
Compact, Provably-Good LP Relaxations for
Orienteering and RVRP

Zachary Friggstad

with

Chaitanya Swamy

BIRS TSP Workshop - 2018

Orienteering

Starting from Corbet Hall, visit as many sights in Banff during
the Wednesday break.

r

Orienteering

Starting from Corbet Hall, visit as many sights in Banff during
the Wednesday break.

r

Rooted Orienteering
Given metric distances d() over points V ∪ {r} where:

I V - clients
I r - depot

Each v ∈ V has a reward ρ(v) ≥ 0. Also have a distance bound
D ≥ 0.

r

Objective
Find an r -rooted path P with d(P) ≤ D of maximum reward ρ(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.

Rooted Orienteering
Given metric distances d() over points V ∪ {r} where:

I V - clients
I r - depot

Each v ∈ V has a reward ρ(v) ≥ 0. Also have a distance bound
D ≥ 0.

r

Objective
Find an r -rooted path P with d(P) ≤ D of maximum reward ρ(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.

Rooted Orienteering
Given metric distances d() over points V ∪ {r} where:

I V - clients
I r - depot

Each v ∈ V has a reward ρ(v) ≥ 0. Also have a distance bound
D ≥ 0.

r

Objective
Find an r -rooted path P with d(P) ≤ D of maximum reward ρ(P).

If an end vertex t is also specified (could be t = r), we call this
Point-to-Point Orienteering.

A Brief History

I First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

I Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

I The best is a (2 + ε) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

I An O(log2OPT)-approximation.
[Chekuri, Korula, and Pal, 2007].

I An O(ρ · log n)-approximation: ρ = ATSP integrality gap.
[Nagarajan and Ravi, 2007].
At the time, ρ = O(log n) but now we know better!

Notice: The improved integrality gap bound for ATSP led to an
improved approximation for a different problem!

A Brief History

I First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

I Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

I The best is a (2 + ε) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

I An O(log2OPT)-approximation.
[Chekuri, Korula, and Pal, 2007].

I An O(ρ · log n)-approximation: ρ = ATSP integrality gap.
[Nagarajan and Ravi, 2007].
At the time, ρ = O(log n) but now we know better!

Notice: The improved integrality gap bound for ATSP led to an
improved approximation for a different problem!

A Brief History

I First, a 4-approximation for rooted orienteering
[Blum et al, 1994].

I Then, a 3-approximation for Point-to-Point Orienteering.
[Bansal et al, 2004].

I The best is a (2 + ε) for Point-to-Point.
[Chekuri, Korula, and Pal, 2012].

Briefly, the asymmetric version is also studied.

I An O(log2OPT)-approximation.
[Chekuri, Korula, and Pal, 2007].

I An O(ρ · log n)-approximation: ρ = ATSP integrality gap.
[Nagarajan and Ravi, 2007].
At the time, ρ = O(log n) but now we know better!

Notice: The improved integrality gap bound for ATSP led to an
improved approximation for a different problem!

Specific Results

Poly-size LP relaxations with the following integrality gap bounds.

I Rooted Orienteering: 3

I Point-to-Point Orienteering: 6

I RVRP: A natural relaxation with a gap of 27, an unnatural
relaxation with a gap of 15.
This beats a 28.86-approximation that used a large
configuration LP [F. and Swamy, 2014].

The Regret Metric

We shift focus to a new metric called the regret metric.

d reg (u, v) := d(r , u) + d(u, v)− d(r , v).

How much longer is r → u → v than r → v directly?

r v

u
3 5

6

dreg(u, v) = 3 + 5 � 6 = 2

Key Properties:

I For any v ∈ V , d reg (r , v) = 0.

I For any r → v path P, d reg (P) = d(P)− d(r , v).

The Regret Metric

We shift focus to a new metric called the regret metric.

d reg (u, v) := d(r , u) + d(u, v)− d(r , v).

How much longer is r → u → v than r → v directly?

r v

u
3 5

6

dreg(u, v) = 3 + 5 � 6 = 2

Key Properties:

I For any v ∈ V , d reg (r , v) = 0.

I For any r → v path P, d reg (P) = d(P)− d(r , v).

Pruning w.r.t. Regret

Before presenting the LP, we briefly discuss a slightly weaker goal.

Observe a rooted r −w path P is a feasible orienteering solution iff
d reg (P) ≤ D − d(r , v).

Now suppose P is an r −w path with d reg (P) ≤ α · (D − d(r ,w)).

r

w

Claim
If w has maximum distance from r among all clients, we can chop
P to a feasible solution with value ≥ ρ(P)/dαe.

Pruning w.r.t. Regret

First, break P − {r} into dαe subpaths, each having d reg -distance
≤ D − d(r ,w).

r

w
dreg  D � d(r, w)

dreg > D � d(r, w)

subpaths  d↵e
dreg > D � d(r, w)

dreg  D � d(r, w)

dreg  D � d(r, w)

Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r . Recall
d reg (r , x) = 0 for all x ∈ V .

r

v w

dreg = 0 dreg = 0
dreg = 0

Any of these r -rooted subpaths P ′ ending at, say, v has length

d reg (P ′) + d(r , v) ≤ (D − d(r ,w)) + d(r , v) ≤ D.

So the most profitable path has value ≥ ρ(P)/dαe.

Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r . Recall
d reg (r , x) = 0 for all x ∈ V .

r

v w

dreg = 0 dreg = 0
dreg = 0

Any of these r -rooted subpaths P ′ ending at, say, v has length

d reg (P ′) + d(r , v) ≤ (D − d(r ,w)) + d(r , v) ≤ D.

So the most profitable path has value ≥ ρ(P)/dαe.

Pruning w.r.t. Regret

Make each subpath a rooted path by prepending r . Recall
d reg (r , x) = 0 for all x ∈ V .

r

v w

dreg = 0 dreg = 0
dreg = 0

Any of these r -rooted subpaths P ′ ending at, say, v has length

d reg (P ′) + d(r , v) ≤ (D − d(r ,w)) + d(r , v) ≤ D.

So the most profitable path has value ≥ ρ(P)/dαe.

The LP
Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables
We deal with a bidirected-cut relaxation of the problem.

I zv - indicating we visit v .
I xe - indicating we use edge/arc e.

max :
∑

v ρ(v) · zv
s.t. : x(δin(v)) ≥ x(δout(v)) v ∈ V (preflow)

x(δin(S)) ≥ zv v ∈ S ⊆ V (clients reachable)
x(δout(r)) = 1 (one path)

zw = 1 (visits w)∑
e d(e) · xe ≤ D (distance bound)

x , z ≥ 0

Notes: Can “fold” the guess into the LP to avoid guessing.
i.e. (xw , zw) variables. Can make poly-size using flow variables.

The LP
Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables
We deal with a bidirected-cut relaxation of the problem.

I zv - indicating we visit v .
I xe - indicating we use edge/arc e.

max :
∑

v ρ(v) · zv
s.t. : x(δin(v)) ≥ x(δout(v)) v ∈ V (preflow)

x(δin(S)) ≥ zv v ∈ S ⊆ V (clients reachable)
x(δout(r)) = 1 (one path)

zw = 1 (visits w)∑
e d(e) · xe ≤ D (distance bound)

x , z ≥ 0

Notes: Can “fold” the guess into the LP to avoid guessing.
i.e. (xw , zw) variables. Can make poly-size using flow variables.

The LP
Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables
We deal with a bidirected-cut relaxation of the problem.

I zv - indicating we visit v .
I xe - indicating we use edge/arc e.

max :
∑

v ρ(v) · zv
s.t. : x(δin(v)) ≥ x(δout(v)) v ∈ V (preflow)

x(δin(S)) ≥ zv v ∈ S ⊆ V (clients reachable)
x(δout(r)) = 1 (one path)

zw = 1 (visits w)∑
e d(e) · xe ≤ D (distance bound)

x , z ≥ 0

Notes: Can “fold” the guess into the LP to avoid guessing.
i.e. (xw , zw) variables. Can make poly-size using flow variables.

The LP
Before forming the LP, guess the node w on the optimum path
that is furthest from r and discard farther nodes.

Variables
We deal with a bidirected-cut relaxation of the problem.

I zv - indicating we visit v .
I xe - indicating we use edge/arc e.

max :
∑

v ρ(v) · zv
s.t. : x(δin(v)) ≥ x(δout(v)) v ∈ V (preflow)

x(δin(S)) ≥ zv v ∈ S ⊆ V (clients reachable)
x(δout(r)) = 1 (one path)

zw = 1 (visits w)∑
e d(e) · xe ≤ D (distance bound)

x , z ≥ 0

Notes: Can “fold” the guess into the LP to avoid guessing.
i.e. (xw , zw) variables. Can make poly-size using flow variables.

A Decomposition Theorem
Let D = (V + r ,A) be a multi-digraph satisfying preflow
conditions at each v ∈ V :

|δin(v)| ≥ |δout(v)|.
Let λv be the r − v edge connectivity.

Theorem (Bang-Jensen, Frank, and Jackson, 1995)

For any K > 0, there are K arc-disjoint r -branchings where each
vertex v lies on min{K , λv} branchings.

rr

The fractional version:

Theorem

The preflow x dominates a convex combination of r -branchings
where each v ∈ V lies on a zv -weight of these branchings.

Note, w lies on each branching.

r

w

r

w

r

w

r

w

Can be found in poly-time [Post and Swamy, 2015].

The Rounding Algorithm

Sample a random branching B in the decomposition.

r

w

The expected d()-cost of B is ≤ D.

The Rounding Algorithm

Double edges not on the r − w path.

r

w

The expected d()-cost is ≤ D + (D − d(r ,w)).

The Rounding Algorithm
Of course, shortcut the resulting Eulerian walk to an r − w path.

r

w

The expected d()-cost of these paths is still ≤ D + (D − d(r ,w)).

Equivalently: The expected d reg ()-cost is ≤ 2 · (D − d(r ,w)).

Chop into rooted paths with d reg ()-distance ≤ D − d(r ,w).
i.e. Feasible orienteering solutions!

r

w

If the original path P had regret αP · (D − d(r ,w)), this creates
≤ dαPe ≤ αP + 1 paths.

This creates ≤ 3 subpaths in expectation as E[αP] ≤ 2.

Some subpath created this way has value ≥ OPTLP/3.

Chop into rooted paths with d reg ()-distance ≤ D − d(r ,w).
i.e. Feasible orienteering solutions!

r

w

If the original path P had regret αP · (D − d(r ,w)), this creates
≤ dαPe ≤ αP + 1 paths.

This creates ≤ 3 subpaths in expectation as E[αP] ≤ 2.

Some subpath created this way has value ≥ OPTLP/3.

Chop into rooted paths with d reg ()-distance ≤ D − d(r ,w).
i.e. Feasible orienteering solutions!

r

w

If the original path P had regret αP · (D − d(r ,w)), this creates
≤ dαPe ≤ αP + 1 paths.

This creates ≤ 3 subpaths in expectation as E[αP] ≤ 2.

Some subpath created this way has value ≥ OPTLP/3.

Algorithm Summary

1. Guess the furthest node w .

2. Solve the LP.

3. Decompose (x , z) into branchings.

4. For each branching:
I Double edges not on the r − w path.
I Shortcut the Eulerian path.
I Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and
performing this rounding for each (xw , zw)-family of variables.

Comment
Without the guess, the gap is very bad. Even if we just guess the
furthest distance but not the node itself!

Algorithm Summary

1. Guess the furthest node w .

2. Solve the LP.

3. Decompose (x , z) into branchings.

4. For each branching:
I Double edges not on the r − w path.
I Shortcut the Eulerian path.
I Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and
performing this rounding for each (xw , zw)-family of variables.

Comment
Without the guess, the gap is very bad. Even if we just guess the
furthest distance but not the node itself!

Algorithm Summary

1. Guess the furthest node w .

2. Solve the LP.

3. Decompose (x , z) into branchings.

4. For each branching:
I Double edges not on the r − w path.
I Shortcut the Eulerian path.
I Chop into feasible solutions.

5. Return the best subpath created.

Again, the guesswork can be avoided by folding w into the LP and
performing this rounding for each (xw , zw)-family of variables.

Comment
Without the guess, the gap is very bad. Even if we just guess the
furthest distance but not the node itself!

Point-to-Point Orienteering

Suppose we want an r − t path of bounded length.

r t

w

Guess the node w on opt. with largest d(r ,w) + d(w , t).

LP: one unit of r − w flow xL and one unit of w − t flow xR .

Also zLv and zRv variables indicating if v is visited before w or after
w , respectively.

Point-to-Point Orienteering

Suppose we want an r − t path of bounded length.

r t

w

Guess the node w on opt. with largest d(r ,w) + d(w , t).

LP: one unit of r − w flow xL and one unit of w − t flow xR .

Also zLv and zRv variables indicating if v is visited before w or after
w , respectively.

To round it, the xL-flow is a preflow from r with cost at most
D − d(w , t), so do as before.

This produces a path ending at some v with length

≤ D − d(w , t) + d(r , v)− d(r ,w).

r t

v

w

Extending from v to an r − t path yields a path with distance

D + [d(r , v) + d(v , t)]− [d(r ,w) + d(w , t)] ≤ D

with at least 1/3 the value of zL.

To round it, the xL-flow is a preflow from r with cost at most
D − d(w , t), so do as before.

This produces a path ending at some v with length

≤ D − d(w , t) + d(r , v)− d(r ,w).

r t

v

w

Extending from v to an r − t path yields a path with distance

D + [d(r , v) + d(v , t)]− [d(r ,w) + d(w , t)] ≤ D

with at least 1/3 the value of zL.

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR .

The best solution overall has value ≥ OPTLP/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost ≤ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost ≤ D
and average profit ≥ OPT .

All done!
Thank You

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR .

The best solution overall has value ≥ OPTLP/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost ≤ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost ≤ D
and average profit ≥ OPT .

All done!
Thank You

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR .

The best solution overall has value ≥ OPTLP/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost ≤ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost ≤ D
and average profit ≥ OPT .

All done!
Thank You

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR .

The best solution overall has value ≥ OPTLP/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost ≤ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost ≤ D
and average profit ≥ OPT .

All done!
Thank You

Similarly, the reverse of xR is a preflow out of t so we can get a
feasible solution with at least 1/3 the value of zR .

The best solution overall has value ≥ OPTLP/6.

Wrapping Up
Recent: One can even avoid solving the LP; consider Rooted
Orienteering again.

Post and Swamy describe a combinatorial, primal-dual algorithm
for the Prize-Collecting Arborescence problem that finds a solution
with cost ≤ the optimum prize-collecting path solution..

Using Lagrangian relaxation, one can find a bipoint “solution”:
two branchings spanning the guess w with “average” cost ≤ D
and average profit ≥ OPT .

All done!
Thank You

