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Hermitian Matrix integrals

H, ={M € Mat(n,C), M= M*}, M= xj+ iy

o Lebesgue measure: dM = [[[_; dx; [[;.; dx;dy;.
e Partition function
Zo(tie) = —— / e~ V(Mg
e vol(Us) Ju,

with

2d
1
Vt(/\//): §M2+ZtkMk, thg > 0,
k=1

is a 7-function of the Toda lattice equations.
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Hermitian Matrix integrals

H, ={M € Mat(n,C), M= M*}, M= xj+ iy

e Lebesgue measure: dM = []7_; dx;i [ ]
e Partition function

i<j dxijdyij-
1

Zy(t;€) = m

/ e—%Tth(M)dM
Hp

with
1 2d
_ 2 k
Vt(M)_§M —|—ZtkM , g >0,
k=1
is a 7-function of the Toda lattice equations.

Goal: rigorous derivation of Z,(t;¢) for ¢ — 0 and n — oo with
ne = x > 0 finite, in the so called multi-cut case.
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Orthogonal polynomials

n—1
Z,=n ] vrs

j=0
with ; norming constants of orthogonal polynomials p;(\) = ;N + ...
oo Lve(x
/ pi(N)pc(N)e™ < " Wdx = gy,
—00
e Three terms recurrence relations: Apg(A) = y1p1(N) + Bopo(A) and
Ry

Api(A) = vjr1pir1(A) + Bipi(A) +ipi-1(A), v = P
J
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Orthogonal polynomials

n—1
Z,=n ] vrs

Jj=0

with ; norming constants of orthogonal polynomials p;(\) = ;M + ...

—+o0
/ pi(Mpk(N)e e i dA = 5,

e Three terms recurrence relations: Apg(A) = y1p1(N) + Bopo(A) and

Py
Ap(A) = vj+1pi41(N) + Bipi(A) +5pi-1(A), v = Tj—l

i
e Relevant statistical quantities are described by orthogonal polynomials

1
like the one point function: p,(A) = Eefév()‘) Z}Zol p;j(A\)? which is

related to the distribution of eigenvalues.
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Distribution of eigenvalues

For n — 0o, ne = x finite, the distribution of eigenvalues
duy, = lim pa(N)d\. The measure dpy, minimizes the variational problem

o [/ / log

W) + ;. [ Vits)an(s)
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Distribution of eigenvalues

For n — 0o, ne = x finite, the distribution of eigenvalues
duy, = lim pa(N)d\. The measure dpy, minimizes the variational problem

o [// og M)+ / Vt(s)du(s)}

oFor t =0, duy, = 2=V4x — A2dX (Wigner semicircle law).
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Distribution of eigenvalues

For n — 0o, ne = x finite, the distribution of eigenvalues
duy, = lim pa(N)d\. The measure dpy, minimizes the variational problem

o [/ / log

oFor t =0, duy, = 2=V4x — A2dX (Wigner semicircle law).

e For t small, one has that support of duy, equal [r—, ry], ro = ri(t, x)
and the distribution of eigenvalues is given by a deformation of the Wigner
semicircle law duy, = h(A\)y/(A — r—)(rs — A)dA.

W) + ;. [ Vits)an(s)

Tamara Grava 4 /25



Distribution of eigenvalues

For n — 0o, ne = x finite, the distribution of eigenvalues
duy, = lim pa(N)d\. The measure dpy, minimizes the variational problem

fLZil [// log |5iy|du(s)du(y) + % / Vt(s)du(s)} _

oFor t =0, duy, = 2=V4x — A2dX (Wigner semicircle law).

e For t small, one has that support of duy, equal [r—, ry], ro = ri(t, x)
and the distribution of eigenvalues is given by a deformation of the Wigner
semicircle law duy, = h(A\)y/(A — r—)(rs — A)dA.

e For t > t, support of duy, consists of more then one interval,
(multi-cut case).
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Toda equations

The partition function Z,(t;¢) is also a tau-function of the Toda lattice:
the dependent variables

1 Zn+1(t; G)Zn_l(t; 6)

2(4. _
’Yn(tv 6) - 5 Zn(t; 6)2
N0 Zpa(te)
Onltie) = =5 108 =7 iy

solve the Toda equations. The first flow is

€ aly
ot

~
:En(ﬁn—l_ﬁn)’ €6t1 = — Vnt1s
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Perturbative expansion

For t < 1 (one-cut) the partition function has the following expansion

Zn(t; 6) 1 m . ,'
%8 7 0:0) =X g2.c STty (TeMY L TeM)

k>0 " m>0 i1+ +ig=k+2m
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Perturbative expansion

For t < 1 (one-cut) the partition function has the following expansion

Zn(t; 6) 1 m . ,'
%8 7 0:0) =X g2.c STty (TeMY L TeM)

k>0 " m>0 i1+ +ig=k+2m

Introducing the 't Hooft coupling parameter x = Ne

Zn(tie) _
Z,(0:¢) —;Jezg 2Fg(X, t)

log

with

Fel, ) =D > ag(in, - ik)ty - tiyx"

K iy
with h=2—-2g —k+i|/2and i =i + -+ ix and
. . 1 . : .
ag(i,...,ik) = ﬁ#{connected oriented ribbon graph of genus g with
k vertices of valencies i1, ..., ik}
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Enumerative geometry and Random Matrices

Zy(t;€)

Z,(0;¢)

+ 2160x° tatyts + 90x>t2 + 5400x°t4t2 4 5x*ts + 1080x>t3 t

+ 144x5 tyte + 4320x°t2ts + 108000x°t3t5ts 4+ 270000x” t2 te
300x°t2 + 21600x” t4t2 + 36000x3]

log = e 2[6x3t54+2x3ty +216x 21, +18x* £ +288x° 3 +45x* t3 t5

+ gxt§ + xtg + 234x2 3ty 4+ 30x°t7 4 1056x°t; + 60x>tats + 6480x>t3tsts
+ 300x3t2 + 32400x*t4 12 + 10x°ts + 3330x3t3t + 600x>tste
31680x*t7 t + 66600x* t3tsts + 283500xt2 ts + 2400x*t2 + 270000x°t, 2

+ 696000x°t2 + O(€?)

coeff 1/e?: 2x3ty <+ ap(4), 18x*t7 <+ ap(4,4),
coeff 1/€%: xtg <+ a1(4), 30x°t2 <> a1(4,4).
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Existence of the expansion in even power of 1/n

Key ideas (e = 1/n):
@ the one point function p,(\) has an asymptotic expansion in even
powers of 1/n:

o0 i h
/ F(Npn(NdA = fo+ 5+ 2 4.

—0o0
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o i h
/ F(Npn(NdA = fo+ 5+ 2 4.
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Existence of the expansion in even power of 1/n

Key ideas (e = 1/n):
@ the one point function p,(\) has an asymptotic expansion in even
powers of 1/n:

o i h
/ F(Npn(NdA = fo+ 5+ 2 4.

—0o0

° % log Z, = —n*E (1 TrM¥) = —n? [ Akpp(N)dA =
k

e () + e () + el (t) + ...

@ The integration with respect to tj is performed term by term in the
above expansion taking as a reference point the GUE, and using the
result that the space of 1-cut potentials in the class of polynomials
weights, is path connected.

Tamara Grava 9/25



Computation of the coefficients a(ki, . ..

Take € = 1 and consider
i ] lil
<TrM’1...TI’M’k>C = kl Z ag(il"_.’ik)N2_2g_k+?
0<g<3(3 —k+1)

and define

= (TrMA . TeMix)
Gl Ars s M) = Z Nit2 Nl :

iyerik=1

e (Ci(n, A1) was obtained by Harer-Zagier (1986),
e ((n, A1, \2) was obtained by Morozov-Shakirov (2009),
o Cy(n,A1,..., k), k > 1 was obtained by Dubrovin-Di (2016).

Alternatively Ci(n, A1,..., k) can be obtained using topological recursion
formulas.
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Two cuts case

@ The support of the equilibrium measure dyy, consists of 2 intervals.

@ The recurrence coefficients of the orthogonal polynomials v,(t, €) and
Bn(t,€) are highly oscillatory and described by Jacobi 6-functions as

N —» OO (Deift Kriecherbauer MclLaughlin Venakides Zhou, 1999).
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Two cuts case

@ The support of the equilibrium measure dyy, consists of 2 intervals.

@ The recurrence coefficients of the orthogonal polynomials v,(t, €) and
Bn(t,€) are highly oscillatory and described by Jacobi 6-functions as

N —» OO (Deift Kriecherbauer MclLaughlin Venakides Zhou, 1999).

@ The partition function has an oscillatory behaviour described by ¢

Bonnet-David-Eynard 2000, Eynard 2012, Scherbina, Guionnet-Borot 2013)

1
Zny(t,€) H(nc*;T)e*"ZFO*FlJ“"', €= =
n

where c* is the fraction of eigenvalues in one of the two intervals and
0 is the Jacobi f-function.
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Derivation by Bonnet-David-Eynard

Suppose that the potential is 2-cut with minimum values E; < E;. Then

the eigenvalues of the matrix model are distributed asymptotically in two
intervals.

n .

2 : J

Zn X Zn,cj7 G = ;
Jj=0

where Z, . is the matrix model obtained by forcing to have j eigenvalues
in (=00, Eg) and n — j in (Eg, +00), with E; < Eg < E>. Then
1 _
—log Zyg; = n*Fo(q) + F1(¢)) + —Fa(e) +0(n™)
Performing a Taylor expansion of Fo(c;) near the stationary point c*
n n
2y 3 Zyy e e PR S T
»Cj
j=0 j=0

2 * * 27TI
~ e PR (nctr) 4L, T =
F(/)I(C*)
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Loop equations and determination of F;

e 1-point resolvent

d 1 d - 1 d
Wi(z) == —————log Z SN N
12 = W ne '8 gy Jz:zﬂrl dt
o k)
Assuming Wi(z) has a 1/n? expansion Wi(z) = Y. = lnzk(z), then
k=0
d
W (z) = Fi.
12 = Gy

Wl(k) are obtained by solving the loop equation

7{ de = Wi(2)*+ %Wz(z, z)
c

Z— X

iteratively using the topological recursion (Chekhov-Eynard-Orantin).
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Statement of the result

For a polynomial potential V¢(A) for which the distribution of eigenvalues
is given by the regular measure

du(X) = h(A) /(A — a1)(A — a2)(A — a3) (A — aq)d A, with

A € [a1, a2] U [a3, a4], the partition function has the following expansion

log Z,(t) = log C, — n®Fo(t) — F1(t) + log 8(nc*; 7(t)) + O (}1)
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Statement of the result

For a polynomial potential V¢(A) for which the distribution of eigenvalues

is given by the regular measure
du(X) = h(A) /(A — a1)(A — a2)(A — a3) (A — aq)d A, with
A € [a1, a2] U [a3, a4], the partition function has the following expansion

log Z,(t) = log C, — n®Fo(t) — F1(t) + log 8(nc*; 7(t)) + O (}1)

where |
_ ™ SGUE ,GUE Y
Cr = e e At 7 e
GUE _ nj2 (0 n/2 |
Zno = (2m) <4n) Ilj
J:

Fe) = [ [ log 2 dul@)du(y) + [ Ve(2)du(z)

|z —y|
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log Z,(t) = log C, — n®Fo(t) — Fi(t) + log 8(nc*(t); 7(t)) + O <,::>

4

1
Fl(t) = ﬂ |0g[.,412 H(ak - a_,')4 H h(aj)] G. Akemann 1996

J<k Jj=1

with 0(z;7) = 3., € Ze™ M TH2mizn | c* the fraction of eigenvalues in
[a3, as] and A the period of the non normalised holomorphic one-form of

the elliptic curve y? = Hj}zl()\ — aj) and 7 the elliptic modulus of the
curve.

@ F1 can also be expressed via the Dedekind 7 function.

@ F; was calculated for hyperelliptic curves by Chekhov and in 2-matrix
models by Eynard, Kokotov and Korotkin.
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Strategy to obtain the large n expansion of log Z, in the

two-interval case.

@ We derive an asymptotic expansion in n for the derivatives

ftk l0g Zy(t) = Pgo(t) + nga(t.n) + g(t.n) + O(1/n), (1)

where gi(t, n) are uniformly bounded in n;
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Strategy to obtain the large n expansion of log Z, in the

two-interval case.

@ We derive an asymptotic expansion in n for the derivatives

ftk l0g Zy(t) = Pgo(t) + nga(t.n) + g(t.n) + O(1/n), (1)

where gi(t, n) are uniformly bounded in n;

o we find a starting point t* in the space of times for which it is possible
to determine independently the expansion of the partition function;
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ftk l0g Zy(t) = Pgo(t) + nga(t.n) + g(t.n) + O(1/n), (1)

where gi(t, n) are uniformly bounded in n;

o we find a starting point t* in the space of times for which it is possible
to determine independently the expansion of the partition function;

@ we show that in the space of times t the set S of points for which the
support of eigenvalues consists of two intervals is connected;
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Strategy to obtain the large n expansion of log Z, in the

two-interval case.

@ We derive an asymptotic expansion in n for the derivatives

B log Z,(t) = n*go(t) + ngi(t,n) + ga(t,n) +O(1/n), (1)
k

where gi(t, n) are uniformly bounded in n;

o we find a starting point t* in the space of times for which it is possible
to determine independently the expansion of the partition function;

@ we show that in the space of times t the set S of points for which the
support of eigenvalues consists of two intervals is connected;

@ it is possible to integrate term by term the equation (1) from the
reference time t* to any other time t in the set S.
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Reference potential

1
We consider the potential V, s(\) = ;()\4 — rA?), with r > 1/2s.

Eigenvalues are distributed on two intervals

[-Vb, —va|U[va,Vb], a=(r—2v5)/2, b= (r+2s)/2.
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Reference potential

1
We consider the potential V; s(\) = =(A* — rA2), with r > /2s.
s
Eigenvalues are distributed on two intervals

[-Vb, —va|U[va,Vb], a=(r—2v5)/2, b= (r+2s)/2.

The corresponding partition function Z,(r,s) is given by

log Zon(r,s) = log(2n)! + log Z,(—1/2, r,s) + log Z,(1/2, r,s)
log Zony1(r, s) = log(2n + 1)! + log Z,(—1/2,r, s, ) + log Z,(1/2,r,s_)
with s =s(14+1/(2n+ 1)) and

A

Zo(a, r,s) /HA—AQHA"‘ TOI g,

+ y<i

Tamara Grava 17 / 25



Theorem. The partition function Z,(r,s) associated to the potential

1
Vis(A) = g(/\4 — rA?) has an asymptotic expansion
1
log Z,(r,s) = log C, — n*Fo(r,s) — Fi(r,s) + log#(n/2; 7(r,s)) + O <n)
where

n!
C, = GUE 7GUE 3/2

= e E LY S 0'*:46
EIE S

As a function of n, the oscillatory term assumes only two values.
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. 9, :
Determination of gz,, as n — oo for general potential
k

The following relation is satisfied (Jimbo-Miwa, Bertola)

9 log Zs(t) = — = Res (Tr(X1(A)X.(A\)os \kd)),
Oty 2 A=o0

where X,(\) is a 2 x 2 matrix (A. Fokas, A. Its, A. Kitaev)

—th(s)ds

’Y;lpn()‘) 27” fR pn(s)————
Xn()\) = e—"Vi(s) 4
—27iYp—1Pn—1(A)  —Vn—1 fR Pn—l(s)ﬁ

with oo
/ pi(N)pm(N)e VN dA = 5jp,

—00

and ~v,'s are recurrence coefficients for the orthogonal polynomials.
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Remark.

e the leading term of the asymptotic expansion of X,(\) as n — oo was a
obtained by Deift et all (1999) where they also show that X,()) has an
asymptotic expansion in the form

where the matrix Pk (A, n) is uniformly bounded in n. For our purpose we
obtain the first subleading term.

e The non trivial part of our analysis is to identify the terms of the
asymptotic expansion as n — oo of r.h.s. of

a?: log Zy = 7 | Res (Tr(X L)X (N)asAkd )

as an anti-derivative with respect to the times t.
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Explicit computation

Let us introduce the Szego kernel

H(f du; 1)

E(z0,:)0 (2] (0; 7)

S m (20,21) =
and the 1-form

(DCIO,PO( ) S[nc*](z po)s[nc ](q07z)

Notice that
Pqq(2) = ~B(2,) — (log 0 |2| (0;7))"du(z)du(q),

where B(z, q) is the so called canonical symmetric bi-differential or
Bergman kernel.
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(qu PO( ) S[nc ](Z pO)S[nc ](q07z)

Then from steepest decent analysis of the Riemann-Hilbert problem for
Xn(A)

F
S log Z, =’ O+ n(log¥(nc*, 7)) du(z)/dz

(2)

4 - 4
1 o5, (2) — P, 5(2 1 ¢ OSSN
+§2Res A,z( )A Al )+ Res Az( z) — ®55(z
— =3 4z [Ay(¢) 48 Y A=3 z fA (&)

CY(nein) Y0 (nei7)) B
O(nc*;7) n O(nc*;7) 6n

+ O(1/n)

+ O(1/n)
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Solving loop equations?

Wk Wik
Assume that Wi(z) = >"}7, W17k(2) and Wi(z,x) =302, M

and define Kf(z) := §, YeCIF gy Then the loop equations give

Z—X

n

KK —2W QW (z) =0, [K - 2w (@)W (z) =0,

K — 2W QW (2) = (W (2))? + Wi (z, 2)
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Solving loop equations?

Wk Wik
Assume that Wi(z) = >"}7, W17k(2) and Wi(z,x) =302, M

and define Kf(z) := §, YeCIF gy Then the loop equations give

Z—X

n

KK —2W QW (z) =0, [K - 2w (@)W (z) =0,

K — 2W QW (2) = (W (2))? + Wi (z, 2)

° Wfo)(z) — planar limit
o WM (z)dz = —(log 6 [2] (0; 7)) du(z),
° W( )(z 2)dz? = &3 3(z) = —B(z,2) — (log 0 [2] (0; 7)) du(z)du(Z),

sz)(z)dZZZARef Pya(2) =@, 5(2)  Pan(z) — Pxx(2)

Nz
j=1"" 9 ngA du(§)d§ 16f,\ du(§)
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Integration

Theorem. The space of one-cut regular potential in the parameter space
t € R?? is connected.

e The expansion of the partition function is obtained by integration in the
space of times from the point (0, t2,0, t1,0,...,0) to any point t
corresponding to a one-cut regular potential.

Tamara Grava 24 / 25



Conclusion

We derive the asymptotic expansion of the partition function of Hermitian
matrix integral in the two cut case as

log Z,(t) = log C, — n®Fo(t) — Fi(t) + log @(nc*(t); 7(t)) + O <,17>

where

n!
C, = GUE 7GUE o — 4e3/2

- +1 2],0% n+l %
gl T e
e Our main contribution is the derivation of the constant C,,. For the

remaining terms of the expansion, our analysis confirms earlier results by
Bonnet-David-Eynard, Eynard.

e Open problem: obtain the expansion by solving the loop equations.
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