Asymptotic expansion of the partition function of one-matrix models

Tamara Grava

joint work with T. Claeys (Leuven) and K. McLaughlin (Fort Collins) based on CMP 2015

Hermitian Matrix integrals

$$
\mathbb{H}_{n}=\left\{M \in \operatorname{Mat}(n, \mathbb{C}), \quad M=M^{*}\right\}, \quad M_{i j}=x_{i j}+i y_{i j}
$$

- Lebesgue measure: $d M=\prod_{i=1}^{n} d x_{i i} \prod_{i<j} d x_{i j} d y_{i j}$.
- Partition function

$$
Z_{n}(\boldsymbol{t} ; \epsilon)=\frac{1}{\operatorname{vol}\left(U_{n}\right)} \int_{\mathbb{H}_{n}} e^{-\frac{1}{\epsilon} \operatorname{Tr} V_{t}(M)} d M
$$

with

$$
V_{\boldsymbol{t}}(M)=\frac{1}{2} M^{2}+\sum_{k=1}^{2 d} t_{k} M^{k}, \quad t_{2 d}>0
$$

is a τ-function of the Toda lattice equations.

Hermitian Matrix integrals

$$
\mathbb{H}_{n}=\left\{M \in \operatorname{Mat}(n, \mathbb{C}), \quad M=M^{*}\right\}, \quad M_{i j}=x_{i j}+i y_{i j}
$$

- Lebesgue measure: $d M=\prod_{i=1}^{n} d x_{i i} \prod_{i<j} d x_{i j} d y_{i j}$.
- Partition function

$$
Z_{n}(\boldsymbol{t} ; \epsilon)=\frac{1}{\operatorname{vol}\left(U_{n}\right)} \int_{\mathbb{H}_{n}} e^{-\frac{1}{\epsilon} \operatorname{Tr} V_{t}(M)} d M
$$

with

$$
V_{t}(M)=\frac{1}{2} M^{2}+\sum_{k=1}^{2 d} t_{k} M^{k}, \quad t_{2 d}>0
$$

is a τ-function of the Toda lattice equations.
Goal: rigorous derivation of $Z_{n}(\boldsymbol{t} ; \epsilon)$ for $\epsilon \rightarrow 0$ and $n \rightarrow \infty$ with $n \epsilon=x>0$ finite, in the so called multi-cut case.

Orthogonal polynomials

$$
Z_{n}=n!\prod_{j=0}^{n-1} \sqrt{\kappa_{j}}
$$

with κ_{j} norming constants of orthogonal polynomials $p_{j}(\lambda)=\kappa_{j} \lambda^{j}+\ldots$

$$
\int_{-\infty}^{+\infty} p_{j}(\lambda) p_{k}(\lambda) e^{-\frac{1}{\epsilon} V_{t}(\lambda)} d \lambda=\delta_{j k}
$$

- Three terms recurrence relations: $\lambda p_{0}(\lambda)=\gamma_{1} p_{1}(\lambda)+\beta_{0} p_{0}(\lambda)$ and

$$
\lambda p_{j}(\lambda)=\gamma_{j+1} p_{j+1}(\lambda)+\beta_{j} p_{j}(\lambda)+\gamma_{j} p_{j-1}(\lambda), \quad \gamma_{j}=\frac{\kappa_{j}}{\kappa_{j+1}}
$$

Orthogonal polynomials

$$
Z_{n}=n!\prod_{j=0}^{n-1} \sqrt{\kappa_{j}}
$$

with κ_{j} norming constants of orthogonal polynomials $p_{j}(\lambda)=\kappa_{j} \lambda^{j}+\ldots$

$$
\int_{-\infty}^{+\infty} p_{j}(\lambda) p_{k}(\lambda) e^{-\frac{1}{\epsilon} V_{t}(\lambda)} d \lambda=\delta_{j k}
$$

- Three terms recurrence relations: $\lambda p_{0}(\lambda)=\gamma_{1} p_{1}(\lambda)+\beta_{0} p_{0}(\lambda)$ and

$$
\lambda p_{j}(\lambda)=\gamma_{j+1} p_{j+1}(\lambda)+\beta_{j} p_{j}(\lambda)+\gamma_{j} p_{j-1}(\lambda), \quad \gamma_{j}=\frac{\kappa_{j}}{\kappa_{j+1}}
$$

- Relevant statistical quantities are described by orthogonal polynomials like the one point function: $\rho_{n}(\lambda)=\frac{1}{n} e^{-\frac{1}{\epsilon} V(\lambda)} \sum_{j=0}^{n-1} p_{j}(\lambda)^{2}$ which is related to the distribution of eigenvalues.

Distribution of eigenvalues

For $n \rightarrow \infty, n \epsilon=x$ finite, the distribution of eigenvalues $d \mu_{V_{t}}=\lim \rho_{n}(\lambda) d \lambda$. The measure $d \mu_{V_{t}}$ minimizes the variational problem

$$
\inf _{\int d \mu=1}\left[\iint \log \frac{1}{|s-y|} d \mu(s) d \mu(y)+\frac{1}{x} \int V_{t}(s) d \mu(s)\right] .
$$

Distribution of eigenvalues

For $n \rightarrow \infty, n \epsilon=x$ finite, the distribution of eigenvalues $d \mu_{V_{t}}=\lim \rho_{n}(\lambda) d \lambda$. The measure $d \mu_{V_{t}}$ minimizes the variational problem

$$
\inf _{\int d \mu=1}\left[\iint \log \frac{1}{|s-y|} d \mu(s) d \mu(y)+\frac{1}{x} \int V_{t}(s) d \mu(s)\right] .
$$

- For $\boldsymbol{t}=0, d \mu V_{t}=\frac{1}{2 \pi} \sqrt{4 x-\lambda^{2}} d \lambda$ (Wigner semicircle law).

Distribution of eigenvalues

For $n \rightarrow \infty, n \epsilon=x$ finite, the distribution of eigenvalues $d \mu_{V_{t}}=\lim \rho_{n}(\lambda) d \lambda$. The measure $d \mu_{V_{t}}$ minimizes the variational problem

$$
\inf _{\int d \mu=1}\left[\iint \log \frac{1}{|s-y|} d \mu(s) d \mu(y)+\frac{1}{x} \int V_{t}(s) d \mu(s)\right] .
$$

-For $\boldsymbol{t}=0, d \mu v_{t}=\frac{1}{2 \pi} \sqrt{4 x-\lambda^{2}} d \lambda$ (Wigner semicircle law).

- For \boldsymbol{t} small, one has that support of $d \mu v_{t}$ equal $\left[r_{-}, r_{+}\right], r_{ \pm}=r_{ \pm}(\boldsymbol{t}, x)$ and the distribution of eigenvalues is given by a deformation of the Wigner semicircle law $d \mu v_{t}=h(\lambda) \sqrt{\left(\lambda-r_{-}\right)\left(r_{+}-\lambda\right)} d \lambda$.

Distribution of eigenvalues

For $n \rightarrow \infty, n \epsilon=x$ finite, the distribution of eigenvalues $d \mu_{V_{t}}=\lim \rho_{n}(\lambda) d \lambda$. The measure $d \mu_{V_{t}}$ minimizes the variational problem

$$
\inf _{\int d \mu=1}\left[\iint \log \frac{1}{|s-y|} d \mu(s) d \mu(y)+\frac{1}{x} \int V_{t}(s) d \mu(s)\right] .
$$

-For $\boldsymbol{t}=0, d \mu v_{t}=\frac{1}{2 \pi} \sqrt{4 x-\lambda^{2}} d \lambda$ (Wigner semicircle law).

- For \boldsymbol{t} small, one has that support of $d \mu v_{t}$ equal $\left[r_{-}, r_{+}\right], r_{ \pm}=r_{ \pm}(\boldsymbol{t}, x)$ and the distribution of eigenvalues is given by a deformation of the Wigner semicircle law $d \mu v_{t}=h(\lambda) \sqrt{\left(\lambda-r_{-}\right)\left(r_{+}-\lambda\right)} d \lambda$.
- For $\boldsymbol{t}>\boldsymbol{t}_{\boldsymbol{c}}$, support of $d \mu v_{\boldsymbol{t}}$ consists of more then one interval, (multi-cut case).

Toda equations

The partition function $Z_{n}(\boldsymbol{t} ; \epsilon)$ is also a tau-function of the Toda lattice: the dependent variables

$$
\begin{aligned}
& \gamma_{n}^{2}(\boldsymbol{t} ; \epsilon)=\frac{1}{2} \frac{Z_{n+1}(\boldsymbol{t} ; \epsilon) Z_{n-1}(\boldsymbol{t} ; \epsilon)}{Z_{n}(\boldsymbol{t} ; \epsilon)^{2}} \\
& \beta_{n}(\boldsymbol{t} ; \epsilon)=-\epsilon \frac{\partial}{\partial t_{1}} \log \frac{Z_{n+1}(\boldsymbol{t} ; \epsilon)}{Z_{n}(\boldsymbol{t} ; \epsilon)}
\end{aligned}
$$

solve the Toda equations. The first flow is

$$
\epsilon \frac{\partial \gamma_{n}}{\partial t_{1}}=\frac{\gamma_{n}}{2}\left(\beta_{n-1}-\beta_{n}\right), \quad \epsilon \frac{\partial \beta_{n}}{\partial t_{1}}=\gamma_{n}^{2}-\gamma_{n+1}^{2}
$$

Initial data: $\left.\beta_{n}(\boldsymbol{t}, \epsilon)\right|_{\boldsymbol{t}=0}=0$ and $\left.\gamma_{n}(\boldsymbol{t}, \epsilon)\right|_{\boldsymbol{t}=0}=\sqrt{n \epsilon}$.

Perturbative expansion

For $t \ll 1$ (one-cut) the partition function has the following expansion

$$
\log \frac{Z_{n}(\boldsymbol{t} ; \epsilon)}{Z_{n}(\mathbf{0} ; \epsilon)}=\sum_{k \geq 0} \frac{1}{k!} \sum_{m \geq 0} \epsilon^{m} \sum_{i_{1}+\cdots+i_{k}=k+2 m} t_{i_{1}} \ldots t_{i_{k}}\left\langle\operatorname{Tr} M^{i_{1}} \ldots \operatorname{Tr} M^{i_{k}}\right\rangle_{c}
$$

Perturbative expansion

For $t \ll 1$ (one-cut) the partition function has the following expansion

$$
\log \frac{Z_{n}(\boldsymbol{t} ; \epsilon)}{Z_{n}(\mathbf{0} ; \epsilon)}=\sum_{k \geq 0} \frac{1}{k!} \sum_{m \geq 0} \epsilon^{m} \sum_{i_{1}+\cdots+i_{k}=k+2 m} t_{i_{1}} \ldots t_{i_{k}}\left\langle\operatorname{Tr} M^{i_{1}} \ldots \operatorname{Tr}^{i_{k}}\right\rangle_{c}
$$

Introducing the 't Hooft coupling parameter $x=N \epsilon$

$$
\log \frac{Z_{n}(\boldsymbol{t} ; \epsilon)}{Z_{n}(\mathbf{0} ; \epsilon)}=\sum_{g \geq 0} \epsilon^{2 g-2} F_{g}(x, \boldsymbol{t})
$$

with

$$
F_{g}(x, \boldsymbol{t})=\sum_{k} \sum_{i_{1}, \ldots, i_{k}} a_{g}\left(i_{1}, \ldots, i_{k}\right) t_{i_{1}} \ldots t_{i_{k}} x^{h}
$$

with $h=2-2 g-k+|i| / 2$ and $i=i_{1}+\cdots+i_{k}$ and
$a_{g}\left(i_{1}, \ldots, i_{k}\right)=\frac{1}{k!} \#\{$ connected oriented ribbon graph of genus g with k vertices of valencies $\left.i_{1}, \ldots, i_{k}\right\}$

Enumerative geometry and Random Matrices

$$
\begin{aligned}
& \log \frac{Z_{n}(\boldsymbol{t} ; \epsilon)}{Z_{n}(\mathbf{0} ; \epsilon)}=\epsilon^{-2}\left[6 x^{3} t_{3}^{2}+2 x^{3} t_{4}+216 x^{4} t_{3}^{2} t_{4}+18 x^{4} t_{4}^{2}+288 x^{5} t_{4}^{3}+45 x^{4} t_{3} t_{5}\right. \\
& +2160 x^{5} t_{3} t_{4} t_{5}+90 x^{5} t_{5}^{2}+5400 x^{6} t_{4} t_{5}^{2}+5 x^{4} t_{6}+1080 x^{5} t_{3}^{2} t_{6} \\
& +144 x^{5} t_{4} t_{6}+4320 x^{6} t_{4}^{2} t_{6}+108000 x^{6} t_{3} t_{5} t_{6}+270000 x^{7} t_{5}^{2} t_{6} \\
& \\
& \left.\quad 300 x^{6} t_{6}^{2}+21600 x^{7} t_{4} t_{6}^{2}+36000 x^{8} t_{6}^{3}\right]
\end{aligned} \begin{aligned}
& \begin{array}{l}
3 \\
+\frac{3}{2} x t_{3}^{2}+x t_{4}+234 x^{2} t_{3}^{2} t_{4}+30 x^{2} t_{4}^{2}+1056 x^{3} t_{4}^{3}+60 x^{2} t_{3} t_{5}+6480 x^{3} t_{3} t_{4} t_{5} \\
+300 x^{3} t_{5}^{2}+32400 x^{4} t_{4} t_{5}^{2}+10 x^{2} t_{6}+3330 x^{3} t_{3}^{2} t_{6}+600 x^{3} t_{4} t_{6}
\end{array} \\
& \begin{array}{l}
31680 x^{4} t_{4}^{2} t_{6}+66600 x^{4} t_{3} t_{5} t_{6}+283500 x t_{5}^{2} t_{6}+2400 x^{4} t_{6}^{2}+270000 x^{5} t_{4} t_{6}^{2} \\
\text { coeff } 1 / \epsilon^{2}: 2 x^{3} t_{4} \leftrightarrow a_{0}(4), 18 x^{4} t_{4}^{2} \leftrightarrow a_{0}(4,4), \\
\text { coeff } 1 / \epsilon^{0}: x t_{4} \leftrightarrow a_{1}(4), 30 x^{2} t_{4}^{2} \leftrightarrow a_{1}(4,4) .
\end{array}
\end{aligned}
$$

References

- Relation between random matrices expansion and enumerative geometry: E.Brézin, C.Itzykson, G.Parisi, J.B.Zuber 1978, E.Brézin, C.Itzykson, J.B.Zuber 1980.
- Existence of the expansion in even power of ϵ^{2} : N. Ercolani, K. Mc Laughin 2003, P. Bleher, A. Its 2004.
- Explicit computation of the coefficients $a_{g}\left(k_{1}, \ldots, k_{m}\right)$: Harer-Zagier (1986), Morozov-Shakirov (2009), Dubrovin-Di (2016).

Existence of the expansion in even power of $1 / n$

Key ideas $(\epsilon=1 / n)$:

- the one point function $\rho_{n}(\lambda)$ has an asymptotic expansion in even powers of $1 / n$:

$$
\int_{-\infty}^{\infty} f(\lambda) \rho_{n}(\lambda) d \lambda=f_{0}+\frac{f_{1}}{n^{2}}+\frac{f_{2}}{n^{4}}+\ldots
$$

Existence of the expansion in even power of $1 / n$

Key ideas $(\epsilon=1 / n)$:

- the one point function $\rho_{n}(\lambda)$ has an asymptotic expansion in even powers of $1 / n$:

$$
\int_{-\infty}^{\infty} f(\lambda) \rho_{n}(\lambda) d \lambda=f_{0}+\frac{f_{1}}{n^{2}}+\frac{f_{2}}{n^{4}}+\ldots
$$

- $\frac{\partial}{\partial t_{k}} \log Z_{n}=-n^{2} \mathbb{E}\left(\frac{1}{n} \operatorname{Tr} M^{k}\right)=-n^{2} \int \lambda^{k} \rho_{n}(\lambda) d \lambda=$

$$
n^{2} e_{0}^{(k)}(\boldsymbol{t})+e_{1}^{(k)}(\boldsymbol{t})+\frac{1}{n^{2}} e_{2}^{(k)}(\boldsymbol{t})+\ldots
$$

Existence of the expansion in even power of $1 / n$

Key ideas $(\epsilon=1 / n)$:

- the one point function $\rho_{n}(\lambda)$ has an asymptotic expansion in even powers of $1 / n$:

$$
\int_{-\infty}^{\infty} f(\lambda) \rho_{n}(\lambda) d \lambda=f_{0}+\frac{f_{1}}{n^{2}}+\frac{f_{2}}{n^{4}}+\ldots
$$

- $\frac{\partial}{\partial t_{k}} \log Z_{n}=-n^{2} \mathbb{E}\left(\frac{1}{n} \operatorname{Tr} M^{k}\right)=-n^{2} \int \lambda^{k} \rho_{n}(\lambda) d \lambda=$

$$
n^{2} e_{0}^{(k)}(\boldsymbol{t})+e_{1}^{(k)}(\boldsymbol{t})+\frac{1}{n^{2}} e_{2}^{(k)}(\boldsymbol{t})+\ldots
$$

- The integration with respect to t_{k} is performed term by term in the above expansion taking as a reference point the GUE, and using the result that the space of 1 -cut potentials in the class of polynomials weights, is path connected.

Computation of the coefficients $a_{g}\left(k_{1}, \ldots, k_{m}\right)$

Take $\epsilon=1$ and consider

$$
\left\langle\operatorname{Tr} M^{i_{1}} \ldots \operatorname{Tr} M^{i_{k}}\right\rangle_{c}=k!\sum_{0 \leq g \leq \frac{1}{2}\left(\frac{|i|}{2}-k+1\right)} a_{g}\left(i_{1}, \ldots, i_{k}\right) N^{2-2 g-k+\frac{|i|}{2}}
$$

and define

$$
C_{k}\left(n, \lambda_{1}, \ldots, \lambda_{k}\right)=\sum_{i_{1}, \ldots, i_{k}=1}^{\infty} \frac{\left\langle\operatorname{Tr} M^{i_{1}} \ldots \operatorname{Tr}^{i_{k}}\right\rangle_{c}}{\lambda^{i_{1}+2} \ldots \lambda^{i_{k}+1}}
$$

- $C_{1}\left(n, \lambda_{1}\right)$ was obtained by Harer-Zagier (1986),
- $C_{2}\left(n, \lambda_{1}, \lambda_{2}\right)$ was obtained by Morozov-Shakirov (2009),
- $C_{k}\left(n, \lambda_{1}, \ldots, \lambda_{k}\right), k \geq 1$ was obtained by Dubrovin-Di (2016).

Alternatively $C_{k}\left(n, \lambda_{1}, \ldots, \lambda_{k}\right)$ can be obtained using topological recursion formulas.

Two cuts case

- The support of the equilibrium measure $d \mu V_{t}$ consists of 2 intervals.
- The recurrence coefficients of the orthogonal polynomials $\gamma_{n}(\boldsymbol{t}, \epsilon)$ and $\beta_{n}(\boldsymbol{t}, \epsilon)$ are highly oscillatory and described by Jacobi θ-functions as $n \rightarrow \infty$ (Deift Kriecherbauer McLaughlin Venakides Zhou, 1999).

Two cuts case

- The support of the equilibrium measure $d \mu V_{t}$ consists of 2 intervals.
- The recurrence coefficients of the orthogonal polynomials $\gamma_{n}(\boldsymbol{t}, \epsilon)$ and $\beta_{n}(\boldsymbol{t}, \epsilon)$ are highly oscillatory and described by Jacobi θ-functions as $n \rightarrow \infty$ (Deift Kriecherbauer McLaughlin Venakides Zhou, 1999).
- The partition function has an oscillatory behaviour described by (

Bonnet-David-Eynard 2000, Eynard 2012, Scherbina, Guionnet-Borot 2013)

$$
Z_{n}(\boldsymbol{t}, \epsilon) \propto \theta\left(n c^{*} ; \tau\right) e^{-n^{2} F_{0}-F_{1}+\ldots}, \quad \epsilon=\frac{1}{n}
$$

where c^{*} is the fraction of eigenvalues in one of the two intervals and θ is the Jacobi θ-function.

Derivation by Bonnet-David-Eynard

Suppose that the potential is 2 -cut with minimum values $E_{1}<E_{2}$. Then the eigenvalues of the matrix model are distributed asymptotically in two intervals.

$$
Z_{n} \propto \sum_{j=0}^{n} Z_{n, c_{j}}, \quad c_{j}=\frac{j}{n}
$$

where $Z_{n, c_{j}}$ is the matrix model obtained by forcing to have j eigenvalues in $\left(-\infty, E_{0}\right)$ and $n-j$ in $\left(E_{0},+\infty\right)$, with $E_{1}<E_{0}<E_{2}$. Then

$$
-\log Z_{n, c_{j}}=n^{2} F_{0}\left(c_{j}\right)+F_{1}\left(c_{j}\right)+\frac{1}{n^{2}} F_{2}\left(c_{j}\right)+O\left(n^{-4}\right)
$$

Performing a Taylor expansion of $F_{0}\left(c_{j}\right)$ near the stationary point c^{*}

$$
\begin{aligned}
Z_{n} \propto \sum_{j=0}^{n} Z_{n, c_{j}} & \simeq e^{-n^{2} F_{0}\left(c^{*}\right)-F_{1}\left(c^{*}\right)} \sum_{j=0}^{n} e^{F_{0}^{\prime \prime}\left(c^{*}\right)\left(j-c^{*} n\right)^{2}}+\ldots \\
& \simeq e^{-n^{2} F_{0}\left(c^{*}\right)-F_{1}\left(c^{*}\right)} \theta\left(n c^{*} ; \tau\right)+\ldots, \quad \tau=\frac{2 \pi i}{F_{0}^{\prime \prime}\left(c^{*}\right)}
\end{aligned}
$$

Loop equations and determination of F_{j}

- 1-point resolvent

$$
W_{1}(z):=\frac{d}{d V(z)} \frac{1}{N^{2}} \log Z_{N}, \quad \frac{d}{d V(z)}=-\sum_{j=0}^{\infty} \frac{1}{z^{j+1}} \frac{d}{d t_{j}}
$$

Assuming $W_{1}(z)$ has a $1 / n^{2}$ expansion $W_{1}(z)=\sum_{k=0}^{\infty}=\frac{W_{1}^{(k)}(z)}{n^{2 k}}$, then

$$
W_{1}^{(k)}(z):=\frac{d}{d V(z)} F_{k}
$$

$W_{1}^{(k)}$ are obtained by solving the loop equation

$$
\oint_{\mathcal{C}} \frac{V_{\boldsymbol{t}}^{\prime}(x) W_{1}(x)}{z-x} d x=W_{1}(z)^{2}+\frac{1}{N^{2}} W_{2}(z, z)
$$

iteratively using the topological recursion (Chekhov-Eynard-Orantin).

Statement of the result

For a polynomial potential $V_{\boldsymbol{t}}(\lambda)$ for which the distribution of eigenvalues is given by the regular measure
$d \mu(\lambda)=h(\lambda) \sqrt{\left(\lambda-a_{1}\right)\left(\lambda-a_{2}\right)\left(\lambda-a_{3}\right)\left(\lambda-a_{4}\right)} d \lambda$, with $\lambda \in\left[a_{1}, a_{2}\right] \cup\left[a_{3}, a_{4}\right]$, the partition function has the following expansion

$$
\log Z_{n}(\boldsymbol{t})=\log C_{n}-n^{2} F_{0}(\boldsymbol{t})-F_{1}(\boldsymbol{t})+\log \theta\left(n c^{*} ; \tau(\boldsymbol{t})\right)+O\left(\frac{1}{n}\right)
$$

Statement of the result

For a polynomial potential $V_{\boldsymbol{t}}(\lambda)$ for which the distribution of eigenvalues is given by the regular measure
$d \mu(\lambda)=h(\lambda) \sqrt{\left(\lambda-a_{1}\right)\left(\lambda-a_{2}\right)\left(\lambda-a_{3}\right)\left(\lambda-a_{4}\right)} d \lambda$, with
$\lambda \in\left[a_{1}, a_{2}\right] \cup\left[a_{3}, a_{4}\right]$, the partition function has the following expansion

$$
\log Z_{n}(\boldsymbol{t})=\log C_{n}-n^{2} F_{0}(\boldsymbol{t})-F_{1}(\boldsymbol{t})+\log \theta\left(n c^{*} ; \tau(\boldsymbol{t})\right)+O\left(\frac{1}{n}\right)
$$

where

$$
\begin{gathered}
C_{n}=\frac{n!}{\left\lfloor\frac{n}{2}\right\rfloor!\left\lfloor\frac{n+1}{2}\right\rfloor!} Z_{\left\lfloor\frac{n}{2}\right\rfloor, \sigma^{*}}^{G U E} Z_{\left\lfloor\frac{n+1}{2}\right\rfloor, \sigma^{*}}^{G U E}, \quad \sigma^{*}=4 e^{3 / 2} \\
Z_{n, \sigma}^{G U E}=(2 \pi)^{n / 2}\left(\frac{\sigma}{4 n}\right)^{n^{2} / 2} \prod_{j=1}^{n} j! \\
F_{0}(\boldsymbol{t})=\iint \log \frac{1}{|z-y|} d \mu(z) d \mu(y)+\int V_{t}(z) d \mu(z)
\end{gathered}
$$

$$
\log Z_{n}(\boldsymbol{t})=\log C_{n}-n^{2} F_{0}(\boldsymbol{t})-F_{1}(\boldsymbol{t})+\log \theta\left(n c^{*}(\boldsymbol{t}) ; \tau(\boldsymbol{t})\right)+O\left(\frac{1}{n}\right)
$$

$$
F_{1}(\boldsymbol{t})=\frac{1}{24} \log \left[\mathcal{A}^{12} \prod_{j<k}\left(a_{k}-a_{j}\right)^{4} \prod_{j=1}^{4} h\left(a_{j}\right)\right] \quad \text { G. Akemann } 1996
$$

with $\theta(z ; \tau)=\sum_{n} \in \mathbb{Z} e^{\pi i n^{2} \tau+2 \pi i z n}, c^{*}$ the fraction of eigenvalues in [a_{3}, a_{4}] and \mathcal{A} the period of the non normalised holomorphic one-form of the elliptic curve $y^{2}=\prod_{j=1}^{4}\left(\lambda-a_{j}\right)$ and τ the elliptic modulus of the curve.

- F_{1} can also be expressed via the Dedekind η function.
- F_{1} was calculated for hyperelliptic curves by Chekhov and in 2-matrix models by Eynard, Kokotov and Korotkin.

Strategy to obtain the large n expansion of $\log Z_{n}$ in the two-interval case.

- We derive an asymptotic expansion in n for the derivatives

$$
\begin{equation*}
\frac{\partial}{\partial t_{k}} \log Z_{n}(\boldsymbol{t})=n^{2} g_{0}(\boldsymbol{t})+n g_{1}(\boldsymbol{t}, n)+g_{2}(\boldsymbol{t}, n)+O(1 / n) \tag{1}
\end{equation*}
$$

where $g_{k}(\boldsymbol{t}, n)$ are uniformly bounded in n;

Strategy to obtain the large n expansion of $\log Z_{n}$ in the two-interval case.

- We derive an asymptotic expansion in n for the derivatives

$$
\begin{equation*}
\frac{\partial}{\partial t_{k}} \log Z_{n}(\boldsymbol{t})=n^{2} g_{0}(\boldsymbol{t})+n g_{1}(\boldsymbol{t}, n)+g_{2}(\boldsymbol{t}, n)+O(1 / n) \tag{1}
\end{equation*}
$$

where $g_{k}(\boldsymbol{t}, n)$ are uniformly bounded in n;

- we find a starting point \boldsymbol{t}^{*} in the space of times for which it is possible to determine independently the expansion of the partition function;

Strategy to obtain the large n expansion of $\log Z_{n}$ in the

 two-interval case.- We derive an asymptotic expansion in n for the derivatives

$$
\begin{equation*}
\frac{\partial}{\partial t_{k}} \log Z_{n}(\boldsymbol{t})=n^{2} g_{0}(\boldsymbol{t})+n g_{1}(\boldsymbol{t}, n)+g_{2}(\boldsymbol{t}, n)+O(1 / n) \tag{1}
\end{equation*}
$$

where $g_{k}(\boldsymbol{t}, n)$ are uniformly bounded in n;

- we find a starting point \boldsymbol{t}^{*} in the space of times for which it is possible to determine independently the expansion of the partition function;
- we show that in the space of times \boldsymbol{t} the set \mathcal{S} of points for which the support of eigenvalues consists of two intervals is connected;

Strategy to obtain the large n expansion of $\log Z_{n}$ in the

 two-interval case.- We derive an asymptotic expansion in n for the derivatives

$$
\begin{equation*}
\frac{\partial}{\partial t_{k}} \log Z_{n}(\boldsymbol{t})=n^{2} g_{0}(\boldsymbol{t})+n g_{1}(\boldsymbol{t}, n)+g_{2}(\boldsymbol{t}, n)+O(1 / n) \tag{1}
\end{equation*}
$$

where $g_{k}(\boldsymbol{t}, n)$ are uniformly bounded in n;

- we find a starting point \boldsymbol{t}^{*} in the space of times for which it is possible to determine independently the expansion of the partition function;
- we show that in the space of times \boldsymbol{t} the set \mathcal{S} of points for which the support of eigenvalues consists of two intervals is connected;
- it is possible to integrate term by term the equation (1) from the reference time \boldsymbol{t}^{*} to any other time \boldsymbol{t} in the set \mathcal{S}.

Reference potential

We consider the potential $V_{r, s}(\lambda)=\frac{1}{s}\left(\lambda^{4}-r \lambda^{2}\right)$, with $r>\sqrt{2} s$.
Eigenvalues are distributed on two intervals

$$
[-\sqrt{b},-\sqrt{a}] \cup[\sqrt{a}, \sqrt{b}], \quad a=(r-2 \sqrt{s}) / 2, \quad b=(r+2 \sqrt{s}) / 2
$$

Reference potential

We consider the potential $V_{r, s}(\lambda)=\frac{1}{s}\left(\lambda^{4}-r \lambda^{2}\right)$, with $r>\sqrt{2} s$.
Eigenvalues are distributed on two intervals

$$
[-\sqrt{b},-\sqrt{a}] \cup[\sqrt{a}, \sqrt{b}], \quad a=(r-2 \sqrt{s}) / 2, \quad b=(r+2 \sqrt{s}) / 2
$$

The corresponding partition function $Z_{n}(r, s)$ is given by

$$
\log Z_{2 n}(r, s)=\log (2 n)!+\log \hat{Z}_{n}(-1 / 2, r, s)+\log \hat{Z}_{n}(1 / 2, r, s)
$$

$$
\log Z_{2 n+1}(r, s)=\log (2 n+1)!+\log \hat{Z}_{n}\left(-1 / 2, r, s_{+}\right)+\log \hat{Z}_{n}\left(1 / 2, r, s_{-}\right)
$$

with $s_{ \pm}=s(1 \pm 1 /(2 n+1))$ and

$$
\hat{Z}_{n}(\alpha, r, s)=\frac{1}{n!} \int_{\mathbb{R}_{+}^{n}} \prod_{j<i}\left(\lambda_{j}-\lambda_{i}\right)^{2} \prod_{j=1}^{n} \lambda_{j}^{\alpha} e^{\frac{2 n}{s}\left(\lambda_{j}^{2}-r \lambda_{j}\right)} d \lambda_{j}
$$

Theorem. The partition function $Z_{n}(r, s)$ associated to the potential $V_{r, s}(\lambda)=\frac{1}{s}\left(\lambda^{4}-r \lambda^{2}\right)$ has an asymptotic expansion
$\log Z_{n}(r, s)=\log C_{n}-n^{2} F_{0}(r, s)-F_{1}(r, s)+\log \theta(n / 2 ; \tau(r, s))+O\left(\frac{1}{n}\right)$
where

$$
C_{n}=\frac{n!}{\left\lfloor\frac{n}{2}\right\rfloor!\left\lfloor\frac{n+1}{2}\right\rfloor!} Z_{\left\lfloor\frac{n}{2}\right\rfloor, \sigma^{*}}^{G U E} Z_{\left\lfloor\frac{n+1}{2}\right\rfloor, \sigma^{*}}^{G U E}, \quad \sigma^{*}=4 e^{3 / 2}
$$

As a function of n, the oscillatory term assumes only two values.

Determination of $\frac{\partial}{\partial t_{k}} Z_{n}$ as $n \rightarrow \infty$ for general potential

The following relation is satisfied (Jimbo-Miwa, Bertola)

$$
\frac{\partial}{\partial t_{k}} \log Z_{n}(\boldsymbol{t})=-\frac{n}{2} \underset{\lambda=\infty}{\operatorname{Res}}\left(\operatorname{Tr}\left(X_{n}^{-1}(\lambda) X_{n}^{\prime}(\lambda) \sigma_{3} \lambda^{k} d \lambda\right)\right.
$$

where $X_{n}(\lambda)$ is a 2×2 matrix (A. Fokas, A. Its, A. Kitaev)

$$
X_{n}(\lambda)=\left(\begin{array}{cc}
\gamma_{n}^{-1} p_{n}(\lambda) & \frac{\gamma_{n}^{-1}}{2 \pi i} \int_{\mathbb{R}} p_{n}(s) \frac{e^{-n V_{t}(s)} d s}{s-\lambda} \\
-2 \pi i \gamma_{n-1} p_{n-1}(\lambda) & -\gamma_{n-1} \int_{\mathbb{R}} p_{n-1}(s) \frac{e^{-n V_{t}(s)} d s}{s-\lambda}
\end{array}\right)
$$

with

$$
\int_{-\infty}^{+\infty} p_{j}(\lambda) p_{m}(\lambda) e^{-n V_{t}(\lambda)} d \lambda=\delta_{j m}
$$

and γ_{n} 's are recurrence coefficients for the orthogonal polynomials.

Remark.

- the leading term of the asymptotic expansion of $X_{n}(\lambda)$ as $n \rightarrow \infty$ was a obtained by Deift et all (1999) where they also show that $X_{n}(\lambda)$ has an asymptotic expansion in the form

$$
X_{n}(\lambda)=\sum_{k=0}^{\infty} \frac{\mathcal{P}_{k}(\lambda, n)}{n^{k}}
$$

where the matrix $\mathcal{P}_{k}(\lambda, n)$ is uniformly bounded in n. For our purpose we obtain the first subleading term.

- The non trivial part of our analysis is to identify the terms of the asymptotic expansion as $n \rightarrow \infty$ of r.h.s. of

$$
-\frac{\partial}{\partial t_{k}} \log Z_{n}=\frac{n}{2} \underset{\lambda=\infty}{\operatorname{Res}\left(\operatorname{Tr}\left(X_{n}^{-1}(\lambda) X_{n}^{\prime}(\lambda) \sigma_{3} \lambda^{k} d \lambda\right), ~(\lambda)\right.}
$$

as an anti-derivative with respect to the times t_{k}.

Explicit computation

Let us introduce the Szegö kernel

$$
S\left[\begin{array}{l}
\delta \\
\epsilon
\end{array}\right]\left(z_{0}, z_{1}\right)=\frac{\theta\left[\begin{array}{l}
\delta \\
\epsilon
\end{array}\right]\left(\int_{z_{1}}^{z_{0}} d u ; \tau\right)}{E\left(z_{0}, z_{1}\right) \theta\left[\begin{array}{c}
\delta \\
\epsilon
\end{array}\right](0 ; \tau)}
$$

and the 1-form

$$
\Phi_{q_{0}, p_{0}}(z):=-S\left[\begin{array}{l}
n c^{*}
\end{array}\right]\left(z, p_{0}\right) S\left[\begin{array}{l}
n c^{*}
\end{array}\right]\left(q_{0}, z\right) .
$$

Notice that

$$
\Phi_{q, q}(z):=-B(z, q)-\left(\log \theta\left[\begin{array}{l}
\delta \\
\epsilon
\end{array}\right](0 ; \tau)\right)^{\prime \prime} d u(z) d u(q)
$$

where $B(z, q)$ is the so called canonical symmetric bi-differential or Bergman kernel.

$$
\Phi_{q_{0}, p_{0}}(z):=-S\left[\begin{array}{l}
n c^{*}
\end{array}\right]\left(z, p_{0}\right) S\left[\begin{array}{l}
n c^{*}
\end{array}\right]\left(q_{0}, z\right) .
$$

Then from steepest decent analysis of the Riemann-Hilbert problem for $X_{n}(\lambda)$
$-\frac{d}{d V(z)} \log Z_{n}=n^{2} \frac{d F_{0}}{d V(z)}+n\left(\log \vartheta\left(n c^{*}, \tau\right)\right)^{\prime} d u(z) / d z$
$+\frac{1}{8} \sum_{j=1}^{4} \operatorname{Res}_{\lambda=a_{j}} \frac{\Phi_{\bar{\lambda}, \lambda}(z)-\Phi_{\lambda, \bar{\lambda}}(\bar{z})}{\frac{d z}{3} \int_{\bar{\lambda}}^{\lambda} d \mu(\xi)}+\frac{1}{48} \sum_{j=1}^{4} \operatorname{Res}_{\lambda=a_{j}} \frac{\Phi_{\lambda, \lambda}(z)-\Phi_{\bar{\lambda}, \bar{\lambda}}(z)}{\frac{d z}{3} \int_{\bar{\lambda}}^{\lambda} d \mu(\xi)}+O(1 / n)$
$=\frac{d}{d V(z)}\left(n^{2} F_{0}+F_{1}-\log \theta\left(n c^{*} ; \tau\right)-\frac{\theta^{\prime}\left(n c^{*} ; \tau\right)}{\theta\left(n c^{*} ; \tau\right)} \frac{F_{1}^{(1)}}{n}-\frac{\left.\theta^{\prime \prime \prime}\left(n c^{*} ; \tau\right)\right)}{\theta\left(n c^{*} ; \tau\right)} \frac{F_{0}^{(3)}}{6 n}\right)$
$+O(1 / n)$

Solving loop equations?

Assume that $W_{1}(z)=\sum_{k=0}^{\infty} \frac{\widetilde{W}_{1}^{(k)}(z)}{n^{k}}$ and $W_{1}(z, x)=\sum_{k=0}^{\infty} \frac{\widetilde{W}_{2}^{(k)}(z, x)}{n^{k}}$ and define $\mathcal{K} f(z):=\oint_{\mathcal{C}} \frac{V_{t}^{\prime}(x) f(x)}{z-x} d x$. Then the loop equations give

$$
\begin{gathered}
{\left[\mathcal{K}-2 \widetilde{W}_{1}^{(0)}(z)\right] \widetilde{W}_{1}^{(0)}(z)=0, \quad\left[\mathcal{K}-2 \widetilde{W}_{1}^{(0)}(z)\right] \widetilde{W}_{1}^{(1)}(z)=0} \\
{\left[\mathcal{K}-2 \widetilde{W}_{1}^{(0)}(z)\right] \widetilde{W}_{1}^{(2)}(z)=\left(\widetilde{W}_{1}^{(1)}(z)\right)^{2}+W_{2}^{(0)}(z, z)}
\end{gathered}
$$

Solving loop equations?

Assume that $W_{1}(z)=\sum_{k=0}^{\infty} \frac{\widetilde{W}_{1}^{(k)}(z)}{n^{k}}$ and $W_{1}(z, x)=\sum_{k=0}^{\infty} \frac{\widetilde{W}_{2}^{(k)}(z, x)}{n^{k}}$ and define $\mathcal{K} f(z):=\oint_{\mathcal{C}} \frac{V_{t}^{\prime}(x) f(x)}{z-x} d x$. Then the loop equations give

$$
\begin{gathered}
{\left[\mathcal{K}-2 \widetilde{W}_{1}^{(0)}(z)\right] \widetilde{W}_{1}^{(0)}(z)=0, \quad\left[\mathcal{K}-2 \widetilde{W}_{1}^{(0)}(z)\right] \widetilde{W}_{1}^{(1)}(z)=0,} \\
{\left[\mathcal{K}-2 \widetilde{W}_{1}^{(0)}(z)\right] \widetilde{W}_{1}^{(2)}(z)=\left(\widetilde{W}_{1}^{(1)}(z)\right)^{2}+W_{2}^{(0)}(z, z)}
\end{gathered}
$$

- $\widetilde{W}_{1}^{(0)}(z) \rightarrow$ planar limit
- $\widetilde{W}_{1}^{(1)}(z) d z=-\left(\log \theta\left[\begin{array}{l}\delta \\ \epsilon\end{array}\right](0 ; \tau)\right)^{\prime} d u(z)$,
- $\widetilde{W}_{2}^{(0)}(z, z) d z^{2}=\Phi_{\bar{z}, \bar{z}}(z)=-B(z, \bar{z})-\left(\log \theta\left[\begin{array}{c}\delta \\ \epsilon\end{array}\right](0 ; \tau)\right)^{\prime \prime} d u(z) d u(\bar{z})$,

$$
\widetilde{W}_{1}^{(2)}(z) d z=\sum_{j=1}^{4} \operatorname{Res}_{\lambda=a_{j}}\left[\frac{\Phi_{\bar{\lambda}, \lambda}(z)-\Phi_{\lambda, \bar{\lambda}}(\bar{z})}{\frac{8}{3} \int_{\frac{\lambda}{\lambda}}^{\lambda} d \mu(\xi) d \xi}+\frac{\Phi_{\lambda, \lambda}(z)-\Phi_{\bar{\lambda}, \bar{\lambda}}(z)}{16 \int_{\bar{\lambda}}^{\lambda} d \mu(\xi)}\right]
$$

Integration

Theorem. The space of one-cut regular potential in the parameter space $\boldsymbol{t} \in \mathbb{R}^{2 d}$ is connected.

- The expansion of the partition function is obtained by integration in the space of times from the point $\left(0, t_{2}, 0, t_{4}, 0, \ldots, 0\right)$ to any point \boldsymbol{t} corresponding to a one-cut regular potential.

Conclusion

We derive the asymptotic expansion of the partition function of Hermitian matrix integral in the two cut case as

$$
\log Z_{n}(\boldsymbol{t})=\log C_{n}-n^{2} F_{0}(\boldsymbol{t})-F_{1}(\boldsymbol{t})+\log \theta\left(n c^{*}(\boldsymbol{t}) ; \tau(\boldsymbol{t})\right)+O\left(\frac{1}{n}\right)
$$

where

$$
C_{n}=\frac{n!}{\left\lfloor\frac{n}{2}\right\rfloor!\left\lfloor\frac{n+1}{2}\right\rfloor!} Z_{\left\lfloor\frac{1}{2}\right\rfloor, \sigma^{*}}^{G U E} Z_{\left\lfloor\frac{n+1}{2}\right\rfloor, \sigma^{*}}^{G U E}, \quad \sigma^{*}=4 e^{3 / 2}
$$

- Our main contribution is the derivation of the constant C_{n}. For the remaining terms of the expansion, our analysis confirms earlier results by Bonnet-David-Eynard, Eynard.
- Open problem: obtain the expansion by solving the loop equations.

