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Orienteering

Starting from Corbet Hall, visit as many sights in Banff during
the Wednesday break.
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Rooted Orienteering
Given metric distances d() over points V ∪ {r} where:

I V - clients
I r - depot

Each v ∈ V has a reward ρ(v) ≥ 0. Also have a distance bound
D ≥ 0.

r

Objective
Find an r -rooted path P with d(P) ≤ D of maximum reward ρ(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.



Rooted Orienteering
Given metric distances d() over points V ∪ {r} where:

I V - clients
I r - depot

Each v ∈ V has a reward ρ(v) ≥ 0. Also have a distance bound
D ≥ 0.

r

Objective
Find an r -rooted path P with d(P) ≤ D of maximum reward ρ(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.



Rooted Orienteering
Given metric distances d() over points V ∪ {r} where:

I V - clients
I r - depot

Each v ∈ V has a reward ρ(v) ≥ 0. Also have a distance bound
D ≥ 0.

r

Objective
Find an r -rooted path P with d(P) ≤ D of maximum reward ρ(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.



A Brief History

I First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

I Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

I The best is a (2 + ε) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

I An O(log2OPT )-approximation.
[Chekuri, Korula, and Pal, 2007].

I An O(ρ · log n)-approximation: ρ = ATSP integrality gap.
[Nagarajan and Ravi, 2007].
At the time, ρ = O(log n) but now we know better!

Notice: The improved integrality gap bound for ATSP led to an
improved approximation for a different problem!
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Specific Results

Poly-size LP relaxations with the following integrality gap bounds.

I Rooted Orienteering: 3

I Point-to-Point Orienteering: 6

I RVRP: A natural relaxation with a gap of 27, an unnatural
relaxation with a gap of 15.
This beats a 28.86-approximation that used a large
configuration LP [F. and Swamy, 2014].



The Regret Metric

We shift focus to a new metric called the regret metric.

d reg (u, v) := d(r , u) + d(u, v)− d(r , v).

How much longer is r → u → v than r → v directly?

r v

u
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6

dreg(u, v) = 3 + 5 � 6 = 2

Key Properties:

I For any v ∈ V , d reg (r , v) = 0.

I For any r → v path P, d reg (P) = d(P)− d(r , v).
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Pruning w.r.t. Regret

Before presenting the LP, we briefly discuss a slightly weaker goal.

Observe a rooted r −w path P is a feasible orienteering solution iff
d reg (P) ≤ D − d(r , v).

Now suppose P is an r −w path with d reg (P) ≤ α · (D − d(r ,w)).

r

w

Claim
If w has maximum distance from r among all clients, we can chop
P to a feasible solution with value ≥ ρ(P)/dαe.



Pruning w.r.t. Regret

First, break P − {r} into dαe subpaths, each having d reg -distance
≤ D − d(r ,w).

r

w
dreg  D � d(r, w)

dreg > D � d(r, w)

# subpaths  d↵e
dreg > D � d(r, w)
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Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r . Recall
d reg (r , x) = 0 for all x ∈ V .

r

v w

dreg = 0 dreg = 0
dreg = 0

Any of these r -rooted subpaths P ′ ending at, say, v has length

d reg (P ′) + d(r , v) ≤ (D − d(r ,w)) + d(r , v) ≤ D.

So the most profitable path has value ≥ ρ(P)/dαe.
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The LP
Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables
We deal with a bidirected-cut relaxation of the problem.

I zv - indicating we visit v .
I xe - indicating we use edge/arc e.

max :
∑

v ρ(v) · zv
s.t. : x(δin(v)) ≥ x(δout(v)) v ∈ V (preflow)

x(δin(S)) ≥ zv v ∈ S ⊆ V (clients reachable)
x(δout(r)) = 1 (one path)

zw = 1 (visits w)∑
e d(e) · xe ≤ D (distance bound)

x , z ≥ 0

Notes: Can “fold” the guess into the LP to avoid guessing.
i.e. (xw , zw ) variables. Can make poly-size using flow variables.
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A Decomposition Theorem
Let D = (V + r ,A) be a multi-digraph satisfying preflow
conditions at each v ∈ V :

|δin(v)| ≥ |δout(v)|.
Let λv be the r − v edge connectivity.

Theorem (Bang-Jensen, Frank, and Jackson, 1995)

For any K > 0, there are K arc-disjoint r -branchings where each
vertex v lies on min{K , λv} branchings.

rr



The fractional version:

Theorem

The preflow x dominates a convex combination of r -branchings
where each v ∈ V lies on a zv -weight of these branchings.

Note, w lies on each branching.

r

w

r

w

r

w

r

w

Can be found in poly-time [Post and Swamy, 2015].



The Rounding Algorithm

Sample a random branching B in the decomposition.

r

w

The expected d()-cost of B is ≤ D.



The Rounding Algorithm

Double edges not on the r − w path.

r

w

The expected d()-cost is ≤ D + (D − d(r ,w)).



The Rounding Algorithm
Of course, shortcut the resulting Eulerian walk to an r − w path.

r

w

The expected d()-cost of these paths is still ≤ D + (D − d(r ,w)).

Equivalently: The expected d reg ()-cost is ≤ 2 · (D − d(r ,w)).



Chop into rooted paths with d reg ()-distance ≤ D − d(r ,w).
i.e. Feasible orienteering solutions!

r

w

If the original path P had regret αP · (D − d(r ,w)), this creates
≤ dαPe ≤ αP + 1 paths.

This creates ≤ 3 subpaths in expectation as E[αP ] ≤ 2.

Some subpath created this way has value ≥ OPTLP/3.
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Algorithm Summary

1. Guess the furthest node w .

2. Solve the LP.

3. Decompose (x , z) into branchings.

4. For each branching:
I Double edges not on the r − w path.
I Shortcut the Eulerian path.
I Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and
performing this rounding for each (xw , zw )-family of variables.

Comment
Without the guess, the gap is very bad. Even if we just guess the
furthest distance but not the node itself!
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Point-to-Point Orienteering

Suppose we want an r − t path of bounded length.

r t

w

Guess the node w on opt. with largest d(r ,w) + d(w , t).

LP: one unit of r − w flow xL and one unit of w − t flow xR .

Also zLv and zRv variables indicating if v is visited before w or after
w , respectively.
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To round it, the xL-flow is a preflow from r with cost at most
D − d(w , t), so do as before.

This produces a path ending at some v with length

≤ D − d(w , t) + d(r , v)− d(r ,w).

r t

v

w

Extending from v to an r − t path yields a path with distance

D + [d(r , v) + d(v , t)]− [d(r ,w) + d(w , t)] ≤ D

with at least 1/3 the value of zL.
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Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR .

The best solution overall has value ≥ OPTLP/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost ≤ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost ≤ D
and average profit ≥ OPT .

All done!
Thank You
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