Compact, Provably-Good LP Relaxations for
Orienteering ard-RVRP

Zachary Friggstad
with

Chaitanya Swamy

BIRS TSP Workshop - 2018

Orienteering

Starting from Corbet Hall, visit as many sights in Banff during
the Wednesday break.

O O

Orienteering

Starting from Corbet Hall, visit as many sights in Banff during
the Wednesday break.

Rooted Orienteering
Given metric distances d() over points V U {r} where:
» V - clients
» r - depot
Each v € V has a reward p(v) > 0. Also have a distance bound
D > 0.

O

Rooted Orienteering
Given metric distances d() over points V U {r} where:
> V - clients
» r - depot
Each v € V has a reward p(v) > 0. Also have a distance bound
D >0.

O

O
O

Objective
Find an r-rooted path P with d(P) < D of maximum reward p(P).

Rooted Orienteering
Given metric distances d() over points V U {r} where:
» V - clients
» r - depot
Each v € V has a reward p(v) > 0. Also have a distance bound
D >0.

O

O
O

Objective
Find an r-rooted path P with d(P) < D of maximum reward p(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.

A Brief History

» First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

» Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

» The best is a (2 + €) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

A Brief History

» First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

» Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

» The best is a (2 + €) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.
» An O(log? OPT)-approximation.
[Chekuri, Korula, and Pal, 2007].
» An O(p - log n)-approximation: p = ATSP integrality gap.
[Nagarajan and Ravi, 2007].
At the time, p = O(log n) but now we know better!

A Brief History

» First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

» Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

» The best is a (2 + €) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.
» An O(log? OPT)-approximation.
[Chekuri, Korula, and Pal, 2007].
» An O(p - log n)-approximation: p = ATSP integrality gap.
[Nagarajan and Ravi, 2007].
At the time, p = O(log n) but now we know better!

Notice: The improved integrality gap bound for ATSP led to an
improved approximation for a different problem!

Specific Results

Poly-size LP relaxations with the following integrality gap bounds.

» Rooted Orienteering: 3
» Point-to-Point Orienteering: 6

» RVRP: A natural relaxation with a gap of 27, an unnatural
relaxation with a gap of 15.
This beats a 28.86-approximation that used a large
configuration LP [F. and Swamy, 2014].

The Regret Metric

We shift focus to a new metric called the regret metric.
d"8(u,v) =d(r,u) +d(u,v) —d(r,v).

How much longer is r — u — v than r — v directly?

-~ \ d"9(u,v) =34+5—-6=2

The Regret Metric

We shift focus to a new metric called the regret metric.
d"8(u,v) =d(r,u) +d(u,v) —d(r,v).

How much longer is r — u — v than r — v directly?

3 L 5
- \‘ d"(u,v) =3+5—-6=2
o 20)

Key Properties:
» Forany v eV, d®&(r,v) =0.
» For any r — v path P, d"™8(P) = d(P) — d(r,v).

Pruning w.r.t. Regret

Before presenting the LP, we briefly discuss a slightly weaker goal.

Observe a rooted r — w path P is a feasible orienteering solution iff
d"8(P) < D —d(r,v).

Now suppose P is an r — w path with d"&(P) < «- (D — d(r, w)).

i-@—%)—%)—*@—*@—'@—'@—'@

Claim
If w has maximum distance from r among all clients, we can chop
P to a feasible solution with value > p(P)/[«].

Pruning w.r.t. Regret

First, break P — {r} into [«] subpaths, each having d"&-distance
<D-—d(r,w).

~ d">D—d(r,w) ‘
"9 < D —d(r,w) d™? < D = d(r, w)
d™9 < D —d(r,
subpaths < [« — =D —drw)

TS D —d(rw)

®

Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r. Recall
d™&(r,x) =0 for all x € V.

O—O—O—(,,Q—»Q—»Q) S O—W

-
-
-

-—>

dred = ()

49 =0 -~ -
-

-

Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r. Recall
d™&(r,x) =0 for all x € V.

Q—»Q—»Q—»@ ,,Q—»Q—»Q 3 S O—W

-
dred — 0| dreg:()”, -
-
- [=

-

Any of these r-rooted subpaths P’ ending at, say, v has length

d€(P') + d(r,v) < (D — d(r,w)) + d(r, v) < D.

Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r. Recall
d™&(r,x) =0 for all x € V.

Q—»Q—»Q—»@ ,,Q—»Q—»Q 3 S O—W

-
-
dres = 0' 9 =0.--" -==
-
- =

Any of these r-rooted subpaths P’ ending at, say, v has length
d™ (P +d(r,v) < (D —d(r,w))+d(r,v) <D.

So the most profitable path has value > p(P)/[a].

The LP

Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

The LP

Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables

We deal with a bidirected-cut relaxation of the problem.
» z, - indicating we visit v.
> Xe - indicating we use edge/arc e.

The LP

Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables

We deal with a bidirected-cut relaxation of the problem.
» z, - indicating we visit v.
> Xe - indicating we use edge/arc e.

max: »_ p(v)-z

s.t. : x(6™(v)) > x(6%*(v)) veV (preflow)
x(6™(S)) > =z, vEeS CV (clients reachable)
x(6°(r)) = 1 (one path)

zy, = 1 (visits w)
Yedle)-xe < D (distance bound)
x,z > 0

)

The LP

Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables

We deal with a bidirected-cut relaxation of the problem.
» z, - indicating we visit v.
> Xe - indicating we use edge/arc e.

max: »_ p(v)-z

s.t. : x(6™(v)) > x(6%*(v)) veV (preflow)
x(6™(S)) > =z, vEeS CV (clients reachable)
x(6°(r)) = 1 (one path)

zy, = 1 (visits w)
Yedle)-xe < D (distance bound)
x,z > 0

Notes: Can “fold” the guess into the LP to avoid guessing.
i.e. (x,z") variables. Can make poly-size using flow variables.

A Decomposition Theorem
Let D = (V + r, A) be a multi-digraph satisfying preflow
conditions at each v € V:

[67(v)] = [6°4(v)l.
Let A, be the r — v edge connectivity.

Theorem (Bang-Jensen, Frank, and Jackson, 1995)

For any K > 0, there are K arc-disjoint r-branchings where each
vertex v lies on min{K, A\, } branchings.

The fractional version:

Theorem

The preflow x dominates a convex combination of r-branchings
where each v € V lies on a z,-weight of these branchings.

Note, w lies on each branching.

@ ® | ®
- 319 o
f O\ | O O
</ © 9 o}fe
® ® i ® @

Can be found in poly-time [Post and Swamy, 2015].

The Rounding Algorithm

Sample a random branching B in the decomposition.

The expected d()-cost of B is < D.

The Rounding Algorithm

Double edges not on the r — w path.

=0

The expected d()-cost is < D + (D — d(r,w)).

The Rounding Algorithm

Of course, shortcut the resulting Eulerian walk to an r — w path.

/D

The expected d()-cost of these paths is still < D+ (D — d(r, w)).

Equivalently: The expected d"&()-cost is < 2- (D — d(r, w)).

Chop into rooted paths with d"&()-distance < D — d(r, w).
i.e. Feasible orienteering solutions!

O
Ve N\ S

If the original path P had regret ap - (D — d(r,w)), this creates
< [ap] < ap + 1 paths.

Chop into rooted paths with d"&()-distance < D — d(r, w).
i.e. Feasible orienteering solutions!

O
Ve N\ S

If the original path P had regret ap - (D — d(r,w)), this creates
< [ap] < ap + 1 paths.

This creates < 3 subpaths in expectation as E[ap] < 2.

Chop into rooted paths with d"&()-distance < D — d(r, w).
i.e. Feasible orienteering solutions!

O
Ve N\ S

If the original path P had regret ap - (D — d(r,w)), this creates
< [ap] < ap + 1 paths.

This creates < 3 subpaths in expectation as E[ap] < 2.

Some subpath created this way has value > OPT;p/3.

Algorithm Summary

Guess the furthest node w.
Solve the LP.

Decompose (x, z) into branchings.

=

For each branching:

» Double edges not on the r — w path.
» Shortcut the Eulerian path.
» Chop into feasible solutions.

5. Return the best subpath created.

Algorithm Summary

. Guess the furthest node w.
. Solve the LP.

. Decompose (x, z) into branchings.

A w N =

. For each branching:

» Double edges not on the r — w path.
» Shortcut the Eulerian path.
» Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and
performing this rounding for each (x%, z")-family of variables.

Algorithm Summary

. Guess the furthest node w.
. Solve the LP.

. Decompose (x, z) into branchings.

A w N =

. For each branching:

» Double edges not on the r — w path.
» Shortcut the Eulerian path.
» Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and
performing this rounding for each (x%, z")-family of variables.

Comment
Without the guess, the gap is very bad. Even if we just guess the
furthest distance but not the node itself!

Point-to-Point Orienteering

Suppose we want an r — t path of bounded length.

O O

O O

Guess the node w on opt. with largest d(r, w) + d(w, t).

Point-to-Point Orienteering

Suppose we want an r — t path of bounded length.

O ®
Guess the node w on opt. with largest d(r, w) + d(w, t).
LP: one unit of r — w flow x" and one unit of w — t flow x®

Also zL and zF variables indicating if v is visited before w or after
w, respectively.

To round it, the xt-flow is a preflow from r with cost at most
D — d(w,t), so do as before.

This produces a path ending at some v with length

<D —d(w,t)+d(r,v) —d(r,w).

To round it, the xt-flow is a preflow from r with cost at most
D — d(w,t), so do as before.

This produces a path ending at some v with length

<D —d(w,t)+d(r,v) —d(r,w).

a7 T

Extending from v to an r — t path yields a path with distance
D+ [d(r,v)+d(v,t)] — [d(r,w) +d(w,t)] <D

with at least 1/3 the value of zt.

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR.

The best solution overall has value > OPT;p/6.

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR.

The best solution overall has value > OPT;p/6.
Wrapping Up

Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR.

The best solution overall has value > OPT;p/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost < the optimum prize-collecting path solution..

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR.

The best solution overall has value > OPT;p/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost < the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost < D
and average profit > OPT.

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR.

The best solution overall has value > OPT;p/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost < the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost < D
and average profit > OPT.

All done!
Thank You

