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\Thin Tree Conjecture /

Strong Form of [Goddyn]

Every k-edge connected graph has O(1/k)-thin spanning tree.

> This implies O(1) upper bound for integrality gap of LP relaxation for ATSP.

> Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for ATSP.

> 0O(1) integrality gap already proved [Svensson-Tarnawski-Végh'17], but thin
tree remains open.
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Electrical Connectivity

Edge Connectivity

IG(S, )| > k

Thin Tree Spectrally Thin Tree

IT(S,§)| <o |G(S,§)|_XTLTX <a-xTLgx
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\Obstocles

> Problem: Edge connectivity does not imply electrical connectivity.

C=C=0=0=0=0=0=0=C=0=0

> Problem: Electrical connectivity is needed for the existence of spectrally
thin trees. Forany e = (u,v) € T:

1
1 > Reffr(u,v) = eTL{be > — -bILsbe = = Reffg (u, v).

1
o4



. Well-condition the graph spectrally
without changing cuts much.
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\Well—Conditioning Scheme

> Add “graph” H to G ensuring
IH(S,S)I < O(1) - 1G(S, S)I.
& If G +H admits an a-spectrally thin tree T, then
[T(S,8) = 1{Lrls < o~ 1§(Lg + Ln)Ls = O(a) - |G(S, S)]

> Goal: Find H that brings Reff down.
> Problem 1: How do we ensure T does not use any newly added edges?
> Problem 2: How do we certify H is O(1)-thin w.rt. G?



Ensuring only original edges are picked ...
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\Extension to Interlacing Families /

[Harvey-Olver’14, Marcus-Spielman-Srivastava’14]

If for every edge e in a graph G
Reff(e) < «,
then G has an O(«)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e € F,

Reff (e) < «,

and Fis k-edge-connected, then G has a O(« + 1/k)-spectrally thin tree T C F.

[on board...]



Ensuring cuts do not blow up ...
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> If H can be routed over G with congestion O(1), then for every S
H(S,S) < O(1)- G(S,S).

O=UO=CU= I =000 =00

S S S
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\Idea 2. Check All Constraints

> Instead of Ly, we can add any PSD matrix D, as long as for all S
1ID1s < IG(S, ).

> Just turn the problem into an exponential-sized semidefinite program:

Bn;%{reneaé Reffp (e)

VS: ]lgD]lg < ]lgLG]lg}

> Pro: Can use duality to facilitate analysis.
> Con: Adds another obstacle to making the construction algorithmic.



Puzzle Interlude: Degree-thinness...
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Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e,
IT(S,S)I < - |G(S, S),
for all singletons S.
(> There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen3, Furer-Raghavachari’94, ... ], nevertheless ...

> Is there an easy well-conditioner H?
> An expander!

[on board ...]



Do well-conditioners always exist?
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> What is the worst possible answer to the convex program?

i Reff
i g el

VS : ]lgD]ls < ]lng]ls}

> Bad News: There are k-edge-connected graphs where the answer is Q(1).
& New Strategy: Change the objective to average effective resistance in cuts

max E[Reffp(e) | e € G(S,S)].

> Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]

For every k-edge-connected graph G there is a 1-thin matrix D > 0 such that
for every singleton S

(log logm)© 1)

E[Reffp(e) | e € G(S,S)] < -
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\When Degree Cuts are Enough /

In expanders, degree cuts are enough.

> Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.

O If a cut has few low-effective-resistance edges, its expansion must be low.
Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.
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There is always a Q(k)-edge-connected 1/ log n-expanding induced
subgraph. Using this, build the hierarchical decomposition.

Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.

Key Observation: Expansion goes up by a constant factor after
contracting.



\Rest of the Ideas

v o9 ¢

There is always a Q(k)-edge-connected 1/ log n-expanding induced
subgraph. Using this, build the hierarchical decomposition.

Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.

. Expansion goes up by a constant factor after
contracting.

Repeat this log log n times until expansion is Q(1).
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\Conclusion /

> Every k-edge-connected graph has an «-thin tree for

(loglogn)© ()

k

> Can we build thin trees efficiently?
> Can we remove the dependence on n?
> What happens if we look at thinness w.rt. a family of cuts? For what

families is it easy to construct well-conditioners?
ank: youl



