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (3 —¢) - 7' in
poly-time.

Theorem II
Suppose LP feasible. Then can find solution for Matroid Max
Min Fair Allocation of value (3 —¢) -7 — max{p;} in poly-time.

Theorem III

There is a poly-time (6 + €)-apx for Santa Claus (factor compares
to value of O(n?)-size LP).

v

Our contributions

Theorem 1

Suppose LP feasible and p; = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (3 —¢) - 7' in
poly-time.

Theorem II
Suppose LP feasible. Then can find solution for Matroid Max
Min Fair Allocation of value (3 —¢) -7 — max{p;} in poly-time.

Theorem III

There is a poly-time (6 + €)-apx for Santa Claus (factor compares
to value of O(n?)-size LP).

v

» [Cheng-Mao ’18] obtain (6 + ¢)-apx by directly modifying
[AKS’15]

General approach

» Assumptions: p; =1 & LP is feasible for parameter T

I o o o o o [o o o v

General approach

» Assumptions: p; =1 & LP is feasible for parameter T

basis S

General approach

» Assumptions: p; =1 & LP is feasible for parameter T
» Consider hypergraph & = (XUR, size—(% —)T edges)

basis S

General approach

» Assumptions: p; =1 & LP is feasible for parameter T
» Consider hypergraph £ = (XUR, size—(% —)T edges)
» Start with S := (), maintain hypergraph matching covering S

I o o o o o [o o o v

General approach

» Assumptions: p; =1 & LP is feasible for parameter T
» Consider hypergraph £ = (XUR, size—(% —)T edges)
» Start with S := (), maintain hypergraph matching covering S

General approach

» Assumptions: p; =1 & LP is feasible for parameter T
» Consider hypergraph £ = (XUR, size—(% —)T edges)
» Start with S := (), maintain hypergraph matching covering S

General approach

» Assumptions: p; =1 & LP is feasible for parameter T

» Consider hypergraph £ = (XUR, size—(% —)T edges)

» Start with S := (), maintain hypergraph matching covering S
» Pick ig s.t. SU{ip} €Z

10®

General approach

» Assumptions: p; =1 & LP is feasible for parameter T
» Consider hypergraph £ = (XUR, size—(% —)T edges)
» Start with S := (), maintain hypergraph matching covering S
» Pick ig s.t. SU{ip} €Z
» Search for extension of matching starting at root g
Goal: cover S' € Z with |S'| =[S U {ip}|
X R

10®

General approach

» Assumptions: p; =1 & LP is feasible for parameter T
» Consider hypergraph £ = (XUR, size—(% —)T edges)
» Start with S := (), maintain hypergraph matching covering S
» Pick ig s.t. SU{ip} €Z
» Search for extension of matching starting at root g
Goal: cover S' € Z with |S'| =[S U {ip}|
X R

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ig} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=10
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

R poboopo@o@
\ / \ / \
\ ,’ \

discovered resources. (ii) covering D with (S\ C)UD € T and
(i) [D] = 2.(C)).

CASE 1: Add edges intersect Q.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.

CASE 2: Find Q.(|C) edges disjoint to resources of M. Update
S’ := 8\ C'UD (if one covers iy s.t. SU{i1} € Z — done)

opooopOoDOOEODOOED
Y \ /

~
-

~
-
~

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ig} € Z

(1) discovered nodes C' := {ip}; add edges A := (); blocking edges
B:=10
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to
discovered resources. (ii) covering D with (S\ C)UD € T and
(iif) |D| = Q(|C1).
(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.
(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := S\ C'U D (if one covers i; s.t. SU{i;} € Z — done)

~

-

-
~

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ig} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=10
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € T and
(i) [D] = 2.(C)).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := 8\ C'UD (if one covers iy s.t. SU{i1} € Z — done)

PoopooopOoODOOODOOED
\ I\ \ /
\

~
-

~
-
~

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=10
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € T and
(iii) |D| > Q(|C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := S\ C'U D (if one covers i, s.t. SU{i1} € Z — done)

R cpoopooopPpOoDOODODOBDO
/ ! 1
\ \ \
\ /
]

~

-

-
~

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=10
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € T and
(i) [D] 2 2-(C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := S\ C'U D (if one covers i, s.t. SU{i1} € Z — done)

cpoopooopPpOoDOODODOBDO
\ I\ / \ /
\ /
]

~

-

-
~

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=0
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € Z and
(iii) |D| > Q(|C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := 8\ C'U D (if one covers i, s.t. SU{i1} € T — done)

ep ooooOOOOO
\

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=0
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € Z and
(iii) |D| > Q(|C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := 8\ C'U D (if one covers i, s.t. SU{i1} € T — done)

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=0
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € Z and
(iii) |D| > Q(|C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C' and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := 8\ C'U D (if one covers i, s.t. SU{i1} € T — done)

R (5] o s o I I o o

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=0
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € Z and
(iii) |D| > Q(|C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C' and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := 8\ C'U D (if one covers i, s.t. SU{i1} € T — done)

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ip} € Z
(1) discovered nodes C' := {ip}; add edges A := (); blocking edges

B:=0
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S\ C)UD € Z and
(iii) |D| > Q(|C]).

(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C' and continue.

(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := 8\ C'U D (if one covers i, s.t. SU{i1} € T — done)

R 5]
X .
c D

One phase of the augmentation

» Input: Hypermatching M covering S € Z, ig s.t. SU{ig} € Z

(1) discovered nodes C' := {ip}; add edges A := (); blocking edges
B:=10
(2) REPEAT
(3) Find size (§ — §)-size candidate add edges (i) disjoint to
discovered resources. (ii) covering D with (S\ C)UD € T and
(iif) |D| = Q(|C1).
(4) CASE 1: Add edges intersect 2.(|C|) edges in M. Add
blocking edges to B. Expand C and continue.
(5) CASE 2: Find Q.(|C|) edges disjoint to resources of M. Update
S’ := S\ C'U D (if one covers i; s.t. SU{i;} € Z — done)

oooopooopPpoooococoooofpPoooPo
! \ 1 \ 1 1
1 1 \ I \
1 1 1
I

-
~

i] \I \\ \
Xo’gd ‘doo e o \.l \

\

!~_ |
-

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

R OoOoooooODODOODODODODOODO

X ®)))) o000 o0

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (i) covering
D with S\ CUD € T.

» We show one edge is possible!

R OoOoooooODODOODODODODOODO

X ®)))) o000 o0

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!
> blocking edges > add edges = [W| < 2 - T - |C| used resources

W] < 3TIC]

NYVY

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!
> blocking edges > add edges = [W| < 2 - T - |C| used resources
> Let U:={ie X | (S\C)U{i} € I} be swapping candidates

W] < 3T|C]

X e @ o Bl GTTTD

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!

> blocking edges > add edges = [W| < 2 - T - |C| used resources
> Let U:={ie X | (S\C)U{i} € I} be swapping candidates
» Lemma:), ;;2; > |C| (using that = in base polytope)

W] < 3T|C]

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!

> blocking edges > add edges = [W| < 2 - T - |C| used resources
> Let U:={ie X | (S\C)U{i} € I} be swapping candidates
» Lemma:), ;;2; > |C| (using that = in base polytope)

1
W <2TiC] NG S3T

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!

> blocking edges > add edges = [W| < 2 - T - |C| used resources
> Let U:={ie X | (S\C)U{i} € I} be swapping candidates
» Lemma:), ;;2; > |C| (using that = in base polytope)

DD i

i€l jeW
(W[<3TICl N()

T

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S\ CUD € T.

» We show one edge is possible!

> blocking edges > add edges = [W| < 2 - T - |C| used resources
> Let U:={ie X | (S\C)U{i} € I} be swapping candidates
» Lemma:), ;;2; > |C| (using that = in base polytope)

2
sTICl> W] = Do
i€l jeEW
(W[<3TICl N()

T

Expansion property

Lemma

Suppose (x,y) € LP. Then 30.(|C|) disjoint (3 — §)-size

hyperedges that are (i) disjoint to discovered resources; (i) covering
D with §\ CUD € T.

» We show one edge is possible!

> blocking edges > add edges = [W| < 2 - T - |C| used resources
> Let U:={ie X | (S\C)U{i} € I} be swapping candidates
» Lemma:), ;;2; > |C| (using that = in base polytope)

2 2 2
gT\C] > |W| > Z Z Yij > §TZ T > gT-|C\ — Contradiction!
i€l jEW ieU
T
WI<3TICl NG S

Running time analysis

Termination:

» Define s; := number of blocking edges in step 1,...,t

Running time analysis

Termination:

» Define s; := number of blocking edges in step 1, ...

» Observation: Vector (s1,52,--.,50(ogn)) 18
lexicographically decreasing)!

Running time analysis

Termination:

» Define s; := number of blocking edges in step 1, ...

» Observation: Vector (s1,52,--.,50(ogn)) 18
lexicographically decreasing)!

» First updated s; drops by constant factor
= polynomial number of iterations

Application to Santa Claus
children gifts

Application to Santa Claus
children gifts

> Fix 0 < 6 < 1. Call gifts of size =\ large
pj > 6 - OPT large; \ ;pj>5'OPT
7

Application to Santa Claus
children gifts
> Fix 0 < 6 < 1. Call gifts of size
pj > 6 - OPT large;
small otherwise

Application to Santa Claus
children gifts
> Fix 0 < 6 < 1. Call gifts of size
pj > 6 - OPT large; Sel
small otherwise
» 7 :={S C children|S can
all receive one large gift}
(children, 7) is a matroid!

\| large
1p; > 6-OPT

Application to Santa Claus
children gifts
> Fix 0 < 6 < 1. Call gifts of size
pj > 6 - OPT large;
small otherwise
» 7 :={S C children|S can
all receive one large gift}
(children, 7) is a matroid! Ser

» Let (children,Z*) be co-matroid

\| large
1p; > 6-OPT

Application to Santa Claus
children gifts

> Fix 0 < 0 < 1. Call gifts of size ° I/@\\ large
p;j > 8- OPT large; \(/p; >5-OPT
small otherwise o \9\/ ’

» 7 :={S C children|S can
all receive one large gift} .
(children, 7) is a matroid! Sel

» Let (children,Z*) be co-matroid

» Find basis S of co-matroid and assignment of value
(3 —e)OPT —6-OPT.

Application to Santa Claus
children gifts

> Fix 0 < 0 < 1. Call gifts of size ° I/@\\
pj > 6 - OPT large; '
small otherwise

» 7 :={S C children|S can
all receive one large gift}
(children, 7) is a matroid! Ser

» Let (children,Z*) be co-matroid

large
\\D/I pj > 6-OPT
=~

» Find basis S of co-matroid and assignment of value
(3 —e)OPT —6-OPT.
» Overall happiness of children is

min {5 .OPT, (é e 6)OPT}

Application to Santa Claus
children gifts

> Fix 0 < 0 < 1. Call gifts of size ° I/@\\
pj > 6 - OPT large; '
small otherwise

» 7 :={S C children|S can
all receive one large gift}
(children, 7) is a matroid! Ser

» Let (children,Z*) be co-matroid

large
\\D/I pj > 6-OPT
=~

» Find basis S of co-matroid and assignment of value
(3 —e)OPT —6-OPT.
» Overall happiness of children is

min {5 .OPT, (% e 5) OPT} s (é - 5) OPT

Application to Santa Claus
children gifts

> Fix 0 < 0 < 1. Call gifts of size ° I/@\\
pj > 6 - OPT large; '
small otherwise

» 7 :={S C children|S can
all receive one large gift}
(children, 7) is a matroid! Ser

» Let (children,Z*) be co-matroid

large
\\D/I pj > 6-OPT
=~

» Find basis S of co-matroid and assignment of value
(3 —e)OPT —6-OPT.
» Overall happiness of children is
1 s=% /1
min {5 .OPT, (5 —e- 5) OPT} = <6 - 5) OPT

= (6 + ¢)-apx in poly-time (also gap for O(n?)-size LP)

Open problems

Open problems

Santa Claus:
» 2 < integrality gap for configuration LP < 4

» 2 < approximation ratio < 6

Open problems

Santa Claus:
» 2 < integrality gap for configuration LP < 4
» 2 < approximation ratio < 6

Unrelated Santa Claus: (arbitrary p;;)

» O(log!n) in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

» Best known hardness: 2

Open problems

Santa Claus:
» 2 < integrality gap for configuration LP < 4
» 2 < approximation ratio < 6

Unrelated Santa Claus: (arbitrary p;;)

» O(log!n) in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

» Best known hardness: 2

Thanks for your attention

