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Hermitian Matrix integrals

Hn = {M ∈ Mat(n,C), M = M∗}, Mij = xij + iyij

• Lebesgue measure: dM =
∏n

i=1 dxii
∏

i<j dxijdyij .
• Partition function

Zn(t; ε) =
1

vol(Un)

∫
Hn

e−
1
ε
TrVt(M)dM

with

Vt(M) =
1

2
M2 +

2d∑
k=1

tkM
k , t2d > 0,

is a τ -function of the Toda lattice equations.

Goal: rigorous derivation of Zn(t; ε) for ε→ 0 and n→∞ with
nε = x > 0 finite, in the so called multi-cut case.
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Orthogonal polynomials

Zn = n!
n−1∏
j=0

√
κj

with κj norming constants of orthogonal polynomials pj(λ) = κjλ
j + . . .∫ +∞

−∞
pj(λ)pk(λ)e−

1
ε
Vt(λ)dλ = δjk ,

• Three terms recurrence relations: λp0(λ) = γ1p1(λ) + β0p0(λ) and

λpj(λ) = γj+1pj+1(λ) + βjpj(λ) + γjpj−1(λ), γj =
κj
κj+1

.

• Relevant statistical quantities are described by orthogonal polynomials

like the one point function: ρn(λ) =
1

n
e−

1
ε
V (λ)∑n−1

j=0 pj(λ)2 which is

related to the distribution of eigenvalues.

Tamara Grava 3 / 25



Orthogonal polynomials

Zn = n!
n−1∏
j=0

√
κj

with κj norming constants of orthogonal polynomials pj(λ) = κjλ
j + . . .∫ +∞

−∞
pj(λ)pk(λ)e−

1
ε
Vt(λ)dλ = δjk ,

• Three terms recurrence relations: λp0(λ) = γ1p1(λ) + β0p0(λ) and

λpj(λ) = γj+1pj+1(λ) + βjpj(λ) + γjpj−1(λ), γj =
κj
κj+1

.

• Relevant statistical quantities are described by orthogonal polynomials

like the one point function: ρn(λ) =
1

n
e−

1
ε
V (λ)∑n−1

j=0 pj(λ)2 which is

related to the distribution of eigenvalues.

Tamara Grava 3 / 25



Distribution of eigenvalues

For n→∞, nε = x finite, the distribution of eigenvalues
dµVt = lim ρn(λ)dλ. The measure dµVt minimizes the variational problem

inf∫
dµ=1

[∫∫
log

1

|s − y |
dµ(s)dµ(y) +

1

x

∫
Vt(s)dµ(s)

]
.

•For t = 0, dµVt = 1
2π

√
4x − λ2dλ (Wigner semicircle law).

• For t small, one has that support of dµVt equal [r−, r+], r± = r±(t, x)
and the distribution of eigenvalues is given by a deformation of the Wigner
semicircle law dµVt = h(λ)

√
(λ− r−)(r+ − λ)dλ.

• For t > tc , support of dµVt consists of more then one interval,
(multi-cut case).
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Toda equations

The partition function Zn(t; ε) is also a tau-function of the Toda lattice:
the dependent variables

γ2
n(t; ε) =

1

2

Zn+1(t; ε)Zn−1(t; ε)

Zn(t; ε)2

βn(t; ε) = −ε ∂
∂t1

log
Zn+1(t; ε)

Zn(t; ε)

solve the Toda equations. The first flow is

ε
∂γn
∂t1

=
γn
2

(βn−1 − βn) , ε
∂βn
∂t1

= γ2
n − γ2

n+1,

Initial data: βn(t, ε)|t=0 = 0 and γn(t, ε)|t=0 =
√
nε.
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Perturbative expansion

For t � 1 (one-cut) the partition function has the following expansion

log
Zn(t; ε)

Zn(0; ε)
=
∑
k≥0

1

k!

∑
m≥0

εm
∑

i1+···+ik=k+2m

ti1 . . . tik 〈TrM i1 . . .TrM ik 〉c

Introducing the ’t Hooft coupling parameter x = Nε

log
Zn(t; ε)

Zn(0; ε)
=
∑
g≥0

ε2g−2Fg (x , t)

with
Fg (x , t) =

∑
k

∑
i1,...,ik

ag (i1, . . . , ik)ti1 . . . tikx
h

with h = 2− 2g − k + |i |/2 and i = i1 + · · ·+ ik and

ag (i1, . . . , ik) =
1

k!
#{connected oriented ribbon graph of genus g with

k vertices of valencies i1, . . . , ik}

Tamara Grava 6 / 25



Perturbative expansion

For t � 1 (one-cut) the partition function has the following expansion

log
Zn(t; ε)

Zn(0; ε)
=
∑
k≥0

1

k!

∑
m≥0

εm
∑

i1+···+ik=k+2m

ti1 . . . tik 〈TrM i1 . . .TrM ik 〉c

Introducing the ’t Hooft coupling parameter x = Nε

log
Zn(t; ε)

Zn(0; ε)
=
∑
g≥0

ε2g−2Fg (x , t)

with
Fg (x , t) =

∑
k

∑
i1,...,ik

ag (i1, . . . , ik)ti1 . . . tikx
h

with h = 2− 2g − k + |i |/2 and i = i1 + · · ·+ ik and

ag (i1, . . . , ik) =
1

k!
#{connected oriented ribbon graph of genus g with

k vertices of valencies i1, . . . , ik}

Tamara Grava 6 / 25



Enumerative geometry and Random Matrices

log
Zn(t; ε)

Zn(0; ε)
= ε−2[6x3t2

3 +2x3t4+216x4t2
3 t4+18x4t2

4 +288x5t3
4 +45x4t3t5

+ 2160x5t3t4t5 + 90x5t2
5 + 5400x6t4t

2
5 + 5x4t6 + 1080x5t2

3 t6

+ 144x5t4t6 + 4320x6t2
4 t6 + 108000x6t3t5t6 + 270000x7t2

5 t6

300x6t2
6 + 21600x7t4t

2
6 + 36000x8t3

6 ]

+
3

2
xt2

3 + xt4 + 234x2t2
3 t4 + 30x2t2

4 + 1056x3t3
4 + 60x2t3t5 + 6480x3t3t4t5

+ 300x3t2
5 + 32400x4t4t

2
5 + 10x2t6 + 3330x3t2

3 t6 + 600x3t4t6

31680x4t2
4 t6 + 66600x4t3t5t6 + 283500xt2

5 t6 + 2400x4t2
6 + 270000x5t4t

2
6

+ 696000x6t3
6 + O(ε2)

coeff 1/ε2: 2x3t4 ↔ a0(4), 18x4t2
4 ↔ a0(4, 4),

coeff 1/ε0: xt4 ↔ a1(4), 30x2t2
4 ↔ a1(4, 4).
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Existence of the expansion in even power of 1/n

Key ideas (ε = 1/n):

the one point function ρn(λ) has an asymptotic expansion in even
powers of 1/n:∫ ∞

−∞
f (λ)ρn(λ)dλ = f0 +

f1
n2

+
f2
n4

+ . . .

∂

∂tk
logZn = −n2E

(
1
nTrMk

)
= −n2

∫
λkρn(λ)dλ =

n2e
(k)
0 (t) + e

(k)
1 (t) + 1

n2 e
(k)
2 (t) + . . . .

The integration with respect to tk is performed term by term in the
above expansion taking as a reference point the GUE, and using the
result that the space of 1-cut potentials in the class of polynomials
weights, is path connected.
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Computation of the coefficients ag(k1, . . . , km)

Take ε = 1 and consider

〈TrM i1 . . .TrM ik 〉c = k!
∑

0≤g≤ 1
2

( |i|
2
−k+1)

ag (i1, . . . , ik)N2−2g−k+ |i|
2

and define

Ck(n, λ1, . . . , λk) =
∞∑

i1,...,ik=1

〈TrM i1 . . .TrM ik 〉c
λi1+2 . . . λik+1

C1(n, λ1) was obtained by Harer-Zagier (1986),

C2(n, λ1, λ2) was obtained by Morozov-Shakirov (2009),

Ck(n, λ1, . . . , λk), k ≥ 1 was obtained by Dubrovin-Di (2016).

Alternatively Ck(n, λ1, . . . , λk) can be obtained using topological recursion
formulas.
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Two cuts case

The support of the equilibrium measure dµVt consists of 2 intervals.

The recurrence coefficients of the orthogonal polynomials γn(t, ε) and
βn(t, ε) are highly oscillatory and described by Jacobi θ-functions as
n→∞ (Deift Kriecherbauer McLaughlin Venakides Zhou, 1999).

The partition function has an oscillatory behaviour described by (

Bonnet-David-Eynard 2000, Eynard 2012, Scherbina, Guionnet-Borot 2013)

Zn(t, ε) ∝ θ(nc∗; τ)e−n
2F0−F1+..., ε =

1

n

where c∗ is the fraction of eigenvalues in one of the two intervals and
θ is the Jacobi θ-function.
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Derivation by Bonnet-David-Eynard

Suppose that the potential is 2-cut with minimum values E1 < E2. Then
the eigenvalues of the matrix model are distributed asymptotically in two
intervals.

Zn ∝
n∑

j=0

Zn,cj , cj =
j

n

where Zn,cj is the matrix model obtained by forcing to have j eigenvalues
in (−∞,E0) and n − j in (E0,+∞), with E1 < E0 < E2. Then

− logZn,cj = n2F0(cj) + F1(cj) +
1

n2
F2(cj) + O(n−4)

Performing a Taylor expansion of F0(cj) near the stationary point c∗

Zn ∝
n∑

j=0

Zn,cj ' e−n
2F0(c∗)−F1(c∗)

n∑
j=0

eF
′′
0 (c∗)(j−c∗n)2

+ . . .

' e−n
2F0(c∗)−F1(c∗)θ(nc∗; τ) + . . . , τ =

2πi

F ′′0 (c∗)
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Loop equations and determination of Fj

• 1-point resolvent

W1(z) :=
d

dV (z)

1

N2
logZN ,

d

dV (z)
= −

∞∑
j=0

1

z j+1

d

dtj
.

Assuming W1(z) has a 1/n2 expansion W1(z) =
∞∑
k=0

=
W

(k)
1 (z)

n2k
, then

W
(k)
1 (z) :=

d

dV (z)
Fk .

W
(k)
1 are obtained by solving the loop equation∮

C

V ′t(x)W1(x)

z − x
dx = W1(z)2 +

1

N2
W2(z , z)

iteratively using the topological recursion (Chekhov-Eynard-Orantin).
Tamara Grava 13 / 25



Statement of the result

For a polynomial potential Vt(λ) for which the distribution of eigenvalues
is given by the regular measure
dµ(λ) = h(λ)

√
(λ− a1)(λ− a2)(λ− a3)(λ− a4)dλ, with

λ ∈ [a1, a2] ∪ [a3, a4], the partition function has the following expansion

logZn(t) = logCn − n2F0(t)− F1(t) + log θ(nc∗; τ(t)) + O

(
1

n

)

where

Cn =
n!

bn2c!b
n+1

2 c!
ZGUE
b n

2
c,σ∗Z

GUE
b n+1

2
c,σ∗ , σ∗ = 4e3/2

ZGUE
n,σ = (2π)n/2

( σ
4n

)n2/2
n∏

j=1

j!

F0(t) =

∫∫
log

1

|z − y |
dµ(z)dµ(y) +

∫
Vt(z)dµ(z)
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logZn(t) = logCn − n2F0(t)− F1(t) + log θ(nc∗(t); τ(t)) + O

(
1

n

)

F1(t) =
1

24
log[A12

∏
j<k

(ak − aj)
4

4∏
j=1

h(aj)] G. Akemann 1996

with θ(z ; τ) =
∑

n ∈ Zeπin2τ+2πizn, c∗ the fraction of eigenvalues in
[a3, a4] and A the period of the non normalised holomorphic one-form of
the elliptic curve y2 =

∏4
j=1(λ− aj) and τ the elliptic modulus of the

curve.

F1 can also be expressed via the Dedekind η function.

F1 was calculated for hyperelliptic curves by Chekhov and in 2-matrix
models by Eynard, Kokotov and Korotkin.
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Strategy to obtain the large n expansion of log Zn in the
two-interval case.

We derive an asymptotic expansion in n for the derivatives

∂

∂tk
logZn(t) = n2g0(t) + ng1(t, n) + g2(t, n) + O(1/n), (1)

where gk(t, n) are uniformly bounded in n;

we find a starting point t∗ in the space of times for which it is possible
to determine independently the expansion of the partition function;

we show that in the space of times t the set S of points for which the
support of eigenvalues consists of two intervals is connected;

it is possible to integrate term by term the equation (1) from the
reference time t∗ to any other time t in the set S.
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Reference potential

We consider the potential Vr ,s(λ) =
1

s
(λ4 − rλ2), with r >

√
2s.

Eigenvalues are distributed on two intervals

[−
√
b,−
√
a] ∪ [

√
a,
√
b], a = (r − 2

√
s)/2, b = (r + 2

√
s)/2.

The corresponding partition function Zn(r , s) is given by

logZ2n(r , s) = log(2n)! + log Ẑn(−1/2, r , s) + log Ẑn(1/2, r , s)

logZ2n+1(r , s) = log(2n + 1)! + log Ẑn(−1/2, r , s+) + log Ẑn(1/2, r , s−)

with s± = s(1± 1/(2n + 1)) and

Ẑn(α, r , s) =
1

n!

∫
Rn

+

∏
j<i

(λj − λi )2
n∏

j=1

λαj e
2n
s

(λ2
j −rλj )dλj
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Theorem. The partition function Zn(r , s) associated to the potential

Vr ,s(λ) =
1

s
(λ4 − rλ2) has an asymptotic expansion

logZn(r , s) = logCn − n2F0(r , s)− F1(r , s) + log θ(n/2; τ(r , s)) + O

(
1

n

)
where

Cn =
n!

bn2c!b
n+1

2 c!
ZGUE
b n

2
c,σ∗Z

GUE
b n+1

2
c,σ∗ , σ∗ = 4e3/2

As a function of n, the oscillatory term assumes only two values.
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Determination of
∂

∂tk
Zn as n→∞ for general potential

The following relation is satisfied (Jimbo-Miwa, Bertola)

∂

∂tk
logZn(t) = −n

2
Res
λ=∞

(Tr(X−1
n (λ)X ′n(λ)σ3λ

kdλ),

where Xn(λ) is a 2× 2 matrix (A. Fokas, A. Its, A. Kitaev)

Xn(λ) =

 γ−1
n pn(λ) γ−1

n
2πi

∫
R pn(s)

e−nVt(s)ds

s − λ
−2πiγn−1pn−1(λ) −γn−1

∫
R pn−1(s)

e−nVt(s)ds

s − λ


with ∫ +∞

−∞
pj(λ)pm(λ)e−nVt(λ)dλ = δjm,

and γn’s are recurrence coefficients for the orthogonal polynomials.
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Remark.
• the leading term of the asymptotic expansion of Xn(λ) as n→∞ was a
obtained by Deift et all (1999) where they also show that Xn(λ) has an
asymptotic expansion in the form

Xn(λ) =
∞∑
k=0

Pk(λ, n)

nk
,

where the matrix Pk(λ, n) is uniformly bounded in n. For our purpose we
obtain the first subleading term.
• The non trivial part of our analysis is to identify the terms of the
asymptotic expansion as n→∞ of r.h.s. of

− ∂

∂tk
logZn =

n

2
Res
λ=∞

(Tr(X−1
n (λ)X ′n(λ)σ3λ

kdλ)

as an anti-derivative with respect to the times tk .
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Explicit computation

Let us introduce the Szegö kernel

S
[
δ
ε

]
(z0, z1) =

θ
[
δ
ε

]
(
∫ z0

z1
du; τ)

E (z0, z1)θ [δε ] (0; τ)

and the 1-form

Φq0,p0(z) := −S [ 0
nc∗ ](z , p0)S [ 0

nc∗ ](q0, z).

Notice that

Φq,q(z) := −B(z , q)− (log θ
[
δ
ε

]
(0; τ))′′du(z)du(q),

where B(z , q) is the so called canonical symmetric bi-differential or
Bergman kernel.
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Φq0,p0(z) := −S [ 0
nc∗ ](z , p0)S [ 0

nc∗ ](q0, z).

Then from steepest decent analysis of the Riemann-Hilbert problem for
Xn(λ)

− d

dV (z)
logZn = n2 dF0

dV (z)
+ n(log ϑ(nc∗, τ))′du(z)/dz

+
1

8

4∑
j=1

Res
λ=aj

Φλ̄,λ(z)− Φλ,λ̄(z̄)

dz
3

∫ λ
λ̄ dµ(ξ)

+
1

48

4∑
j=1

Res
λ=aj

Φλ,λ(z)− Φλ̄,λ̄(z)

dz
3

∫ λ
λ̄ dµ(ξ)

+ O(1/n)

=
d

dV (z)

(
n2F0 + F1 − log θ (nc∗; τ)− θ′(nc∗; τ)

θ(nc∗; τ)

F
(1)
1

n
− θ′′′(nc∗; τ))

θ(nc∗; τ)

F
(3)
0

6n

)
+ O(1/n)
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Solving loop equations?

Assume that W1(z) =
∑∞

k=0

W̃
(k)
1 (z)

nk
and W1(z , x) =

∑∞
k=0

W̃
(k)
2 (z , x)

nk

and define Kf (z) :=
∮
C

V ′t (x)f (x)
z−x dx . Then the loop equations give

[K − 2W̃
(0)
1 (z)]W̃

(0)
1 (z) = 0, [K − 2W̃

(0)
1 (z)]W̃

(1)
1 (z) = 0,

[K − 2W̃
(0)
1 (z)]W̃

(2)
1 (z) = (W̃

(1)
1 (z))2 + W

(0)
2 (z , z)

W̃
(0)
1 (z)→ planar limit

W̃
(1)
1 (z)dz = −(log θ

[
δ
ε

]
(0; τ))′du(z),

W̃
(0)
2 (z , z)dz2 = Φz̄,z̄(z) = −B(z , z̄)− (log θ

[
δ
ε

]
(0; τ))′′du(z)du(z̄),

W̃
(2)
1 (z)dz =

4∑
j=1

Res
λ=aj

[
Φλ̄,λ(z)− Φλ,λ̄(z̄)

8
3

∫ λ
λ̄ dµ(ξ)dξ

+
Φλ,λ(z)− Φλ̄,λ̄(z)

16
∫ λ
λ̄ dµ(ξ)

]
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Integration

Theorem. The space of one-cut regular potential in the parameter space
t ∈ R2d is connected.

• The expansion of the partition function is obtained by integration in the
space of times from the point (0, t2, 0, t4, 0, . . . , 0) to any point t
corresponding to a one-cut regular potential.
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Conclusion

We derive the asymptotic expansion of the partition function of Hermitian
matrix integral in the two cut case as

logZn(t) = logCn − n2F0(t)− F1(t) + log θ(nc∗(t); τ(t)) + O

(
1

n

)
where

Cn =
n!

bn2c!b
n+1

2 c!
ZGUE
b n

2
c,σ∗Z

GUE
b n+1

2
c,σ∗ , σ∗ = 4e3/2

• Our main contribution is the derivation of the constant Cn. For the
remaining terms of the expansion, our analysis confirms earlier results by
Bonnet-David-Eynard, Eynard.
• Open problem: obtain the expansion by solving the loop equations.

Tamara Grava 25 / 25


