
A Tale of Santa Claus, Hypergraphs,

and Matroids

Sami Davies, Thomas Rothvoss and Yihao Zhang

The Santa Claus Problem

◮ Input: Sets of children and gifts. Child i has value
pij ∈ {0, pj} for gift j.

p1 = 1

p2 = 5

p3 = 1

p4 = 1

p5 = 4

p6 = 3

children gifts

The Santa Claus Problem

◮ Input: Sets of children and gifts. Child i has value
pij ∈ {0, pj} for gift j.

◮ Goal: Assign gifts to maximize least happiest child
Happiness of i =

∑

j assigned to i pj

p1 = 1

p2 = 5

p3 = 1

p4 = 1

p5 = 4

p6 = 3

children gifts

The Santa Claus Problem

◮ Input: Sets of children and gifts. Child i has value
pij ∈ {0, pj} for gift j.

◮ Goal: Assign gifts to maximize least happiest child
Happiness of i =

∑

j assigned to i pj

p1 = 1

p2 = 5

p3 = 1

p4 = 1

p5 = 4

p6 = 3

children gifts

The Santa Claus Problem

◮ Input: Sets of children and gifts. Child i has value
pij ∈ {0, pj} for gift j.

◮ Goal: Assign gifts to maximize least happiest child
Happiness of i =

∑

j assigned to i pj

p1 = 1

p2 = 5

p3 = 1

p4 = 1

p5 = 4

p6 = 3

min happiness = 3

children gifts

The Santa Claus Problem

◮ Input: Sets of children and gifts. Child i has value
pij ∈ {0, pj} for gift j.

◮ Goal: Assign gifts to maximize least happiest child
Happiness of i =

∑

j assigned to i pj

p1 = 1

p2 = 5

p3 = 1

p4 = 1

p5 = 4

p6 = 3

min happiness = 3

children gifts

◮ Alternative name: Restricted Max Min Fair Allocation

What is known

What is known

◮ NP-hard to approximate better than 2

What is known

◮ NP-hard to approximate better than 2

◮ O(log log n/ log log log n)-apx [Bansal, Sviridenko’06]

◮ Integrality gap is O(1) for configuration LP [Feige ’08]

What is known

◮ NP-hard to approximate better than 2

◮ O(log log n/ log log log n)-apx [Bansal, Sviridenko’06]

◮ Integrality gap is O(1) for configuration LP [Feige ’08]

◮ Integrality gap ≤ 4 [Asadpour, Feige, Saberi ’12]
Based on [Haxell ’95]’s hypergraph matching technique

What is known

◮ NP-hard to approximate better than 2

◮ O(log log n/ log log log n)-apx [Bansal, Sviridenko’06]

◮ Integrality gap is O(1) for configuration LP [Feige ’08]

◮ Integrality gap ≤ 4 [Asadpour, Feige, Saberi ’12]
Based on [Haxell ’95]’s hypergraph matching technique

◮ Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson ’15]

What is known

◮ NP-hard to approximate better than 2

◮ O(log log n/ log log log n)-apx [Bansal, Sviridenko’06]

◮ Integrality gap is O(1) for configuration LP [Feige ’08]

◮ Integrality gap ≤ 4 [Asadpour, Feige, Saberi ’12]
Based on [Haxell ’95]’s hypergraph matching technique

◮ Polytime 12.3-apx [Annamalai, Kalaitzis, Svensson ’15]

Here:

◮ An extension to matroids

Matroid 101

Matroid 101

◮ Ground set X

Matroid 101

◮ Ground set X

◮ Independent sets I ⊆ 2X

Matroid 101

◮ Ground set X

◮ Independent sets I ⊆ 2X

◮ M = (X, I) is matroid if

(i) Non-emptyness: ∅ ∈ I;
(ii) Monotonicity: For Y ∈ I and Z ⊆ Y one has Z ∈ I;
(iii) Exchange property: For all Y,Z ∈ I with |Y | < |Z| there is

an element z ∈ Z \ Y so that Y ∪ {z} ∈ I.

Matroid 101

◮ Ground set X

◮ Independent sets I ⊆ 2X

◮ M = (X, I) is matroid if

(i) Non-emptyness: ∅ ∈ I;
(ii) Monotonicity: For Y ∈ I and Z ⊆ Y one has Z ∈ I;
(iii) Exchange property: For all Y,Z ∈ I with |Y | < |Z| there is

an element z ∈ Z \ Y so that Y ∪ {z} ∈ I.

◮ A basis S ⊆ X is a maximal independent set

Matroid 101

◮ Ground set X

◮ Independent sets I ⊆ 2X

◮ M = (X, I) is matroid if

(i) Non-emptyness: ∅ ∈ I;
(ii) Monotonicity: For Y ∈ I and Z ⊆ Y one has Z ∈ I;
(iii) Exchange property: For all Y,Z ∈ I with |Y | < |Z| there is

an element z ∈ Z \ Y so that Y ∪ {z} ∈ I.

◮ A basis S ⊆ X is a maximal independent set

◮ Base polytope PB(M) = conv{χ(S) : S is basis}

Matroid 101

◮ Ground set X

◮ Independent sets I ⊆ 2X

◮ M = (X, I) is matroid if

(i) Non-emptyness: ∅ ∈ I;
(ii) Monotonicity: For Y ∈ I and Z ⊆ Y one has Z ∈ I;
(iii) Exchange property: For all Y,Z ∈ I with |Y | < |Z| there is

an element z ∈ Z \ Y so that Y ∪ {z} ∈ I.

◮ A basis S ⊆ X is a maximal independent set

◮ Base polytope PB(M) = conv{χ(S) : S is basis}

◮ Example: Graphical matroid (E, I) (G = (V,E) connected
graph)
◮ I = subset of forests
◮ bases = spanning trees
◮ base polytope = spanning tree polytope

Matroid Max Min Fair Allocation

◮ Input: Matroid (X, I), graph G = (X∪̇R,E), resources R
with sizes pj

p1 = 2

p2 = 1

p3 = 1

p4 = 1

p5 = 1

p6 = 3

X R

Matroid Max Min Fair Allocation

◮ Input: Matroid (X, I), graph G = (X∪̇R,E), resources R
with sizes pj

◮ Goal: Find basis S and assignment σ : R → S to maximize
mini∈S

∑

σ(j)=i pj

S

p1 = 2

p2 = 1

p3 = 1

p4 = 1

p5 = 1

p6 = 3

X R

Matroid Max Min Fair Allocation

◮ Input: Matroid (X, I), graph G = (X∪̇R,E), resources R
with sizes pj

◮ Goal: Find basis S and assignment σ : R → S to maximize
mini∈S

∑

σ(j)=i pj

S

p1 = 2

p2 = 1

p3 = 1

p4 = 1

p5 = 1

p6 = 3

X R

Matroid Max Min Fair Allocation

◮ Input: Matroid (X, I), graph G = (X∪̇R,E), resources R
with sizes pj

◮ Goal: Find basis S and assignment σ : R → S to maximize
mini∈S

∑

σ(j)=i pj

S

p1 = 2

p2 = 1

p3 = 1

p4 = 1

p5 = 1

p6 = 3

X R

∑

pj ≥ T

Matroid Max Min Fair Allocation

◮ Input: Matroid (X, I), graph G = (X∪̇R,E), resources R
with sizes pj

◮ Goal: Find basis S and assignment σ : R → S to maximize
mini∈S

∑

σ(j)=i pj

S

p1 = 2

p2 = 1

p3 = 1

p4 = 1

p5 = 1

p6 = 3

X R

∑

pj ≥ T

Linear program

x ∈ PB(M)
∑

j∈N(i)

pjyij ≥ T · xi ∀i ∈ X

y(δ(j)) ≤ 1 ∀j ∈ R

0 ≤ yij ≤ xi ∀(i, j) ∈ E

Our contributions

Our contributions

Theorem I

Suppose LP feasible and pj = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (13 − ε) · T in
poly-time.

Our contributions

Theorem I

Suppose LP feasible and pj = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (13 − ε) · T in
poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max

Min Fair Allocation of value (13 − ε) ·T −max{pj} in poly-time.

Our contributions

Theorem I

Suppose LP feasible and pj = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (13 − ε) · T in
poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max

Min Fair Allocation of value (13 − ε) ·T −max{pj} in poly-time.

Theorem III

There is a poly-time (6 + ε)-apx for Santa Claus (factor compares
to value of O(n2)-size LP).

Our contributions

Theorem I

Suppose LP feasible and pj = 1. Then can find solution for
Matroid Max Min Fair Allocation of value (13 − ε) · T in
poly-time.

Theorem II

Suppose LP feasible. Then can find solution for Matroid Max

Min Fair Allocation of value (13 − ε) ·T −max{pj} in poly-time.

Theorem III

There is a poly-time (6 + ε)-apx for Santa Claus (factor compares
to value of O(n2)-size LP).

◮ [Cheng-Mao ’18] obtain (6 + ε)-apx by directly modifying
[AKS’15]

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

X R

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

basis S

(13 − ε) · T

X R

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

basis S

(13 − ε) · T

X R

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

◮ Start with S := ∅, maintain hypergraph matching covering S

X R

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

◮ Start with S := ∅, maintain hypergraph matching covering S

S

X R

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

◮ Start with S := ∅, maintain hypergraph matching covering S

S

X R

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

◮ Start with S := ∅, maintain hypergraph matching covering S

◮ Pick i0 s.t. S ∪ {i0} ∈ I

S

X R

i0

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

◮ Start with S := ∅, maintain hypergraph matching covering S

◮ Pick i0 s.t. S ∪ {i0} ∈ I

◮ Search for extension of matching starting at root i0
Goal: cover S′ ∈ I with |S′| = |S ∪ {i0}|

S

X R

i0

General approach

◮ Assumptions: pj = 1 & LP is feasible for parameter T

◮ Consider hypergraph E = (X∪̇R, size-(13 − ε)T edges)

◮ Start with S := ∅, maintain hypergraph matching covering S

◮ Pick i0 s.t. S ∪ {i0} ∈ I

◮ Search for extension of matching starting at root i0
Goal: cover S′ ∈ I with |S′| = |S ∪ {i0}|

S′

X R

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C = D

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C = D

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C = D

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C D

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C D

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C
D

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

C
DC̃

i0

R

X

One phase of the augmentation

◮ Input: Hypermatching M covering S ∈ I, i0 s.t. S ∪ {i0} ∈ I

(1) discovered nodes C := {i0}; add edges A := ∅; blocking edges
B := ∅

(2) REPEAT

(3) Find size (1
3
− ε

2
)-size candidate add edges (i) disjoint to

discovered resources. (ii) covering D with (S \ C)∪̇D ∈ I and
(iii) |D| ≥ Ωε(|C|).

(4) CASE 1: Add edges intersect Ωε(|C|) edges in M . Add
blocking edges to B. Expand C and continue.

(5) CASE 2: Find Ωε(|C|) edges disjoint to resources of M . Update
S′ := S \ C̃ ∪ D̃ (if one covers i1 s.t. S∪̇{i1} ∈ I → done)

i0

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!

C

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources

C

|W | < 2
3T |C|

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources
◮ Let U := {i ∈ X | (S \ C)∪̇{i} ∈ I} be swapping candidates

C

U

|W | < 2
3T |C|

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources
◮ Let U := {i ∈ X | (S \ C)∪̇{i} ∈ I} be swapping candidates
◮ Lemma:

∑

i∈U xi ≥ |C| (using that x in base polytope)

C

U

|W | < 2
3T |C|

xi

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources
◮ Let U := {i ∈ X | (S \ C)∪̇{i} ∈ I} be swapping candidates
◮ Lemma:

∑

i∈U xi ≥ |C| (using that x in base polytope)

C

U

|W | < 2
3T |C| N(i)

< 1
3T

xi

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources
◮ Let U := {i ∈ X | (S \ C)∪̇{i} ∈ I} be swapping candidates
◮ Lemma:

∑

i∈U xi ≥ |C| (using that x in base polytope)
∑

i∈U

∑

j∈W

yij

C

U

|W | < 2
3T |C| N(i)

< 1
3T

xi

j

yij

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources
◮ Let U := {i ∈ X | (S \ C)∪̇{i} ∈ I} be swapping candidates
◮ Lemma:

∑

i∈U xi ≥ |C| (using that x in base polytope)

2

3
T |C| > |W | ≥

∑

i∈U

∑

j∈W

yij

C

U

|W | < 2
3T |C| N(i)

< 1
3T

xi

j

yij

R

X

Expansion property

Lemma

Suppose (x, y) ∈ LP . Then ∃Θε(|C|) disjoint (13 − ε
2)-size

hyperedges that are (i) disjoint to discovered resources; (ii) covering
D with S \ C∪̇D ∈ I.

◮ We show one edge is possible!
◮ blocking edges ≥ add edges ⇒ |W | < 2

3 · T · |C| used resources
◮ Let U := {i ∈ X | (S \ C)∪̇{i} ∈ I} be swapping candidates
◮ Lemma:

∑

i∈U xi ≥ |C| (using that x in base polytope)

2

3
T |C| > |W | ≥

∑

i∈U

∑

j∈W

yij ≥
2

3
T ·

∑

i∈U

xi ≥
2

3
T ·|C| → Contradiction!

C

U

|W | < 2
3T |C| N(i)

< 1
3T

xi

j

yij

R

X

Running time analysis

Termination:

◮ Define st := number of blocking edges in step 1, . . . , t

Running time analysis

Termination:

◮ Define st := number of blocking edges in step 1, . . . , t

◮ Observation: Vector (s1, s2, . . . , sO(logn)) is
lexicographically decreasing!

Running time analysis

Termination:

◮ Define st := number of blocking edges in step 1, . . . , t

◮ Observation: Vector (s1, s2, . . . , sO(logn)) is
lexicographically decreasing!

◮ First updated st drops by constant factor
⇒ polynomial number of iterations

Application to Santa Claus
children gifts

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;

large

pj > δ ·OPT

children gifts

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

◮ I := {S ⊆ children|S can
all receive one large gift}
(children, I) is a matroid!

S ∈ I
large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

◮ I := {S ⊆ children|S can
all receive one large gift}
(children, I) is a matroid!

◮ Let (children, I∗) be co-matroid

S ∈ I∗

large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

◮ I := {S ⊆ children|S can
all receive one large gift}
(children, I) is a matroid!

◮ Let (children, I∗) be co-matroid

S ∈ I∗

large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

◮ Find basis S of co-matroid and assignment of value
(13 − ε)OPT − δ ·OPT .

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

◮ I := {S ⊆ children|S can
all receive one large gift}
(children, I) is a matroid!

◮ Let (children, I∗) be co-matroid

S ∈ I∗

large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

◮ Find basis S of co-matroid and assignment of value
(13 − ε)OPT − δ ·OPT .

◮ Overall happiness of children is

min
{

δ ·OPT,
(1

3
− ε− δ

)

OPT
}

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

◮ I := {S ⊆ children|S can
all receive one large gift}
(children, I) is a matroid!

◮ Let (children, I∗) be co-matroid

S ∈ I∗

large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

◮ Find basis S of co-matroid and assignment of value
(13 − ε)OPT − δ ·OPT .

◮ Overall happiness of children is

min
{

δ ·OPT,
(1

3
− ε− δ

)

OPT
}

δ:= 1

6=
(1

6
− ε

)

OPT

Application to Santa Claus

◮ Fix 0 < δ < 1. Call gifts of size
pj > δ ·OPT large;
small otherwise

◮ I := {S ⊆ children|S can
all receive one large gift}
(children, I) is a matroid!

◮ Let (children, I∗) be co-matroid

S ∈ I∗

large

pj > δ ·OPT

small

pj ≤ δ ·OPT

children gifts

◮ Find basis S of co-matroid and assignment of value
(13 − ε)OPT − δ ·OPT .

◮ Overall happiness of children is

min
{

δ ·OPT,
(1

3
− ε− δ

)

OPT
}

δ:= 1

6=
(1

6
− ε

)

OPT

⇒ (6 + ε)-apx in poly-time (also gap for O(n2)-size LP)

Open problems

Open problems

Santa Claus:

◮ 2 ≤ integrality gap for configuration LP ≤ 4

◮ 2 ≤ approximation ratio ≤ 6

Open problems

Santa Claus:

◮ 2 ≤ integrality gap for configuration LP ≤ 4

◮ 2 ≤ approximation ratio ≤ 6

Unrelated Santa Claus: (arbitrary pij)

◮ O(log10 n) in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

◮ Best known hardness: 2

Open problems

Santa Claus:

◮ 2 ≤ integrality gap for configuration LP ≤ 4

◮ 2 ≤ approximation ratio ≤ 6

Unrelated Santa Claus: (arbitrary pij)

◮ O(log10 n) in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

◮ Best known hardness: 2

Thanks for your attention

