Vehicle Routing with Subtours

Stephan Held, Jochen Könemann, and Jens Vygen

Banff, September 24, 2018

▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \to M$.

latest delivery time = 8

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \to M$.
- unit drive time per distance

latest delivery time = $12 = 8 + 1 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \to M$.
- unit drive time per distance
- $\delta = \text{delivery time per parcel}$

latest delivery time = $19 = 11 + 2 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \rightarrow M$.
- unit drive time per distance
- $\delta =$ delivery time per parcel

latest delivery time = $25 = 13 + 3 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \rightarrow M$.
- unit drive time per distance
- $\delta =$ delivery time per parcel

latest delivery time = $30 = 14 + 4 \cdot 4 = \text{drive time} + \text{delivery time}$

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \rightarrow M$.
- unit drive time per distance
- $\delta =$ delivery time per parcel

latest delivery time = $38 = 18 + 5 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \rightarrow M$.
- unit drive time per distance
- $\delta = \text{delivery time per parcel}$

latest delivery time = $45 = 21 + 6 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \to M$.
- unit drive time per distance
- $\delta =$ delivery time per parcel

latest delivery time = $53 = 25 + 7 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \to M$.
- unit drive time per distance
- $\delta = \text{delivery time per parcel}$

latest delivery time = $53 = 25 + 7 \cdot 4$ = drive time+delivery time

- ▶ A root r, a finite set P of parcels, n := |P|. a metric space (M, c), and a map $\mu : \{r\} \cup P \to M$.
- unit drive time per distance
- $\delta = \text{delivery time per parcel}$

Can we reduce the latest delivery time?

latest delivery time = $26 = 14 + 3 \cdot 4$ (attained at p_3).

- ▶ A root r, a finite set P of parcels, a metric space (M,c), and a map $\mu: \{r\} \cup P \rightarrow M$,
- unit drive time per distance c(v, w)
- $\delta = \text{delivery time per parcel}$,

latest delivery time = $26 = 14 + 3 \cdot 4$ (attained at p_3).

- ▶ A root r, a finite set P of parcels, a metric space (M,c), and a map $\mu: \{r\} \cup P \rightarrow M$,
- unit drive time per distance c(v, w)
- $\delta =$ delivery time per parcel,

- ▶ A root r, a finite set P of parcels, a metric space (M, c), and a map $\mu : \{r\} \cup P \rightarrow M$,
- unit drive time per distance c(v, w)
- $\delta =$ delivery time per parcel,
- unit handover delay per parcel that is moved between vehicles,

latest delivery time = $30 = 14 + 3 \cdot 4 + 4$ (attained at p_3).

- ▶ A root r, a finite set P of parcels, a metric space (M,c), and a map $\mu: \{r\} \cup P \rightarrow M$,
- unit drive time per distance c(v, w)
- $\delta = \text{delivery time per parcel}$,
- unit handover delay per parcel that is moved between vehicles,

Assumption $\delta \geq 1$ (i.e. delivery time \geq handover time).

A schedule (A, W, μ) is given by an arborescence (W, A) rooted at r with $P \subset W$ and an extension $\mu : W \setminus (P \cup \{r\}) \to M$.

Degree constraints for well-defined delays:

- $\blacktriangleright |\delta^+(w)| \le 2 \ (w \in W),$
- ▶ $|\delta^+(p)| \le 1 \ (p \in P)$.

Multiple vertices are allowed at one position.

Delay and cost of a schedule (W, A, μ)

$$\begin{aligned} \operatorname{delay}_{(W,A,\mu)}(r,y) &:= & c(A_{ry},\mu) + \delta |P \cap W_{ry}| \\ &+ \sum_{w \in W_{ry} \cap W_2} \min_{(w,x) \in \delta^+(w)} |P \cap W_{x*}| & (y \in W) \\ \operatorname{delay}(W,A,\mu) &:= & \max_{p \in P} \operatorname{delay}_{(W,A,\mu)}(r,p) \\ & \operatorname{cost}(W,A,\mu) &:= & \sum_{(x,y) \in A} c(\mu(x),\mu(y)) + \sigma \cdot \# \text{ leaves in } (W,A) \\ &= & \operatorname{travel cost} + \operatorname{setup cost}, \end{aligned}$$

constant setup cost per vehicle $\sigma \geq 0$,

```
\begin{array}{lcl} \left( \textit{W}_{\textit{x*}}, \textit{A}_{\textit{x*}} \right) & = & \text{sub-arborescence rooted at } \textit{x} \in \textit{W}, \\ \left( \textit{W}_{\textit{xy}}, \textit{A}_{\textit{xy}} \right) & = & \text{the } \textit{x-y} \text{ sub-path for } \textit{x}, \textit{y} \in \textit{W}, \\ \textit{W}_{\textit{i}} & = & \text{set of vertices with out-degree } \textit{i} \in \{0, 1, 2\}. \end{array}
```

Main Result

Theorem (H., Könemann, and Vygen)

Given a deadline $\Delta>0$ and a feasible instance, we can compute a schedule with delay at most $(1+\epsilon)\Delta$ and cost $\mathcal{O}(1+\frac{1}{\epsilon})\mathrm{OPT}$ in polynomial time, where OPT is the minimum cost of a schedule with latest delivery $\leq \Delta$.

Related Work

- ▶ shallow-light trees ($\sigma=0, c>>\delta$) (Awerbuch, Baratz & Peleg '90, Cong et al. '92, Khuller, Raghavachari & Young '95, H. & Rotter '13)
- ▶ bounded-latency problem $(c >> \delta, \sigma >> c)$ (Jothi and Raghavachari '07)
- distance-constrained vehicle routing problem (Khuller, Malekian & Mestre '11, Nagarajan & Ravi '12, Friggstad & Swamy '14)
- Min-Max tree/path/tour cover
 (Even, Garg, Könemann, Ravi, Sinha '04, Arkin, Hassin & Levin '06, Xu, Xu& Li '10, Khani & Salavatipour '14).

Typical strategy: 1) Compute cheap global solution, 2) split into sub-solutions at delay violations, 3) combine sub-solutions.

Related Work

- ▶ shallow-light trees ($\sigma=0, c>>\delta$) (Awerbuch, Baratz & Peleg '90, Cong et al. '92, Khuller, Raghavachari & Young '95, H. & Rotter '13)
- ▶ bounded-latency problem $(c >> \delta, \sigma >> c)$ (Jothi and Raghavachari '07)
- distance-constrained vehicle routing problem (Khuller, Malekian & Mestre '11, Nagarajan & Ravi '12, Friggstad & Swamy '14)
- Min-Max tree/path/tour cover (Even, Garg, Könemann, Ravi, Sinha '04, Arkin, Hassin & Levin '06, Xu, Xu& Li '10, Khani & Salavatipour '14).

Typical strategy: 1) Compute cheap global solution, 2) split into sub-solutions at delay violations, 3) combine sub-solutions.

Here, naïve adaption of strategy fails due to the handover delays.

Checking feasibility: caterpillar schedules

Theorem (H., Könemann, Vygen)

There exists a schedule (W, A, μ) with minimum delay such that (W, A) is a caterpillar and $\mu(w) = \mu(r)$ for all $w \in W_2$.

caterpillar: deliveries occur at leaves and the subgraph induced by the vertices with out-degree 2 is a path.

► Take any schedule

► Take any schedule

ightharpoonup P = path following the majority of the parcels (initial vehicle)

► Take any schedule

- ightharpoonup P = path following the majority of the parcels (initial vehicle)
- ▶ $p_1, ..., p_n$ reversely ordered as leaving the initial vehicle.

► Take any schedule

- ► P = path following the majority of the parcels (initial vehicle)
- $ightharpoonup p_1, \ldots, p_n$ reversely ordered as leaving the initial vehicle.
- ► Caterpillar with all internal vertices located at $\mu(r)$ has no more delay $(\delta \ge 1!)$.

Checking feasibility: consequences

Corollary

We can decide feasibility in time $\mathcal{O}(n \log n + \theta n)$, where θ is the time to evaluate distances in (M, c).

Corollary

For any feasible instance we have

$$\Delta \geq \delta + \min\{|Q|, n-1\} + \min_{q \in Q} c(r, q)$$

for every nonempty subset $Q \subseteq P$.

Bicriteria approximation

- 1. Grouping into groups with similar distance from r.
- 2. Bottom-level caterpillar for each group.
- 3. Top-level caterpillar connecting the groups.
- 4. Subtour merging within groups to reduce #vehicles.

Bicriteria approximation: grouping

- 1. Compte a minimum spanning tree for $\{r\} \cup P$.
- 2. $s := \arg \max\{c(r, p) : p \in P\}$, double edges except those on the *r-s*-path,
 - ▶ $(\{r\} \cup P, F_0) := \text{Eulerian } r\text{-s-walk.}$ We will choose $F \subseteq F_0$. $\Rightarrow c(F) \le c(F_0) \le 2\text{MST} - c(r, s)$.
- 3. Remove *r* and the first edge. Split the remaining *r-s*-path into maximal paths s.t.
 - ▶ path length $\leq \epsilon \Delta$ and
 - # parcels on path $\leq 1 + \epsilon \Delta$.

forest of paths \rightsquigarrow (P, F)

The length bound can be exceeded at most $\frac{c(F_0)}{\epsilon \Delta}$ times. The parcel bound can be exceeded at most $\frac{n}{\epsilon \Delta}$ times. Observation:

$$q:=\#$$
 paths $\leq 1+rac{n+2\operatorname{MST}-c(r,s)}{\epsilon\Delta}.$

Bicriteria approximation: grouping

Groups are defined as the maximal paths of (P, F).

Corollary: $c(r, p) \le c(r, p') + \epsilon \Delta$ for p, p' in the same group.

Bicriteria approximation: grouping

Groups are defined as the maximal paths of (P, F).

Corollary: $c(r, p) \le c(r, p') + \epsilon \Delta$ for p, p' in the same group.

$$d(p) := \max\{c(r, p') : p \text{ and } p' \text{ are in the same group}\}.$$

Order groups/parcels $P = \{p_1, \dots, p_n\}$ s.t.

- ▶ $d(p_1) \le \cdots \le d(p_n)$ and
- ► $F \subseteq \{\{p_i, p_{i+1}\} : i = 1, ..., n-1\},$

 $(\Rightarrow$ groups are consecutive subsequences)

Bicriteria approximation: a first schedule S_1

Let
$$k_1 = < k_2 < \cdots < k_{q+1} = n+1$$
 s.t. $\{p_{k_i}, \dots, p_{k_i+1} - 1\}$ are the groups $(1 \le i \le q)$.

Schedule S_1 :

Top-level bifurcation nodes r_2, \ldots, r_q are placed at $\mu(r)$. Bottom-level bifurcation nodes are placed at the splitted parcel.

Lemma: If the instance is feasible, then $delay(S_1) \leq (1+3\epsilon)\Delta$.

Proof: The maximum delay in group $i \in \{1, \dots, q\}$ is at most

$$\left(c(r, p_{k_i}) + \sum_{l=k_i}^{k_{i+1}-2} c(p_l, p_{l+1})\right) + \left(n - k_{\max\{2,i\}} + 1\right) + \left(k_{i+1} - k_i - 1\right) + \delta
\leq \left(d(p_{k_i}) + \epsilon \Delta\right) + \left(n - k_{\max\{2,i\}} + 1\right) + \epsilon \Delta + \delta.$$
(*)

$$\Delta \geq c(r, p_j) + n - \max\{2, k_i\} + 1 + \delta$$

$$\geq d(p_{k_i}) - \epsilon \Delta + n - k_{\max\{2, i\}} + 1 + \delta.$$
 (**)

$$(*) + (**)$$
 prove: $\operatorname{delay}(S_1) \leq (1 + 3\epsilon)\Delta$.

Lemma: If the instance is feasible, then $delay(S_1) \leq (1+3\epsilon)\Delta$. Proof: The maximum delay in group $i \in \{1, ..., q\}$ is at most

$$\left(c(r, p_{k_i}) + \sum_{l=k_i}^{k_{i+1}-2} c(p_l, p_{l+1})\right) + (n - k_{\max\{2,i\}} + 1) + (k_{i+1} - k_i - 1) + \delta
\leq (d(p_{k_i}) + \epsilon \Delta) + (n - k_{\max\{2,i\}} + 1) + \epsilon \Delta + \delta.$$

$$\exists j \in \{k_i, \dots, n\} \text{ with}$$
(*)

$$\Delta \geq c(r, p_j) + n - \max\{2, k_i\} + 1 + \delta$$

$$\geq d(p_{k_i}) - \epsilon \Delta + n - k_{\max\{2, i\}} + 1 + \delta.$$
 (**)

$$(*) + (**)$$
 prove: $\operatorname{delay}(S_1) \leq (1 + 3\epsilon)\Delta$.

Lemma: If the instance is feasible, then $delay(S_1) \leq (1+3\epsilon)\Delta$. Proof: The maximum delay in group $i \in \{1, ..., q\}$ is at most

$$\left(c(r, p_{k_i}) + \sum_{l=k_i}^{k_{i+1}-2} c(p_l, p_{l+1})\right) + (n - k_{\max\{2,i\}} + 1) + (k_{i+1} - k_i - 1) + \delta
\leq (d(p_{k_i}) + \epsilon \Delta) + (n - k_{\max\{2,i\}} + 1) + \epsilon \Delta + \delta.$$
(*)

$$\Delta \geq c(r, p_j) + n - \max\{2, k_i\} + 1 + \delta
\geq d(p_{k_i}) - \epsilon \Delta + n - k_{\max\{2, i\}} + 1 + \delta.$$
(**)

$$(*) + (**)$$
 prove: $delay(S_1) \le (1 + 3\epsilon)\Delta$.

Lemma: If the instance is feasible, then $delay(S_1) \leq (1+3\epsilon)\Delta$. Proof: The maximum delay in group $i \in \{1, ..., q\}$ is at most

$$\left(c(r, p_{k_i}) + \sum_{l=k_i}^{k_{i+1}-2} c(p_l, p_{l+1})\right) + (n - k_{\max\{2,i\}} + 1) + (k_{i+1} - k_i - 1) + \delta
\leq (d(p_{k_i}) + \epsilon \Delta) + (n - k_{\max\{2,i\}} + 1) + \epsilon \Delta + \delta.$$
(*)

$$\Delta \geq c(r, p_j) + n - \max\{2, k_i\} + 1 + \delta$$

$$\geq d(p_{k_i}) - \epsilon \Delta + n - k_{\max\{2, i\}} + 1 + \delta.$$
(**)

$$(*) + (**)$$
 prove: $\operatorname{delay}(S_1) \leq (1 + 3\epsilon)\Delta$.

Lemma: If the instance is feasible, then $delay(S_1) \leq (1+3\epsilon)\Delta$. Proof: The maximum delay in group $i \in \{1, ..., q\}$ is at most

$$\left(c(r, p_{k_{i}}) + \sum_{l=k_{i}}^{k_{i+1}-2} c(p_{l}, p_{l+1})\right) + \left(n - k_{\max\{2,i\}} + 1\right) + \left(k_{i+1} - k_{i} - 1\right) + \delta
\leq \left(d(p_{k_{i}}) + \epsilon \Delta\right) + \left(n - k_{\max\{2,i\}} + 1\right) + \epsilon \Delta + \delta.$$
(*)

$$\Delta \geq c(r, p_j) + n - \max\{2, k_i\} + 1 + \delta$$

$$\geq d(p_{k_i}) - \epsilon \Delta + n - k_{\max\{2, i\}} + 1 + \delta.$$
 (**)

$$(*) + (**)$$
 prove: $delay(S_1) \le (1 + 3\epsilon)\Delta$.

Lemma: S_1 has length at most $(2 + \frac{2}{\epsilon})MST$.

$$\sum_{i=1}^{q} c(r, p_{k_i}) + c(F)$$

$$\leq qc(r, s) + 2MST - c(r, s)$$

$$\leq \frac{n+2MST - c(r, s)}{\epsilon \Delta} c(r, s) + 2MST$$

$$\leq \frac{\Delta}{\epsilon \Delta} c(r, s) + \frac{2MST - c(r, s)}{\epsilon \Delta} \Delta + 2MST$$

$$= (2 + \frac{2}{\epsilon}) MST.$$

Lemma: S_1 has length at most $(2 + \frac{2}{\epsilon})MST$.

$$\sum_{i=1}^{q} c(r, p_{k_i}) + c(F)$$

$$\leq qc(r, s) + 2MST - c(r, s)$$

$$\leq \frac{n+2MST - c(r, s)}{\epsilon \Delta} c(r, s) + 2MST$$

$$\leq \frac{\Delta}{\epsilon \Delta} c(r, s) + \frac{2MST - c(r, s)}{\epsilon \Delta} \Delta + 2MST$$

$$= (2 + \frac{2}{\epsilon}) MST.$$

Lemma: S_1 has length at most $(2 + \frac{2}{\epsilon})MST$.

$$\sum_{i=1}^{q} c(r, p_{k_i}) + c(F)$$

$$\leq qc(r, s) + 2MST - c(r, s)$$

$$\leq \frac{n+2MST - c(r, s)}{\epsilon \Delta} c(r, s) + 2MST$$

$$\leq \frac{\Delta}{\epsilon \Delta} c(r, s) + \frac{2MST - c(r, s)}{\epsilon \Delta} \Delta + 2MST$$

$$= (2 + \frac{2}{\epsilon}) MST.$$

Lemma: S_1 has length at most $(2 + \frac{2}{\epsilon}) \mathrm{MST}$.

$$\sum_{i=1}^{q} c(r, p_{k_i}) + c(F)$$

$$\leq qc(r, s) + 2MST - c(r, s)$$

$$\leq \frac{n+2MST - c(r, s)}{\epsilon \Delta} c(r, s) + 2MST$$

$$\leq \frac{\Delta}{\epsilon \Delta} c(r, s) + \frac{2MST - c(r, s)}{\epsilon \Delta} \Delta + 2MST$$

$$= (2 + \frac{2}{\epsilon}) MST.$$

Lemma: S_1 has length at most $(2 + \frac{2}{\epsilon})MST$.

$$\sum_{i=1}^{q} c(r, p_{k_i}) + c(F)$$

$$\leq qc(r, s) + 2MST - c(r, s)$$

$$\leq \frac{n+2MST - c(r, s)}{\epsilon \Delta} c(r, s) + 2MST$$

$$\leq \frac{\Delta}{\epsilon \Delta} c(r, s) + \frac{2MST - c(r, s)}{\epsilon \Delta} \Delta + 2MST$$

$$= (2 + \frac{2}{\epsilon}) MST.$$

Lemma: S_1 has length at most $(2 + \frac{2}{\epsilon})MST$.

$$\begin{split} &\sum_{i=1}^{q} c(r, p_{k_i}) + c(F) \\ &\leq qc(r, s) + 2\text{MST} - c(r, s) \\ &\leq \frac{n+2 \text{MST} - c(r, s)}{\epsilon \Delta} c(r, s) + 2 \text{MST} \\ &\leq \frac{\Delta}{\epsilon \Delta} c(r, s) + \frac{2 \text{MST} - c(r, s)}{\epsilon \Delta} \Delta + 2 \text{MST} \\ &= \left(2 + \frac{2}{\epsilon}\right) \text{MST}. \end{split}$$

Saving vehicles

 \mathcal{S}_1 is "short" and "fast", but uses one vehicle per parcel.

Serve up to $m:=1+\lfloor\frac{\epsilon\Delta}{\delta}\rfloor$ parcels within a group by one vehicle $\leadsto S_2.$

Lemma

 S_2 has delay at most $(1+4\epsilon)\Delta$ and length at most $(4+\frac{2}{\epsilon})\mathrm{MST}$. It has at most $1+\frac{2}{\epsilon}\left(\frac{\mathrm{MST}+n\delta}{\Delta}\right)$ vehicles.

Saving vehicles

 \mathcal{S}_1 is "short" and "fast", but uses one vehicle per parcel.

Serve up to $m:=1+\lfloor\frac{\epsilon\Delta}{\delta}\rfloor$ parcels within a group by one vehicle. $\rightsquigarrow S_2.$

Lemma

 S_2 has delay at most $(1+4\epsilon)\Delta$ and length at most $(4+\frac{2}{\epsilon})\mathrm{MST}$. It has at most $1+\frac{2}{\epsilon}\left(\frac{\mathrm{MST}+n\delta}{\Delta}\right)$ vehicles.

Saving vehicles

 S_1 is "short" and "fast", but uses one vehicle per parcel.

Serve up to $m:=1+\lfloor\frac{\epsilon\Delta}{\delta}\rfloor$ parcels within a group by one vehicle. $\rightsquigarrow S_2$.

Lemma

 S_2 has delay at most $(1+4\epsilon)\Delta$ and length at most $(4+\frac{2}{\epsilon})\mathrm{MST}$. It has at most $1+\frac{2}{\epsilon}\left(\frac{\mathrm{MST}+n\delta}{\Delta}\right)$ vehicles.

A lower bound

Lemma

Every feasible schedule has

- ▶ length at least $\frac{1}{2}MST$ and
- uses at least $\frac{\frac{1}{2}MST+n\delta}{\Delta}$ vehicles.

Proof.

Steiner ratio \Rightarrow length bound.

Let (W^*, A^*, μ^*) be a schedule with I^* vehicles numbered $1, \ldots, I^*$. $D_i :=$ delay of the last parcel delivered by vehicle $i. \Rightarrow D_i \leq \Delta$.

$$\frac{1}{2}\mathrm{MST} + n\delta \leq c(A^*, \mu^*) + n\delta \leq \sum_{i=1}^{I^*} D_i \leq I^*\Delta.$$

Combining upper and lower bound

Lemma (Upper bound)

 S_2 has delay at most $(1+4\epsilon)\Delta$ and length at most $(4+\frac{2}{\epsilon})\mathrm{MST}$. It has at most $1+\frac{2}{\epsilon}\left(\frac{\mathrm{MST}+n\delta}{\Delta}\right)$ vehicles.

Lemma (Lower bound)

Every feasible schedule has length at least $\frac{1}{2} MST$ and uses at least $\frac{1}{2} \frac{MST + n\delta}{\Delta}$ vehicles.

Theorem (H., Könemann, Vygen)

Given a deadline $\Delta>0$ and a feasible instance, we can compute a schedule with delay at most $(1+\epsilon)\Delta$ and cost $\mathcal{O}(1+\frac{1}{\epsilon})\mathrm{OPT}$ in polynomial time.

An almost tight example $(\sigma = 0, c >> \delta)$

Let T be a spanning tree with delay at most $(1 + \epsilon)$.

$$\lim_{k\to\infty}\frac{c(T)}{\text{MST}}\nearrow 1+\frac{1}{\epsilon}.$$

Proves tightness for shallow-light trees proposed in Cong et al. '92.

Thank you for your attention!

