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k-TSP

* Metric (V, d) with root r and target k
2-approximation [Garg ‘05]

* Quota-TSP: vertices have non-uniform rewards
5-approximation [Ausiello Leonardi Spaccamela '00]

* Orienteering: max-reward s.t. bound on tour length
(2+€)-approximation [Chekuri Korula Pal’12]




Stochastic Setting

* In practice data is often uncertain

Many approaches: stochastic, robust, online models
* We consider a stochastic setting with random rewards

Possible outcomes :
* Techniques from deterministic case already suffice

OR
 Need new techniques to handle the stochastic case



Problem Definition

v, d)

Metric (V,d) with root r and target k

Independent random variables R, € {0,1,...k} for rewards
Instantiation R, only known when v is visited

Minimize expected length to achieve total reward > k



Representing Solutions

Adaptive policy

Non- adaptive policy

Solution policy: adaptive vs non-adaptive
* adaptive: next step depends on observed rewards.
* non-adaptive: does not depend on observed rewards.

Adaptivity Gap: worst case gap between these policies.



Our Results

O(log k)-approximate adaptive algorithm

O(log? k)-approximate non-adaptive algorithm
Also bounds adaptivity gap

Adaptivity gap at leaste =~ 2.71

Even with single random reward and star metric

Extension to submodular rewards (larger poly-log approximation)
Uses submod-max adaptivity gap [Gupta N. Singla’17]



Talk Outline

Related work
Adaptive algorithm
Non-adaptive algorithm

Extension to submodular rewards



Related Work: Maximization

Stochastic knapsack [Dean Goemans Vondrak '04]...
Ad Gap <4
adaptive 2-approx. [Bhalgat Goel Khanna '11]
Stochastic matching [Chen Immorlica Karlin Mahdian Rudra '09]...
Ad Gap < 3.23 [Baveja Chavan Nikiforov Srinivasan Xu ’18]
adaptive 2-approx. for unweighted [Adamcyzk '10]
Stochastic orienteering [Gupta Krishnaswamy N. Ravi’12] [Bansal N. ’14]
Q(loglog B)Y/2 < Ad Gap < O(loglog B)
Stochastic submodular-max [Gupta N. Singla ‘16 ’17]
Ad Gap <3



Related Work: Minimization

* Stochastic knapsack-cover [Deshpande Hellerstein Kletenik ’14]
Adaptive 2-approx.

e Stochastic covering IPs [Goemans Vondrak '06]
d < Ad. Gap < d?

e Stochastic submodular-cover [Im N. zwaan ’12]
Adaptive (log 1/¢)-approx.
Correlated setting [Navidi Kambadur N. “17]
We use similar analysis here



Adaptive Algorithm



Initial Approach

Use orienteering in an iterative fashion
Assume an exact orienteering algorithm
Algorithm for Deterministic k-TSP

For i=0,1,2... solve Orienteering with length 2 O(1) approx.
until total reward > k

Attempt for Stochastic k-TSP

For i=0,1,2... solve Orienteering with
Length bound 2 Does not work!

Expected truncated rewards w, = E[min(R, , k. ..)]
until total instantiated reward > k



Algorithm

Length
1 . Orienteering
2 'tgrat'o"'s Instance w/ exp.
1 Truncated rewards.
|
|
- E Compute solution
2 Phase i . 7 of length < 2¢
I .
|
— Update k, .,

For each 2'length solve log k iterations of Orienteering.
* Also allows using O(1)-approx. for Orienteering.

Thm: O (log k) approx. for stochastic k-TSP.



Analysis Outline

Relate atou

Pa— !
u, = Pr[ OPT costs > 2!] a; < 0.25-a;; +y;

el
< OPT ~ Zi 21 ¢ ui
- ALG < O(L)-OPT
>
20 21 ... 2i length
a, = Pr[ ALG goes past phase i ]
</ ALG ~ LY. 21 - a,
L L=logk
>
LZO L21 o L2| Iength

Similar idea in min-latency TSP [Chaudhuri Godfrey Rao Talwar 03]

Also used in stochastic submod-cover [Im N. Zwaan ‘12]
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Analysis (phase i)

e Lemma:
 EE— < phase i >
>
>
Prob 1 Prob a, ; iter t Prob a,

e s =state of algorithm (outcomes of some rewards)
 H(t,i) = states at iteration t of phase |
e Gain(s) = E[min { A Reward , k .. }]

kres
. G(t,i)=ES%H(t’i)[Gain(s)] and G(i) = 2., G(t,i)

1) Upper bound G(i) < (Ink) a4
2) Lower bound G(i) > Q(In k) - (a; —u))



Analysis (Upper Bound)

........... < phase i >

itelrt
* Fix a decision path in ALG

 Contribution to G(i) = 2., G(t,i) = 2., AReward,
kres

+..+1 < Ink
1

< 1+1
k k-1

= G(i) < (In k) a,



Analysis (Lower Bound)

<—— phasei —>

iter t Prob a

>

Adaptive reward > (1-u,(s)) k
= Non-Adp > (1-u,(s)
~\

OFTls \OPT

length 2!

* Fix iterationtin phaseiand states

* Bound Gain(s) using orienteering instance J(s)‘|:
A. optimum((s)) > (1-u(s)) - k..
B. Gain(s) > (1-1/e) - « - OPTk“(S)) Q-approx. orienteering

length bnd 2/

where u(s)=Pr[OPT>2'| s]

S

res

G(t,i) > (1-1/e)-a - (1-u,— (1-a)) = Q(1)-(a.- u)

= G(i)

> Qlog k) - (a;- w;)

res

) k

res

reward E[min(R,, k. ..)]



Non-Adaptive Algorithm



Adaptive To Non-Adaptive

Simulate the adaptive algorithm

* Possible orienteering instances in phase i iteration t
Same bound 2' on length
Different truncation levels k. (for det. rewards)

e Bucket the truncation into (log k) levels
* Run (log k) many orienteering instances at each (i,t)

Thm: O (log? k) approx. for non-adaptive stochastic k-TSP.
* Also upper bounds adaptivity gap
Don’t know better result even w.r.t. non-adaptive OPT



Adaptivity Gap Lower Bound

Online bidding: given n, find random sequence B=(b,, b, --- ) of [n]

Sequence S, target T costs C(S,T) = sum of bids in S until some bid > T

min max  Es, 5 [CIST) > ¢

B: dist. on seq T&<[n]

T

Stochastic k-TSP

* Target k =2"1, rewards R, = 2! for nodes i € [n]
* Single random reward R, = (k-2') w.p. p, fori € [n]
Choose prob p, to maximize adaptivity gap

[Chrobak Kenyon Noga Young ‘08]

p =dist.on [n] S: seq.

= max min Etp[C(S,T)]

ET<—p

[T]




Submodular Reward Function

 Metric (V,d) with root r and target k

e Reward function f:2¥ — R, , monotone submodular
* Min length to collect reward at least k

O(log3* n) approx. [Calinescu, Zelikovsky ‘05]

Q(logZ? n) hard-to-approx. [Halperin Krauthgamer ‘03]

Stochastic setting: each vertex active w.p. p,and minimize
expected length so that f(active) > k

e Generalizes stochastic k-TSP for Bernoulli random vars



Algorithm for Submodular Case

Length Submod Orient
! Iterations Instance w/ exp. Expected function
2 — 1 reward function E[f]
: Ef(S) = Eacplf(SNA)]
_ (] Compute solution 7
2! . i
, Phase i of length < 2
I
-

P = Porient - 108 1/€ iterations instead of log k

Theorem: Adaptive O(log?*n - log 1/¢) approximation.

e Uses p,.n: = O(log?*°n) [Calinescu, Zelikovsky ‘05]
* Submodular-max adaptivity gap < 3 [Gupta N. Singla ‘17]



Open Questions

e O(1)-approximation for stochastic k-TSP?

For either adaptive or non-adaptive

* Adaptivity gap?
Interesting even for covering knapsack (k-TSP on star metric)
There is adaptive 2-approx. [Deshpande Hellerstein Kletenik ‘14]
Can get non-adaptive O(1)-approx. via different approach
Max-knapsack well understood [Dean Goemans Vondrak ‘04]...

e Other stochastic minimization problems?

Thank You!



