
Bounded pitch inequalities for min knapsack:
approximate separation and integrality gaps

Yuri Faenza

IEOR - Columbia University

Joint work with:

Dan Bienstock (Columbia), Igor Malinovic (EPFL),
Monaldo Mastrolilli (IDSIA), Ola Svensson (EPFL),

Mark Zuckerberg (Maroma Optimization)

Yuri Faenza – IEOR, Columbia University Bounded pitch inequalities for Min Knapsack



Min knapsack

min
∑

i∈[n] cixi

s.t.
∑

i∈[n] wixi ≥ w0

x ∈ {0, 1}n

With 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn, wi ∈ N ∀i .
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Max Knapsack Min Knapsack

Algorithms FPTAS (Ibarra & Kim, 75) FPTAS (Ibarra & Kim, 75)

Polytopes Natural LP has IG 2 Natural LP has unbounded IG

Linear number of SA rounds
keep the IG at 2− ε (KMN)

t rounds of Lasserre reduce Linear number of Lasserre rounds
IG to t/t − 1 (KMN) leave the IG unbounded (KLM)

∃ LP formulation with IG ∃? LP formulation with IG

1 + ε and nf (ε) constraints bounded and poly(n) constraints
(Bienstock, 08)

No such formulation ∃ No such formulation ∃
in the original space in the original space

(F & Sanità, 15) (Dudycz & Moldenhauer, 16)

(KMN)-(Karlin, Mathieu, Nguyen, 11), (KLM)-(Kurpisz, Leppänen & Mastrolilli, 17)
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Knapsack cover inequalities

How can we reduce the integrality gap?

min
∑

i∈[n] cixi

s.t.
∑

i∈[n] wixi ≥ w0

x ∈ {0, 1}n

I Pick T ⊆ [n] such that w(T ) < w0.∑
j∈[n]\T wjxj ≥ w0 − w(T ) is valid.∑
j∈[n]\T min{wj ,w0 − w(T )}xj ≥ w0 − w(T ) is also valid and stronger.

I Those are the Knapsack Cover (KC) inequalities (Wolsey, 75), (Carr,
Fleischer, Leung, Philipps, 00)

Thm. (CFLP, 00) Adding all (exponentially many) KC inequalities gives an
integrality gap of 2.

KC (and generalization) also used to strengthen LPs for many covering pbs.

Yuri Faenza – IEOR, Columbia University Bounded pitch inequalities for Min Knapsack



Knapsack cover inequalities

How can we reduce the integrality gap?

min
∑

i∈[n] cixi

s.t.
∑

i∈[n] wixi ≥ w0

x ∈ {0, 1}n

I Pick T ⊆ [n] such that w(T ) < w0.∑
j∈[n]\T wjxj ≥ w0 − w(T ) is valid.∑
j∈[n]\T min{wj ,w0 − w(T )}xj ≥ w0 − w(T ) is also valid and stronger.

I Those are the Knapsack Cover (KC) inequalities (Wolsey, 75), (Carr,
Fleischer, Leung, Philipps, 00)

Thm. (CFLP, 00) Adding all (exponentially many) KC inequalities gives an
integrality gap of 2.

KC (and generalization) also used to strengthen LPs for many covering pbs.

Yuri Faenza – IEOR, Columbia University Bounded pitch inequalities for Min Knapsack



Extended formulation for Knapsack Cover Inequalities

Thm. (Bazzi, Fiorini, Huang, Svensson, 17)

∃ (2 + ε)-approximated formulation for Min Knapsack of size (1/ε)O(1)nO(log n).
I Uses many hammers:

I Bounds on the depth of monotone circuits computing monotone threshold
functions (Beinmel & Weinreb, 06)

I Karchmer-Wigderson games (Karchmer & Wigderson, 90)
I Extended formulation from randomized communication protocols (F,

Fiorini, Grappe, Tiwary, 15)

I Not output-efficient.

I Made output-efficient by (Fiorini, Huynh & Weltge, 17)
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Pitch of inequalities for covering problems

Consider any binary covering problem

min
∑

i∈[n] cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

and a valid inequality
∑

i∈S αixi ≥ α0 with αi ∈ N ∀i ∈ S.

The pitch of the inequality is the minimum k such that ∀T ⊆ S, |T | = k, we
have α(T ) ≥ α0.

I x1 + x2 + 2x3 + x4 + x5 ≥ 3 is pitch-3

I x1 + 2x2 + 3x3 + 3x4 + 3x5 ≥ 7 is pitch-4

Obs.

I The non-dominated pitch-1 inequalities are of the form
∑

i∈S xi ≥ 1.

I αi ∈ {1, . . . , q} ∀i ∈ S ⇒ pitch≤ q.
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Bounded pitch inequalities - why bother

Thm. 1 (Bienstock & Zuckerberg, 06) (informal)
In order to ε-approximate the t-th CG closure of a binary covering problem, it is
enough to satisfy all valid inequalities of pitch ≤ f (t).

Thm. 2 (Bienstock & Zuckerberg, 04) (informal)
There exists a hierarchy that, given an LP for a binary covering problem that
implies all pitch≤ k inequalities, produces a poly-size LP that implies all
pitch≤ k + 1 inequalities.

(Bienstock & Zuckerberg, 18):

“The construction in (BZ, 04) is admittedly complex.”

More hierarchies were introduced that satisfy Thm. 2 above:

I Certain Sum of Squares (Mastrolilli, 17);

I Hierarchy based on Boolean formulas (Fiorini, Huynh & Weltge, 17);

I Vector Branching (Bienstock & Zuckerberg, 18).
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Bounded pitch, solved?

All those hierarchies require the original formulation to satisfy all pitch-1
inequalities. But:

Thm. (Klabjan, Nemhauser & Tovey, 98)

Optimizing over pitch-1 inequalities is NP-Hard, already for Min Knapsack.

So we do not know how to use this machinery for all covering problems (and, in
particular, for min-knapsack).
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This talk

I Can we approximately separate over bounded pitch inequalities for Min
Knapsack?

I Do bounded pitch inequalities improve integrality gaps?

Thm. Given a Min Knapsack problem, 0 < ε < 1, and integer q ≥ 1, there is
an algorithm that, with input x∗ ∈ [0, 1]n either finds a valid inequality with
coefficients in {0, 1, . . . , q} that is violated by x∗, or shows that x∗ satisfies all
such valid inequalities within additive error ε. The complexity of the algorithm
is polynomial in n and 1/ε.

I It also implies ε-approximate separation for pitch≤ 2.

Various positive and (mostly) negative results on IG.
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Notation

For a min-knapsack polytope with constraint∑
i∈[n]

wixi ≥ w0

with 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn, wi ∈ N ∀i . We consider inequalities∑
i∈S

αixi ≥ q

with αj ∈ {1, . . . , q} for all j ∈ S. We let Si := {j : αj = i}.
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The toy case: q = 1

In this case q = 1 iff pitch= 1. All non-dominated inequalities have the form:∑
i∈S

xi ≥ 1

I Choose, among all such valid inequalities, the one whose LHS computed in
x∗ is minimum.

V ∗ := min
∑

i∈[n] x
∗
i zi

← minimize LHS

s.t.
∑

i∈[n] wi (1− zi ) ≤ w0 − 1

← guarantee validity

z ∈ {0, 1}n

∃ violated pitch-1 inequality iff V ∗ < 1. Apply the FPTAS for Min Knapsack.
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The almost-toy case: q = 2

Lemma. All pitch-2 inequalities are implied by:

I Pitch-1 inequalities;

I Valid inequalities of the form∑
i∈S1

xi + 2
∑
i∈S2

xi ≥ 2

where for each i ∈ S1 and j ∈ S2, we have i < j . Monotonicity property.

Consider
∑

j wjxj = 5x1 + 6x2 + 7x3 + 10x4 + 10x5 ≥ 10.

Inequality x2 + x3 + 2(x4 + x5 + x1) ≥ 2 is valid but non-monotone.

It is dominated by

x1 + x2 + x3 + 2(x4 + x5) ≥ 2.
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The almost-toy case: q = 2

It is enough to separate over inequalities∑
i∈S1

xi + 2
∑
i∈S2

xi ≥ 2

where for each i ∈ S1 and j ∈ S2, we have i < j .

I Guess k := max{i : i ∈ S1}. Then

{
i ≤ k, i ∈ S ⇒ i ∈ S1

i > k, i ∈ S ⇒ i ∈ S2

.

V ∗(k) := min
∑

i≤k x
∗
i zi + 2

∑
i>k x

∗
i zi

← minimize LHS∑
i∈[n] wi (1− zi ) + wk ≤ w0 − 1

← guarantee validity

zk = 1

← selection of k

z ∈ {0, 1}n

An undominated inequality with pitch= 2 is violated iff ∃ k : V ∗(k) < 2.
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Monotonicity does not hold for q ≥ 3

Consider ∑
j

wjxj = 4x1 + 4x2 + 5x3 + 6x4 + 6x5 ≥ 13.

Inequality
x1 + x2 + 2x3 + x4 + x5 ≥ 3

is non-monotone and non-dominated.

Yuri Faenza – IEOR, Columbia University Bounded pitch inequalities for Min Knapsack



The strategy for fixed q ≥ 3

I Cover all valid inequalities
∑

i∈S αixi ≥ q that are not dominated by any
inequality with coefficients in {0, . . . , q} with a finite number of sets, that
we call type.

I There are at most f (q)ng(q) types.

I Once a type is fixed, for each i , variable xi has coefficient either 0 or ti .
Separation can again be formulated as a Min Knapsack problem, with
optimum V ∗(τ).

I Use the FPTAS for Min Knapsack to approximately compute each V ∗(τ).
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Non-monotonicity and Jealousy

Given a valid inequality ∑
i∈S

αixi ≥ q

we say that i ∈ S is jealous if ∃ j ∈ S such that wj ≤ wi and αj > αi .

Example. Let∑
j wjxj = 10x1 + 10x2 + 20x3 + 25x4 + 50x5 + 80x6 + 80x7 + 100x8 ≥ 280.

Consider inequality x1 + x2 + 3x3 + 4x4 + 3x5 + x6 + x8 ≥ 4. x5, x6, x8 are jealous.

Jealousy Lemma. If
∑

i∈S αixi ≥ q is valid and not dominated by any

inequality with coefficients in {0, 1, . . . , q}, then it has at most q2 jealous
variables.

Yuri Faenza – IEOR, Columbia University Bounded pitch inequalities for Min Knapsack



Non-monotonicity and Jealousy

Given a valid inequality ∑
i∈S

αixi ≥ q

we say that i ∈ S is jealous if ∃ j ∈ S such that wj ≤ wi and αj > αi .

Example. Let∑
j wjxj = 10x1 + 10x2 + 20x3 + 25x4 + 50x5 + 80x6 + 80x7 + 100x8 ≥ 280.

Consider inequality x1 + x2 + 3x3 + 4x4 + 3x5 + x6 + x8 ≥ 4. x5, x6, x8 are jealous.

Jealousy Lemma. If
∑

i∈S αixi ≥ q is valid and not dominated by any

inequality with coefficients in {0, 1, . . . , q}, then it has at most q2 jealous
variables.

Yuri Faenza – IEOR, Columbia University Bounded pitch inequalities for Min Knapsack



Type of an inequality

The type associated to an inequality is a triple τ = (I,M,L).

I I = {i : Si 6= ∅} – Coefficients that appear in the inequality

I M = (mi : i ∈ I), with mi ∈ arg min{wj : j ∈ Si} – min weight for each Si
I L = (Li : i ∈ I), with Li containing the items of highest weight in Si ,

including all jealous elements, and q more.

|Li | = O(q2) ∀i .

Example. Let∑
j wjxj = 10x1 + 10x2 + 20x3 + 25x4 + 50x5 + 80x6 + 80x7 + 100x8 ≥ 280.

Consider inequality x1 + x2 + 3x3 + 4x4 + 3x5 + x6 + x8 ≥ 4. We can choose:

I = {1, 3, 4}
m1 = 1, m3 = 3, m4 = 4

L1 = {6, 8, 1, 2}, L3 = {5, 3}, L4 = {4}

Lemma. There are at most f (q)ng(q) different types.
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Coefficients for an inequality of a given type

The type associated to an inequality is a triple τ = (I,M,L).

I I = {i : Si 6= ∅} – Coefficients that appear in the inequality

I M = (m1, . . . ,m|I|), with mi := arg min{wj : j ∈ Si} – item of min weight
for each Si

I L = (L1, . . . ,L|I|), with Li containing the items of highest weight in Si ,
including all jealous elements, and up to at most q more.

If j ∈ S, then its coefficient is univocally determined by τ :

I If j ∈ Li of j = mi for some i ∈ I, then j ∈ Si .
I Else j ∈ Si , with i ∈ I s.t. wj ∈ [wmi ,min{mink∈Li wk ,mink>i wmk − 1}]

We let Vi be the variables whose coefficient in the inequality is either 0 or i .
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Guaranteeing feasibility for a given type

Consider all inequalities of type τ of the form∑
i∈S

αixi ≥ q (1)

V ∗(τ) := min
∑

i∈I i(
∑

j∈Vi
x∗j zj) ← minimize LHS

∑
i∈[n] wi (1− zi ) + σ(τ) ≤ w0 − 1

← guarantee validity

zj = 1 ∀j ∈ ∪iLi ∪i {mi} ← selection of τ
zj = 0 ∀j /∈ ∪iVi

z ∈ {0, 1}n

Recall how we guarantee validity for q = 2:∑
i∈[n]

wi (1− zi )︸ ︷︷ ︸
w([n]\S)

+ wk︸︷︷︸
max weight of S ′ ⊆ S not satisfying (1)

≤ w0 − 1

Lemma. The max weight of a set S ′ ⊆ S not satisfying (1) only depends on
the type:=σ(τ). It can be computed efficiently.
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Separation algorithm for inequalities with coefficients in {0, 1, . . . , q}

I Apply the separation algorithm for pitch-1 and pitch-2. If it outputs
infeasible, stop.

I For k = 3, . . . , q:

I For each type τ :

I Compute σ(τ);

I Approximately compute V ∗(τ)

I If V ∗(τ) < q, output infeasible

I Output feasible.
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Integrality gaps

Do bounded pitch inequalities improve the integrality gap of linear relaxations
for Min Knapsack?

I Good news:

I When c = w , adding pitch-1 and pitch-2 inequality gives IG of 3/2.

I Bad news:

I Adding all bounded-pitch inequalities to the natural relaxation still gives
non-constant IG.

I Hence, using (BZ, 06), after a finite number of CG rounds one still have
non-constant integrality gap.

I Adding all bounded-pitch inequalities and all KC inequalities, still gives an
IG of ≈ 2.

Thank you for your attention.
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