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k-TSP 

• Metric (V, d) with root r and target k 

2-approximation  [Garg ‘05] 

• Quota-TSP: vertices have non-uniform rewards  

5-approximation  [Ausiello Leonardi Spaccamela ’00]  

• Orienteering: max-reward s.t. bound on tour length 

(2+²)-approximation  [Chekuri Korula Pal ’12] 

𝑉, 𝑑  

𝒓 



Stochastic Setting 

• In practice data is often uncertain 

Many approaches: stochastic, robust, online models 

 

• We consider a stochastic setting with random rewards 

 

Possible outcomes : 

• Techniques from deterministic case already suffice 

     OR 

• Need new techniques to handle the stochastic case 



Problem Definition 
𝑉, 𝑑  

𝑟 

• Metric (V,d) with root r and target k 

• Independent random variables Rv 2 {0,1,…k} for rewards 

• Instantiation Rv only known when v is visited 

• Minimize expected length to achieve total reward ¸ k 



Representing Solutions 

Solution policy: adaptive vs non-adaptive 

• adaptive: next step depends on observed rewards. 

• non-adaptive: does not depend on observed rewards. 

 

Adaptivity Gap: worst case gap between these policies. 
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Our Results 

• O(log k)-approximate adaptive algorithm 

 

• O(log2 k)-approximate non-adaptive algorithm 

Also bounds adaptivity gap 

 

• Adaptivity gap at least e ¼ 2.71  

Even with single random reward and star metric 

 

• Extension to submodular rewards  (larger poly-log approximation) 

Uses submod-max adaptivity gap  [Gupta  N.  Singla ’17] 
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Related Work: Maximization 

• Stochastic knapsack [Dean Goemans Vondrak ’04]... 

Ad Gap · 4 

adaptive 2-approx. [Bhalgat Goel Khanna ’11] 

• Stochastic matching [Chen Immorlica Karlin Mahdian Rudra ’09]... 

Ad Gap · 3.23 [Baveja Chavan Nikiforov Srinivasan Xu ’18] 

adaptive 2-approx. for unweighted [Adamcyzk ’10] 

• Stochastic orienteering  [Gupta Krishnaswamy N. Ravi ’12] [Bansal  N.  ’14] 

 (loglog B)1/2   ·  Ad Gap  ·  O(loglog B) 

• Stochastic submodular-max  [Gupta  N.  Singla ‘16 ’17] 

Ad Gap · 3 



Related Work: Minimization 

• Stochastic knapsack-cover  [Deshpande Hellerstein Kletenik ’14] 

Adaptive 2-approx. 

 

• Stochastic covering IPs  [Goemans Vondrak ’06] 

d · Ad. Gap · d2 

 

• Stochastic submodular-cover  [Im  N.  Zwaan ’12] 

Adaptive (log 1/²)-approx. 

Correlated setting   [Navidi Kambadur N. ‘17]  

We use similar analysis here 

 

 

 



Adaptive Algorithm 



Initial Approach 

Use orienteering in an iterative fashion 

Assume an exact orienteering algorithm 

Algorithm for Deterministic 𝑘-TSP 

For i=0,1,2... solve Orienteering with length 2i  

until total reward ¸ k 

 

Attempt for Stochastic 𝑘-TSP 

For i=0,1,2... solve Orienteering with  

Length bound 2i  

Expected truncated rewards wv = E[min(Rv , kres)] 

until total instantiated reward ¸ k  

Does not work!  

O(1) approx. 



Algorithm 

For each 2i length solve  log 𝑘  iterations of Orienteering. 

• Also allows using 𝑂 1 -approx. for Orienteering. 

 

 Thm: 𝑂 log 𝑘  approx. for stochastic k-TSP. 

Orienteering 
Instance w/ exp. 
Truncated rewards. 

Compute solution 
𝜋 of length ≤ 2𝑖  

Traverse 𝜋 

Update 𝑘𝑟𝑒𝑠 

Length 
𝟏 
𝟐 
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Iterations 
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Analysis Outline 

length 2i 20 21 . . . 

OPT ¼ i 2
i ¢ ui 

length 
L2i L20 L21 . . . 

ALG ¼ L i 2
i ¢ ai 

ui = Pr[ OPT costs > 2i ] 

ai = Pr[ ALG goes past phase i ] 

Relate a to u 

ai · 0.25¢ai-1 + ui 

L = log k 

Similar idea in min-latency TSP  [Chaudhuri Godfrey Rao Talwar ’03] 

Also used in stochastic submod-cover  [Im  N.  Zwaan ‘12]  

13 

ALG · O(L)¢OPT 

)
 



Analysis (phase i) 

• s = state of algorithm (outcomes of some rewards) 

• H(t,i) = states at iteration t of phase i 

• Gain(s) =  

• G(t,i) = E            [Gain(s)]   and   G(i) = t G(t,i) 

1) Upper bound G(i) · (ln k) ai-1 

2) Lower bound G(i) ¸ (ln k) ¢ (ai – ui) 

Prob ai-1 Prob ai Prob 1 

Lemma: 
ai · 0.25¢ai-1 + ui 

sÃH(t,i) 

E[min { ¢ Reward , kres } ] 

kres  

phase i 

iter t 



Analysis (Upper Bound) 

• Fix a decision path in ALG 

• Contribution to G(i) = t G(t,i) = t ¢Rewardt 

             ·   1  +  1  + ... + 1    ·   ln k   

 )  G(i) · (ln k) ai-1 

kres 

k k-1 1 

phase i 

iter t 



Analysis (Lower Bound) 

• Fix iteration t in phase i and state s 

• Bound Gain(s) using orienteering instance J(s)  

A. optimum(J(s)) ¸ (1-ui(s)) ¢ kres  where  ui(s) = Pr [ OPT > 2i | s ]  

B. Gain(s) ¸ (1-1/e) ¢ ® ¢ OPT(J(s))  

G(t,i) ¸ (1-1/e)¢® ¢ (1-ui – (1-ai)) = (1)¢(ai - ui) 

 ) G(i) ¸ (log k) ¢ (ai - ui) 

kres 

OPT 
OPT|s 

Adaptive reward ¸ (1-ui(s)) kres  

) Non-Adp ¸ (1-ui(s)) kres  

length 2i  

phase i 

iter t 

s 

®-approx. orienteering 

Prob ai 

length bnd 2i 

reward E[min(Rv , kres)] 



Non-Adaptive Algorithm 



Adaptive To Non-Adaptive 

Simulate the adaptive algorithm 

• Possible orienteering instances in phase i iteration t  

Same bound 2i on length 

Different truncation levels kres (for det. rewards) 

• Bucket the truncation into (log k) levels 

• Run (log k) many orienteering instances at each (i,t) 

 

Thm: 𝑂 log2 𝑘  approx. for non-adaptive stochastic k-TSP. 

• Also upper bounds adaptivity gap 

Don’t know better result even w.r.t. non-adaptive OPT 



Adaptivity Gap Lower Bound 

Online bidding: given n, find random sequence B=(b1, b2  ) of [n] 

Sequence S, target T costs C(S,T) = sum of bids in S until some bid ¸ T 

      max     E       [C(S,T)] 

 

 

Stochastic k-TSP 

• Target k = 2n+1, rewards Ri = 2i for nodes i 2 [n] 

• Single random reward R0 = (k-2i) w.p. pi for i 2 [n] 

Choose prob pi to maximize adaptivity gap 

 max     min E      [C(S,T)]  

𝟎 

i 

i 

1 
1 

n 

n 
2 

2 

B: dist. on seq 

p = dist. on [n] S: seq. 

T2[n] 
SÃB 

T 

TÃp 

E       [T] TÃp 

= 

min [Chrobak Kenyon Noga Young ‘08] ¸  e 



Submodular Reward Function 

• Metric (V,d) with root r and target k 

• Reward function f : 2V ! R+ , monotone submodular 

• Min length to collect reward at least k 

 O(log3+± n) approx.  [Calinescu, Zelikovsky ‘05] 

 (log2-± n) hard-to-approx.  [Halperin Krauthgamer ‘03] 

 

Stochastic setting: each vertex active w.p. pi and minimize 
expected length so that f(active) ¸ k 

• Generalizes stochastic k-TSP for Bernoulli random vars 

 



Algorithm for Submodular Case 

½ = ½orient ¢ log 1/² iterations instead of log k 

Theorem: Adaptive O(log2+±n ¢ log 1/²) approximation. 

• Uses ½orient = O(log2+±n)  [Calinescu, Zelikovsky ‘05] 

• Submodular-max adaptivity gap · 3  [Gupta N. Singla ‘17] 

Submod Orient 
Instance w/ exp. 
reward function E[f] 

Compute solution 𝜋 
of length ≤ 2𝑖  

Traverse 𝜋 

Update f 

Length 
𝟏 
𝟐 

 
 

𝟐𝒊 

Iterations 
1 

 
𝑡 

 
 
         ½ 

Phase 𝒊 

. . . 

Expected function 
Ef(S) = E        [f(SÅA)] AÃp 



Open Questions 
• O(1)-approximation for stochastic k-TSP? 

For either adaptive or non-adaptive 

 

• Adaptivity gap? 

Interesting even for covering knapsack (k-TSP on star metric) 

There is adaptive 2-approx.  [Deshpande Hellerstein Kletenik ‘14] 

Can get non-adaptive O(1)-approx. via different approach  

Max-knapsack well understood  [Dean Goemans Vondrak ‘04]... 

 

• Other stochastic minimization problems? 

Thank You! 


