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Parcel delivery with a deadline
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latest delivery time = 12 = 8 + 1 - 4 = drive time+delivery time

» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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latest delivery time = 25 = 13 4 3 - 4 = drive time-+delivery time

» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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latest delivery time = 30 = 14 4+ 4 - 4 = drive time-+delivery time

» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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latest delivery time = 38 = 18 4+ 5 - 4 = drive time+delivery time

» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel



Parcel delivery with a deadline
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latest delivery time = 53 = 25 4 7 - 4 = drive time+delivery time

» A root r, a finite set P of parcels, n:= |P].
a metric space (M, c), and amap p: {r} UP — M.

> unit drive time per distance

» § = delivery time per parcel

Can we reduce the latest delivery time?



Faster delivery with subtours
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latest delivery time =26 =14+3-4

(attained at ps3).

» A root r, a finite set P of parcels,
a metric space (M, c), and amap p: {r} UP — M,

» unit drive time per distance c(v,

» § = delivery time per parcel,
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Faster delivery with subtours
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latest delivery time =26 = 14+ 3-4  (attained at p3).
» A root r, a finite set P of parcels,

a metric space (M, c), and amap p: {r} UP — M,
» unit drive time per distance c(v, w)

> § = delivery time per parcel,



Faster delivery with subtours
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» A root r, a finite set P of parcels,
a metric space (M,c), andamap p: {r}UP — M,

» unit drive time per distance c(v, w)

» 0 = delivery time per parcel,

v

unit handover delay per parcel that is moved between vehicles,



Faster delivery with subtours
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latest delivery time =30 = 1443 -4 +4 (attained at p3).

» A root r, a finite set P of parcels,
a metric space (M,c), andamap p: {r}UP — M,

» unit drive time per distance c(v, w)
» 0 = delivery time per parcel,

» unit handover delay per parcel that is moved between vehicles,

Assumption ¢ > 1 (i.e. delivery time > handover time).



Faster delivery with subtours
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A schedule (A, W, 1) is given by an arborescence (W, A) rooted at

r with P C W and an extension po: W\ (PU{r}) — M.

Degree constraints for well-defined delays:
> 5t (W) <2 (we W),
> [6F(p) <1 (peP).

Multiple vertices are allowed at one position.



Delay and cost of a schedule (W, A, u)
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cost(W, A, u) = Z c(u(x), u(y)) + o - # leaves in (W, A)
(x,y)EA
= travel cost + setup cost,

constant setup cost per vehicle o > 0,

(Wis, Axs) = sub-arborescence rooted at x € W,
(W, Ax) = the x-y sub-path for x,y € W,
W; = set of vertices with out-degree i € {0, 1,2}.



Main Result

Theorem (H., Konemann, and Vygen)

Given a deadline A > 0 and a feasible instance, we can compute a
schedule with delay at most (1 + €)A and cost O(1 + %)()PT in
polynomial time, where OPT is the minimum cost of a schedule
with latest delivery < A.



Related Work

» shallow-light trees (o =0, ¢ >> )
(Awerbuch, Baratz & Peleg '90, Cong et al. '92, Khuller,
Raghavachari & Young '95, H. & Rotter '13)

» bounded-latency problem (¢ >> §,0 >> ¢)
(Jothi and Raghavachari '07)

» distance-constrained vehicle routing problem
(Khuller, Malekian & Mestre '11, Nagarajan & Ravi '12,
Friggstad & Swamy '14)

» Min-Max tree/path/tour cover

(Even, Garg, Kénemann, Ravi, Sinha '04, Arkin, Hassin &
Levin '06, Xu, Xu& Li '10, Khani & Salavatipour '14).

Typical strategy: 1) Compute cheap global solution, 2) split into
sub-solutions at delay violations, 3) combine sub-solutions.



Related Work

» shallow-light trees (o =0, ¢ >> )
(Awerbuch, Baratz & Peleg '90, Cong et al. '92, Khuller,
Raghavachari & Young '95, H. & Rotter '13)

» bounded-latency problem (¢ >> §,0 >> ¢)
(Jothi and Raghavachari '07)

» distance-constrained vehicle routing problem
(Khuller, Malekian & Mestre '11, Nagarajan & Ravi '12,
Friggstad & Swamy '14)

» Min-Max tree/path/tour cover
(Even, Garg, Kénemann, Ravi, Sinha '04, Arkin, Hassin &
Levin '06, Xu, Xu& Li '10, Khani & Salavatipour '14).

Typical strategy: 1) Compute cheap global solution, 2) split into
sub-solutions at delay violations, 3) combine sub-solutions.
Here, naive adaption of strategy fails due to the handover delays.



Checking feasibility: caterpillar schedules

Theorem (H., Konemann, Vygen)

There exists a schedule (W, A, i) with minimum delay such that
(W, A) is a caterpillar and p(w) = u(r) for all w € Ws.
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caterpillar: deliveries occur at leaves and the subgraph induced by
the vertices with out-degree 2 is a path.



Proof for: d caterpillar schedule with minimum delay

» Take any schedule
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Proof for: d caterpillar schedule with minimum delay

» Take any schedule
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» P = path following the majority of the parcels (initial vehicle)
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» P = path following the majority of the parcels (initial vehicle)
> pi1,...,Pn reversely ordered as leaving the initial vehicle.



Proof for: d caterpillar schedule with minimum delay

» Take any schedule
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» P = path following the majority of the parcels (initial vehicle)
> pi1,...,Pn reversely ordered as leaving the initial vehicle.
» Caterpillar with all internal vertices located at p(r) has no

more delay (6 > 1!).
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Checking feasibility: consequences

Pn Pn—-1 Pn-2 P2

Corollary

We can decide feasibility in time O(nlog n+ 0n), where 0 is the
time to evaluate distances in (M, c).

Corollary

For any feasible instance we have
A >0+ min{|Q|,n—1} + minc(r,q)
qeR

for every nonempty subset Q@ C P.



Bicriteria approximation

1. Grouping into groups with similar distance from r.
2. Bottom-level caterpillar for each group.

3. Top-level caterpillar connecting the groups.

4

. Subtour merging within groups to reduce #vehicles.

group ¢ — 1 group 1
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group ¢ group 2




Bicriteria approximation: grouping

1. Compte a minimum spanning tree for {r} U P.
2. » s:=argmax{c(r,p): p € P},
double edges except those on the r-s-path,
» ({r}UP, Fy) := Eulerian r-s-walk.
We will choose F C Fy. = c(F) < ¢(Fp) < 2MST — ¢(r, s).
3. Remove r and the first edge.
Split the remaining r-s-path into maximal paths s.t.
> path length < €A and
> # parcels on path <1+ €A.

forest of paths ~ (P, F)

The length bound can be exceeded at most (F") times.
The parcel bound can be exceeded at most E” t|mes.
Observation:

. n+2MST —c(r,s)
q := # paths <1+ —— 1 —".



Bicriteria approximation: grouping

Groups are defined as the maximal paths of (P, F).

Corollary: ¢(r,p) < c(r,p’) + €A for p, p’ in the same group.



Bicriteria approximation: grouping

Groups are defined as the maximal paths of (P, F).
Corollary: ¢(r,p) < c(r,p’) + €A for p, p’ in the same group.
d(p) := max{c(r,p’) : p and p’ are in the same group}.

Order groups/parcels P = {p1,...,pn} s.t.
> d(p1) < -+ < d(pn) and
» FC {{pivpi-‘rl} : i:]-a"'vn_l}7

(= groups are consecutive subsequences)



Bicriteria approximation: a first schedule S,

Let ky =< ko < --- < kgy1 =n+1st.
s Pk+1 — 1} are the groups (1 </ < q).

(P - -
Schedule 5i:
group g — 1 group 1
Pkq—1 Pkq_1+1 Pkg—2 Pry—1 Dky Phi+1  DPka—2  Pha—1
) S € ettt
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Top-level bifurcation nodes ro, ..., rq are placed at y(r).

Bottom-level bifurcation nodes are placed at the splitted parcel.



Bicriteria approximation: delay of $;

Lemma: If the instance is feasible, then delay(S1) < (1 + 3¢)A.



Bicriteria approximation: delay of $;

Lemma: If the instance is feasible, then delay(S1) < (1 + 3¢)A.
Proof: The maximum delay in group i € {1,...,q} is at most

kiy1—2

c(ripe)+ > clprpis1) | + (0= kmaxqey +1) + (kip1 — ki —1) +6
I—k;



Bicriteria approximation: delay of $;

Lemma: If the instance is feasible, then delay(S1) < (1 + 3¢)A.
Proof: The maximum delay in group i € {1,...,q} is at most

kiy1—2
c(ripe)+ > clprpis1) | + (0= kmaxqey +1) + (kip1 — ki —1) +6
I=k;
< (d(pi;) + €A) + (0 — kmaxf2,iy + 1) + €A + 6.
*)



Bicriteria approximation: delay of $;

Lemma: If the instance is feasible, then delay(S1) < (1 + 3¢)A.

Proof: The maximum delay in group i € {1,...,q} is at most
kiy1—2
c(ripe)+ > clprpis1) | + (0= kmaxqey +1) + (kip1 — ki —1) +6
I=k;

< (d(pi;) + €A) + (0 — kmaxf2,iy + 1) + €A + 6.
(*)
3j € {ki,...,n} with

A > c(r,pj)+n—max{2,ki}+1+0



Bicriteria approximation: delay of $;

Lemma: If the instance is feasible, then delay(S1) < (1 + 3¢)A.

Proof: The maximum delay in group i € {1,...,q} is at most
kiy1—2
c(ripe)+ > clprpis1) | + (0= kmaxqey +1) + (kip1 — ki —1) +6
I=k;
< (d(pk;) + €A) + (1 — kmaxq2,iy +1) + €A+ 0.
(*)
3j € {ki,...,n} with
A > c(r,pj)+n—max{2,ki}+1+0 (%)
> d(pk) — €A+ n— kpaxgz,iy +1+9.

() 4 (xx) prove: delay(S1) < (1 + 3¢€)A.



Bicriteria approximation: length of 5;

Lemma: S; has length at most (2 + 2)MST.



Bicriteria approximation: length of 5;

Lemma: S; has length at most (2 + 2)MST.
Proof: The length is at most

7:1 c(r, pkf) + ¢(F)



Bicriteria approximation: length of 5;

Lemma: S; has length at most (2 + 2)MST.
Proof: The length is at most

7:1 c(r, p;) + c(F)
< qc(r,s) +2MST — ¢(r, s)



Bicriteria approximation: length of 5;

Lemma: S; has length at most (2 + 2)MST.
Proof: The length is at most

7:1 c(r, p;) + c(F)
gc(r,s) +2MST — ¢(r,s)

<
< % c(r,s) +2MST



Bicriteria approximation: length of 5;

Lemma: S; has length at most (2 + 2)MST.
Proof: The length is at most
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gc(r,s) +2MST — ¢(r,s)
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A (r,s) + M) A 4 o misT



Bicriteria approximation: length of 5;

Lemma: S; has length at most (2 + 2)MST.
Proof: The length is at most

IN A

IN

7:1 c(r, p;) + c(F)
gc(r,s) +2MST — ¢(r,s)

nr2 Vo —clrs) M%Z_C(r’s) c(r,s) +2MST
A (r,s) + M) A 4 o misT
(2+ 2) MST.



Saving vehicles

S1 is “short” and "fast”, but uses one vehicle per parcel.
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Saving vehicles

S1 is “short” and "fast”, but uses one vehicle per parcel.

Pki+1 Pki+2 Pki+3 Pki1—2Pkiyp—1
>i—a

Serve upto m: =1+ L%j parcels within a group by one vehicle.
~ 52.



Saving vehicles

S1 is “short” and "fast”, but uses one vehicle per parcel.

Pki+1 Pki+2 Pki+3 Pki1—2Pkiyp—1
Yi—a

Serve upto m: =1+ L%j parcels within a group by one vehicle.
~ 52.

Lemma
S> has delay at most (1 + 4¢)A and length at most (4 + 2)MST. It
has at most 1 + 2 (W) vehicles.



A lower bound

Lemma
Every feasible schedule has
> length at least %MST and

IRV ialan)
IMST+nsé )
> uses at least i vehicles.

Proof.

Steiner ratio = length bound.

Let (W™, A*, u*) be a schedule with /* vehicles numbered 1,. .., /*.
D; := delay of the last parcel delivered by vehicle i. = D; < A.

I*
1
SMST+nd < c(A", ") +nd < ;D, < I*A.



Combining upper and lower bound

Lemma (Upper bound)
S, has delay at most (1 + 4¢)A and length at most (4 + 2)MST. It
has at most 1 + 2 (W) vehicles.

Lemma (Lower bound)

Every feasible schedule has length at least %MST and uses at least

IMST+né .
2T Veth/eS.

Theorem (H., Kénemann, Vygen)

Given a deadline A > 0 and a feasible instance, we can compute a
schedule with delay at most (1 + ¢)A and cost O(1+ £)OPT in
polynomial time.



An almost tight example (0 = 0,¢c >> ¢ )
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Let T be a spanning tree with delay at most (1 + ¢).

o(T)

14+ =
k—)oo MST /‘ +
Proves tightness for shallow-light trees proposed in Cong et al. '92.



Thank you for your attention!
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