Optimal lower bounds for samplers, finding
duplicates, and universal relation

Jelani Nelson
Harvard

March 21, 2017

joint work with Jakub Pachocki (OpenAl) and Zhengyu Wang (Harvard)

Turnstile streaming

» vector z € R” starts off as 0, updates “z; « z; + A", A € R

Turnstile streaming

» vector z € R” starts off as 0, updates “z; « z; + A", A € R

» data structure supporting various types of queries to z

Turnstile streaming

» vector z € R” starts off as 0, updates “z; « z; + A", A € R
» data structure supporting various types of queries to z

» Assumptions and examples:
> Insertion-only: A =1 always
e.g. n is size of lexicon. Google search for word i causes
update to /, so z; is frequency of word i. Might want to find
frequent query words (“heavy hitters").

» Strict turnstile: A positive or negative, but Vi z; > 0 always
e.g. graph on N vertices, n = (g’) Edge insertion of e causes
Ze < Ze + 1, and deletion has A = —1. Never delete edges
that don't already exist (no negative edge multiplicities).

» (General) turnstile: No additional assumptions
same as insertion-only example, but searches yesterday have
A = —1 and today have A = 1. z is then change in
frequency, now want to find words with large changes.

Sampling in streams

» Early work on reservoir sampling: sample k items from
insertion-only stream using O(k log n) bits of memory.

attributed in [Knuth'81] to Alan G. Waterman

Sampling in streams

» Early work on reservoir sampling: sample k items from
insertion-only stream using O(k log n) bits of memory.
attributed in [Knuth'81] to Alan G. Waterman

» solves ¢1-sampling in insertion-only:
for k =1, P(i is the sampled item) =

|zi]
[EIE!

Sampling in streams

» Early work on reservoir sampling: sample k items from
insertion-only stream using O(k log n) bits of memory.

attributed in [Knuth'81] to Alan G. Waterman
» solves ¢1-sampling in insertion-only:
for k =1, P(i is the sampled item)

_ il
[

» What about (strict) turnstile? Other sampling distributions?

Sampling in turnstile streams

{,-sampling (0 < p < 2)

*all space measured in bits

> [Monemizadeh, Woodruff '10]: in poly(¢~! log n) space, whp

sample has distribution within 1+ ¢ of p; = |‘|zz"|‘|’:,
P

> [Andoni, Krauthgamer, Indyk '11]: constant failure probability,
O(e~P log3 n) space for 1 < p <2

Sampling in turnstile streams

{,-sampling (0 < p < 2)

*all space measured in bits

> [Monemizadeh, Woodruff '10]: in poly(¢~! log n) space, whp
sample has distribution within 1+ ¢ of p; = |\|zz,-|\|f:;

> [Andoni, Krauthgamer, Indyk '11]: constant failure probability,
O(e~P log3 n) space for 1 < p <2

> State-of-the-art. [Jowhari, Saglam, Tardos '11]:
O(e~ma{LP} Jog(1/6) log? n) space for p # 1.
O(¢tlog(1/¢) log(1/6) log? n) for p = 1.

Sampling in turnstile streams

{,-sampling (0 < p < 2)

*all space measured in bits

> [Monemizadeh, Woodruff '10]: in poly(¢~! log n) space, whp
sample has distribution within 1+ ¢ of p; = |‘|zz"|‘|’:,
P

> [Andoni, Krauthgamer, Indyk '11]: constant failure probability,
O(s~Plog® n) space for 1 < p < 2

> State-of-the-art. [Jowhari, Saglam, Tardos '11]:
O(e~ma{LP} Jog(1/6) log? n) space for p # 1.
O(slog(1/¢) log(1/6) log? n) for p = 1.
for constant ¢, space is O(log(1/6) log? n).

Sampling in turnstile streams

lop-sampling
*all space measured in bits

> [Frahling, Indyk, Sohler'05]): O(log® n) space, whp success

Sampling in turnstile streams

lo-sampling
*all space measured in bits

> [Frahling, Indyk, Sohler'05]): O(log® n) space, whp success

» State-of-the-art. [Jowhari, Saglam, Tardos '11]: O(log(1/0) log? n)
space (w.p. ¢ can output anything, and w.p. 1 — § outputs
uniformly random element from support(z))

Sampling in turnstile streams

lo-sampling
*all space measured in bits

> [Frahling, Indyk, Sohler'05]): O(log® n) space, whp success

» State-of-the-art. [Jowhari, Saglam, Tardos '11]: O(log(1/0) log? n)
space (w.p. ¢ can output anything, and w.p. 1 — § outputs
uniformly random element from support(z))

> In fact, [JST11] spits out min{||z||o, ©(log(1/0))} uniform
random elements from support, without replacement

» motivates studying {p-samplingy (have to output
min{k, ||z|]lo} samples from support, w/o replacement)

» [JST11] achieves space O(tlog? n) for £o-sampling for
t = max{k,log(1/4)}.

Sampling in turnstile streams

lop-sampling
*all space measured in bits

Sampling in turnstile streams
lop-sampling

*all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in
seemingly every known turnstile algorithm for dynamic graphs.

Sampling in turnstile streams

lo-sampling
*all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in
seemingly every known turnstile algorithm for dynamic graphs.

Sampling in turnstile streams
lo-sampling

*all space measured in bits

Since [Ahn, Guha, McGregor '12a], used as a subroutine in
seemingly every known turnstile algorithm for dynamic graphs.

Many algs don't need {p-sample, but rather just any i € supp(z)

One other problem: finding duplicates

Given a stream of n+ 1 integers from [n], pigeonhole says there
must be at least one duplicate. Find it!

One other problem: finding duplicates

Given a stream of n+ 1 integers from [n], pigeonhole says there
must be at least one duplicate. Find it!

> [Gopalan, Radhakrishnan '09]: O(log® n) space for constant &

(reduction to ¢1-sampling)

One other problem: finding duplicates

Given a stream of n+ 1 integers from [n], pigeonhole says there
must be at least one duplicate. Find it!
> [Gopalan, Radhakrishnan '09]: O(log® n) space for constant &
(reduction to ¢1-sampling)

» State-of-the-art. [Jowhari, Saglam, Tardos '11]: O(log(1/4) Iog2 n)
space for failure prob. 6.

Our main contribution

Our contribution [Nelson, Pachocki, Wang '17]

Our contribution [Nelson, Pachocki, Wang '17]

Our contribution [Nelson, Pachocki, Wang '17]

Our contribution [Nelson, Pachocki, Wang '17]

Our contribution [Nelson, Pachocki, Wang '17]

Our contribution [Nelson, Pachocki, Wang '17]

Universal relation

» Arose out of work of [Karchmer, Wigderson '88| on depth
lower bounds for circuits
» f:{0,1}" — {0,1}
> Alice receives x € f~1(0), Bob receives y € f~1(1) (so x # y)
» must find 7 € [n] such that x; # y;

Universal relation

» Arose out of work of [Karchmer, Wigderson '88| on depth
lower bounds for circuits

f:{0,1}" — {0,1}

Alice receives x € f~1(0), Bob receives y € f=1(1) (so x # y)

must find i € [n] such that x; # y;

Thm [KW88]: D(f) = C(f)

(Depth equals Deterministic Communication Complexity)

vV vy VvVvYyYy

Universal relation

» Arose out of work of [Karchmer, Wigderson '88| on depth
lower bounds for circuits

f:{0,1}" — {0,1}

Alice receives x € f~1(0), Bob receives y € f=1(1) (so x # y)

must find i € [n] such that x; # y;

Thm [KW88]: D(f) = C(f)

(Depth equals Deterministic Communication Complexity)

Used in [KW88] to obtain tight Q(log? n) depth lower bound

for monotone circuits computing s-t connectivity

vV vy VvVvYyYy

\4

Universal relation

» Arose out of work of [Karchmer, Wigderson '88| on depth
lower bounds for circuits

f:{0,1}" — {0,1}

Alice receives x € f~1(0), Bob receives y € f=1(1) (so x # y)

must find i € [n] such that x; # y;

Thm [KW88]: D(f) = C(f)

(Depth equals Deterministic Communication Complexity)

» Used in [KW88] to obtain tight Q(log? n) depth lower bound
for monotone circuits computing s-t connectivity

vV vy VvVvYyYy

> Later, [Karchmer, Raz, Wigderson'91] outlined strategy to separate
NC! from P (and even from NC?): show a form of direct
sum theorem for “k-fold composition” of functions (“KRW
conjecture”), then apply k-fold composition to a “hard”
function on log n variables with k = log n/ log log n.

Universal relation

» Arose out of work of [Karchmer, Wigderson '88| on depth
lower bounds for circuits

f:{0,1}" — {0,1}

Alice receives x € f~1(0), Bob receives y € f=1(1) (so x # y)

must find i € [n] such that x; # y;

Thm [KW88]: D(f) = C(f)

(Depth equals Deterministic Communication Complexity)

Used in [KW88] to obtain tight Q(log? n) depth lower bound

for monotone circuits computing s-t connectivity

vV vy VvVvYyYy

\4

> Later, [Karchmer, Raz, Wigderson'91] outlined strategy to separate
NC! from P (and even from NC?): show a form of direct
sum theorem for “k-fold composition” of functions (“KRW
conjecture”), then apply k-fold composition to a “hard”
function on log n variables with k = log n/ log log n.

» Warmup [KRW91]: prove that direct sum theorem holds for
k-fold composition of UR relation. (was later resolved
positively in [Edmonds, Impagliazzo, Rudich, Sgall '91])

Universal relation

» UR: forget about the function f, just promised that x # y
» Alice, Bob get x,y € {0,1}" (resp.) with promise x # y
» must find / € [n] such that x; # y;

Universal relation

» UR: forget about the function f, just promised that x # y
» Alice, Bob get x,y € {0,1}" (resp.) with promise x # y
» must find / € [n] such that x; # y;

» Deterministic comm. complexity of UR very well understood
(upper and lower bounds off by an additive 3 bits!), even in
bounded number of rounds [Tardos, Zwick '97]

Universal relation

» UR: forget about the function f, just promised that x # y

» Alice, Bob get x,y € {0,1}" (resp.) with promise x # y

» must find i/ € [n] such that x; # y;

» Deterministic comm. complexity of UR very well understood
(upper and lower bounds off by an additive 3 bits!), even in
bounded number of rounds [Tardos, Zwick '97]

» Here we focus on one-way communication complexity in the
public coin model, R;’p”b(UR):

> Alice sends a single message to Bob

» Bob, based on that message, must output j € [n] s.t.
Pxi #yi) 21—

Universal relation

» UR: forget about the function f, just promised that x # y
» Alice, Bob get x,y € {0,1}" (resp.) with promise x # y
» must find / € [n] such that x; # y;

» Deterministic comm. complexity of UR very well understood
(upper and lower bounds off by an additive 3 bits!), even in
bounded number of rounds [Tardos, Zwick '97]

» Here we focus on one-way communication complexity in the
public coin model, R;’p”b(UR):

> Alice sends a single message to Bob
» Bob, based on that message, must output j € [n] s.t.
P(xi #yi)=1-0

» will also look at some variants / promise versions:

» URg: Bob must output min{k, ||x — y|lo} differing indices
» URS: Alice is promised supp(y) < supp(x)
» UR™: Bob knows | supp(x)| (not super important ...)

Universal relation

Thm [NPW’17]: For any § bounded away from 1 and any k € [n],
R;"P“*(URy) = ©(min{n, tlog?(n/t)}) for t = max{k, log(1/5)}.

Universal relation

Thm [NPW’17]: For any § bounded away from 1 and any k € [n],
R;"P“*(URy) = ©(min{n, tlog?(n/t)}) for t = max{k, log(1/5)}.

*In fact, lower bound even holds for the special case URf’+

Universal relation

Thm [NPW’17]: For any § bounded away from 1 and any k € [n],
R;"P“*(URy) = ©(min{n, tlog?(n/t)}) for t = max{k, log(1/5)}.

*In fact, lower bound even holds for the special case URf’+

Upper bound is a slight improvement of [JST11], which showed
R;"“*(URy) = O(min{n, tlog? n}).

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile)
¢,-sampling, then showed R?“>~(UR) = Q(log? n).

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile)
¢,-sampling, then showed R?“>~(UR) = Q(log? n).

In fact [JST11] even showed R2“>(UR") = Q(log? n) (via
reduction from Augmented-Indexing [Miltersen et al. '98], [Ergiin,
Jowhari, Saglam '10], [Jayram, Woodruff '11]).

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile)
¢,-sampling, then showed R?“>~(UR) = Q(log? n).

In fact [JST11] even showed R2“>(UR") = Q(log? n) (via
reduction from Augmented-Indexing [Miltersen et al. '98], [Ergiin,
Jowhari, Saglam '10], [Jayram, Woodruff '11]).
» This observation makes reductions simpler and more powerful
(hardness for even strict turnstile, and finding any element in
the support instead of £,-sampling).

Relevance to streaming lower bounds

[JST11] reduced UR to finding duplicates and (general turnstile)
{p-sampling, then showed Rg”b’%(UR) = Q(log? n).

In fact [JST11] even showed R2“>(UR") = Q(log? n) (via
reduction from Augmented-Indexing [Miltersen et al. '98], [Ergiin,
Jowhari, Saglam '10], [Jayram, Woodruff '11]).

» This observation makes reductions simpler and more powerful
(hardness for even strict turnstile, and finding any element in
the support instead of £,-sampling).

> It seems [JST11] not realize that they proved this (or at least,
they did not realize that having proved this makes reductions
a tad simpler!).

Reductions from UR®

Claim: Space complexity of finding an element in supp(z) in strict
turnstile with failure probability § is at least R;’p”b(URC).

Reductions from UR®

Claim: Space complexity of finding an element in supp(z) in strict
turnstile with failure probability § is at least R;’p”b(URC).

Proof: Reduction from URS. Suppose A is algorithm for
streaming problem. Alice updates z; « z; + 1 for all i € supp(x)
then sends memory contents of A to Bob as message. Bob
continues running A and does z; < z; — 1 for all i € supp(y).
Then Bob outputs A.query().

Reductions from UR®

Claim: Space complexity of finding duplicate in stream of length
n+ 1 with failure probability ¢ is at least Ry P’ (UR™).

Reductions from UR®

Claim: Space complexity of finding duplicate in stream of length
n+ 1 with failure probability ¢ is at least Ry P’ (UR™).

Proof: Reduction from UR“". Suppose A is algorithm for finding
duplicate. Alice puts i in stream for each i € supp(x) then sends
memory contents of 4 to Bob as message. Bob continues running
A by appending to stream n+ 1 — | supp(x)| indices

i € [n]\ supp(y). Then Bob outputs A.query().

The Main Event

Proof of our new lower bound for R;"#**(URS"")

Lower bound plan

» ldea: if P is efficient 1-way protocol for URS™T, use it to
design efficient Las Vegas encoding for ([,’7’7]) for particular m

(encoding length is random variable; decoder always succeeds)

Lower bound plan

» ldea: if P is efficient 1-way protocol for URS™T, use it to
design efficient Las Vegas encoding for ([,’7’7]) for particular m

(encoding length is random variable; decoder always succeeds)

» any such encoding scheme needs > Ig(") = Q(mlog(n/m))
bits in expectation = lower bound for P

Lower bound plan

» ldea: if P is efficient 1-way protocol for URS™T, use it to
design efficient Las Vegas encoding for ([,’7’7]) for particular m

(encoding length is random variable; decoder always succeeds)

» any such encoding scheme needs > Ig(") = Q(mlog(n/m))
bits in expectation = lower bound for P

» Notation:
» E: encoder
» D: decoder
» Alice: 1%t player in supposed efficient protocol P for UR"F
» Bob: 2 player in supposed efficient protocol P for UR<
» S: subset of [n], |S| = m, to be encoded
» 15 € {0,1}" is indicator vector of S

Lower bound plan

» ldea: if P is efficient 1-way protocol for URS™T, use it to
design efficient Las Vegas encoding for ([,’7’7]) for particular m

(encoding length is random variable; decoder always succeeds)

» any such encoding scheme needs > Ig(") = Q(mlog(n/m))
bits in expectation = lower bound for P

» Notation:
» E: encoder
» D: decoder
» Alice: 1%t player in supposed efficient protocol P for UR"F
» Bob: 2 player in supposed efficient protocol P for UR<
» S: subset of [n], |S| = m, to be encoded
» 15 € {0,1}" is indicator vector of S
» The + in URS™ will mean E/D both know m

(not a big deal: otherwise E could write m down)

Simple lower bound

E(S) is Alice's message M € {0,1}° to Bob on input x = 1.

Simple lower bound

E(S) is Alice's message M € {0,1}° to Bob on input x = 1.

1. procedure D(M)

2: T «— @

3: forr=1,..., mdo

4: Let / be Bob's output upon receiving message M from
Alice when Bob's input is 11

5: T« TU{i}

6: end for

7: return T

8: end procedure

Simple lower bound

E(S) is Alice's message M € {0,1}° to Bob on input x = 1.

1. procedure D(M)

2: T «— @

3: forr=1,..., mdo

4: Let / be Bob's output upon receiving message M from
Alice when Bob's input is 11

5: T« TU{i}

6: end for

7: return T

8: end procedure

*This is, hopefully, a Monte Carlo encoding/decoding scheme
Want P(T = S) to be large (at least 1/2, say)

(Wrong) Analysis: take 1

» Original failure probability of P is ¢
— failure probability of decoder is dm < 1/2 for § < ﬁ

(Wrong) Analysis: take 1

» Original failure probability of P is ¢
— failure probability of decoder is dm < 1/2 for § < ﬁ
— can set m = n/2 and get s = Q(n) for § < 1/n

(Wrong) Analysis: take 1

» Original failure probability of P is ¢
— failure probability of decoder is dm < 1/2 for § < ﬁ

— can set m = n/2 and get s = Q(n) for § < 1/n

» Problem: There's an O(log> n) upper bound for § = m

(Alice sends memory of {y-sampler sketch to Bob, run on 1)

(Wrong) Analysis: take 1

» Original failure probability of P is ¢
— failure probability of decoder is dm < 1/2 for § < ﬁ

— can set m = n/2 and get s = Q(n) for § < 1/n

» Problem: There's an O(log> n) upper bound for § = m

(Alice sends memory of {y-sampler sketch to Bob, run on 1)
» Problem is even worse: E(S) could have first applied
error-correcting code to 1s to obtain S’ € [©(n)], then Bob
could recover S with good probability even for § a constant!
But for constant §, there's O(log? n) upper bound for URS™.

(Wrong) Analysis: take 1

» Original failure probability of P is ¢
— failure probability of decoder is dm < 1/2 for § < ﬁ

— can set m = n/2 and get s = Q(n) for § < 1/n

» Problem: There's an O(log> n) upper bound for § = m

(Alice sends memory of {y-sampler sketch to Bob, run on 1)
» Problem is even worse: E(S) could have first applied
error-correcting code to 1s to obtain S’ € [©(n)], then Bob
could recover S with good probability even for § a constant!
But for constant §, there's O(log? n) upper bound for URS™.

» What went wrong here?

(Wrong) Analysis: take 1

» Original failure probability of P is ¢
— failure probability of decoder is dm < 1/2 for § < ﬁ

— can set m = n/2 and get s = Q(n) for § < 1/n

» Problem: There's an O(log> n) upper bound for § = m

(Alice sends memory of {y-sampler sketch to Bob, run on 1)

» Problem is even worse: E(S) could have first applied
error-correcting code to 1s to obtain S’ € [©(n)], then Bob
could recover S with good probability even for § a constant!
But for constant §, there's O(log? n) upper bound for URS™.

» What went wrong here?
» Adaptivity!!!

» Correctness of P says Vx,y, P(P succeeds on x,y) > 1— 6.
Bob not allowed to choose y based on P’s random coins.

Correct Analysis

» Fix S and define event £1: P succeeds when x =15, y = 17.

Correct Analysis

» Fix S and define event £1: P succeeds when x =15, y = 17.

> If (V75 €7 occurs, then decoder succeeds.

Correct Analysis

» Fix S and define event £1: P succeeds when x =15, y = 17.

> If (V75 €7 occurs, then decoder succeeds.

>

P(-(() &r) =P &) < o2

TCS TCS

set m = [lg(1/0)| — 1, so decoder succeeds w.p. > 1/2

Correct Analysis

» Fix S and define event £1: P succeeds when x =15, y = 17.
> If (V75 €7 occurs, then decoder succeeds.
>
P(~(() &) = (| &) < 52",
TCS TCS
set m = [lg(1/0)| — 1, so decoder succeeds w.p. > 1/2
» — s = |M| = Q(mlog(n/m)) = Q(log(1/) log W)

Correct Analysis

\4

Fix S and define event £7: P succeeds when x =15, y = 1.

\{

If (s E7 occurs, then decoder succeeds.

P(-(() &r) =P &) < o2

TCS TCS
set m = [lg(1/0)| — 1, so decoder succeeds w.p. > 1/2

= s = |M| = Q(mlog(n/m)) = Q(log(1/) log W)
to get optimal lower bound, need another log m factor

\4

\4

Optimal lower bound for R;"**?(URS™)

Moral of our work: it's ok to make adaptive queries to
mechanism that are not independent of the randomness of the
mechanism, if the amount of dependence can be controlled

Optimal lower bound for R;"**?(URS™)

Moral of our work: it's ok to make adaptive queries to
mechanism that are not independent of the randomness of the
mechanism, if the amount of dependence can be controlled

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0, 1} uniformly random. If
Vy € {0,1}9, P(f(X,y) =1) < where 0 < § < 1, then for any
random variable Y supported on {0,1}9,
B(F(X, V) = 1) < KV F1

log 5

where /(X; Y) is the mutual information between X and Y.

Optimal lower bound for Ry "’ (URS")

Moral of our work: it's ok to make adaptive queries to
mechanism that are not independent of the randomness of the
mechanism, if the amount of dependence can be controlled

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0, 1} uniformly random. If

Vy € {0,1}9, P(f(X,y) =1) < where 0 < § < 1, then for any
random variable Y supported on {0,1}9,

I(X;Y)+1

B(F(X, V) =1) < KXY+ L
log 5

where /(X; Y) is the mutual information between X and Y.

Interpretation: Fix input x to Alice. X is internal randomness of
P, and f(x,y) is 1 iff P is incorrect when Bob has input y.

Adaptivity lemma

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0,1}* uniformly random. If

Vy € {0,1}9, P(f(X,y) =1) < J where 0 < § < 1, then for any
random variable Y supported on {0,1}9,

I(X;Y)+1

P(f(X,Y)=1) < I
log 5

where /(X; Y) is the mutual information between X and Y.

Adaptivity lemma

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0,1}* uniformly random. If

Vy € {0,1}9, P(f(X,y) =1) < J where 0 < § < 1, then for any
random variable Y supported on {0,1}9,

I(X;Y)+1

P(f(X,Y)=1) < I
log 5

where /(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. x,y € [n], X is uniform. f(x,y) =1iff x=y. § = 1.

Adaptivity lemma

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0,1}* uniformly random. If

Vy € {0,1}9, P(f(X,y) =1) < J where 0 < § < 1, then for any
random variable Y supported on {0,1}9,

I(X;Y)+1

P(f(X,Y)=1) < I
log 5

where /(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. x,y € [n], X is uniform. f(x,y) =1iff x=y. § = 1.
t

g and otherwise is uniform

» consider this Y: equals X w.p.

Adaptivity lemma

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0,1}* uniformly random. If

Vy € {0,1}9, P(f(X,y) =1) < J where 0 < § < 1, then for any
random variable Y supported on {0,1}9,

I(X;Y)+1

P(f(X,Y)=1) < I
log 5

where /(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. x,y € [n], X is uniform. f(x,y) =1iff x=y. § = 1.
t

g and otherwise is uniform

» consider this Y: equals X w.p.
» [(X;Y)=t

Adaptivity lemma

Lemma [NPW’17]: Consider f: {0,1}” x {0,1}9 — {0,1} and
X € {0,1}* uniformly random. If

Vy € {0,1}9, P(f(X,y) =1) < J where 0 < § < 1, then for any
random variable Y supported on {0,1}9,

I(X;Y)+1

P(f(X,Y)=1) < I
log 5

where /(X; Y) is the mutual information between X and Y.

Is the above lemma tight?

Yes. x,y € [n], X is uniform. f(x,y) =1iff x=y. § = 1.

» consider this Y: equals X w.p. Io;n' and otherwise is uniform
» [(X;Y)=t
>IP>(f()<?\/):]‘): : '1+(]‘_Ioén)'%%|o;n

log n

Rest of talk

1. Proving the lemma (short).

2. Using the lemma to lower bound R(S_)’p”b(URC’JF).

Rest of talk

1. Proving the lemma (short).

2. Using the lemma to lower bound R(S_)’p”b(URC’JF).

Proof of lemma

Lemma: P(f(X,Y) =1) < [X:¥)+1

Proof of lemma

Lemma: P(f(X,Y)=1) < ()I‘ Z
» Equivalent to prove I(X;Y) > (Ef(X,Y))- Iogf -1
» [(X;Y)=H(X)—-H(X|Y)=b— H(X]Y).

(X]Y).

Want to upper bound H

Proof of lemma

1(X;Y)+1
1) < iog 1
» Equivalent to prove I(X;Y) > (Ef(X,Y))- Iogf -1
> 1(X;Y) = H(X) = H(X[Y) = b — H(X]Y).
Want to upper bound H(X|Y).

» Consider communication problem: Alice gets X, Y, Bob only
gets Y. Expected number of bits Alice needs to send Bob so
he can recover X with probability 1 is exactly H(X]|Y).

Lemma: P(f(X,Y) =

Proof of lemma

I(X;Y)+1
Lemma: P(f(X,Y)=1) < (Iog?

» Equivalent to prove I(X;Y) > (Ef(X,Y))- Iogf -1
> 1(X;Y) = H(X) = H(X[Y) = b — H(X]Y).
Want to upper bound H(X|Y).

» Consider communication problem: Alice gets X, Y, Bob only
gets Y. Expected number of bits Alice needs to send Bob so
he can recover X with probability 1 is exactly H(X]Y).

» A cheap protocol: Alice sends (X, Y) (1 bit). If
f(X,Y) =0, also sends all of X (b bits). Else sends index of
X in {x: f(x,Y) =1} (log(62°) = b — log } bits).

Proof of lemma

I(X;Y)+1
Lemma: P(f(X,Y)=1) < (Iog?

» Equivalent to prove I(X;Y) > (Ef(X,Y))- Iogf -1
> 1(X;Y) = H(X) = H(X[Y) = b — H(X]Y).
Want to upper bound H(X|Y).
» Consider communication problem: Alice gets X, Y, Bob only

gets Y. Expected number of bits Alice needs to send Bob so
he can recover X with probability 1 is exactly H(X]|Y).

» A cheap protocol: Alice sends (X, Y) (1 bit). If
f(X,Y) =0, also sends all of X (b bits). Else sends index of
X in {x: f(x,Y) =1} (log(62°) = b — log } bits).
= H(X|Y) <1+ b—(Ef(X,Y))-log} as desired.

Rest of talk

1. Proving the lemma (short).

2. Using the lemma to lower bound R(S_)’p”b(URC’JF).

Rest of talk

1. Proving the lemma (short).

2. Using the lemma to lower bound R;’p“b(URC"*).

Optimal lower bound for R;"**?(URS™)

» Our approach: Give up on D recovering all of S from M.
» D will recover subset AC S, E |A| = O(log } log) from

log
M. E(S) then is the concatenation of M, together W|th the
elements B = S\ A explicitly written down (log (“’3") bits).

Optimal lower bound for R;"**?(URS™)

» Our approach: Give up on D recovering all of S from M.
» D will recover subset AC S, E |A| = O(log } log |ogl) from
o
M. E(S) then is the concatenation of M, together with the
elements B = S\ A explicitly written down (log (“’3") bits).

1) iterations in decoder.
log 5

Will have P succeeding in g iterations in expectation.

» A comes from R = @(Iog% log

Optimal lower bound for R;"**?(URS™)

» Our approach: Give up on D recovering all of S from M.

» D will recover subset AC S, E |A| = O(log } log |ogl) from
o

M. E(S) then is the concatenation of M, together with the
elements B = S\ A explicitly written down (log (“’3") bits).

» A comes from R = @(Iog% log

Will have P succeeding in g iterations in expectation.

> In light of Lemma, D will pretend to be Bob in each of the R
iterations such that for all j € [R], y; in iteration j has mutual
information < %Iog% — 1 with the randomness used by P.

1) iterations in decoder.
log 5

Optimal lower bound for R;"**?(URS™)

» Our approach: Give up on D recovering all of S from M.
» D will recover subset AC S, E |A| = O(log } log |ogl) from
o
M. E(S) then is the concatenation of M, together with the
elements B = S\ A explicitly written down (log (“’3") bits).

> A comes from R = ©(log % log Iog%) iterations in decoder.
Will have P succeeding in g iterations in expectation.

> In light of Lemma, D will pretend to be Bob in each of the R
iterations such that for all j € [R], y; in iteration j has mutual
information < %Iog% — 1 with the randomness used by P.

> After iteration j, D randomly adds t; elements of B to T to
dilute info about elements of S recovered from M so far.

Optimal lower bound for R;"**?(URS™)

» Our approach: Give up on D recovering all of S from M.
» D will recover subset AC S, E |A| = O(log } log |ogl) from
o
M. E(S) then is the concatenation of M, together with the
elements B = S\ A explicitly written down (log (“’3’,') bits).

> A comes from R = ©(log % log Iog%) iterations in decoder.
Will have P succeeding in g iterations in expectation.

> In light of Lemma, D will pretend to be Bob in each of the R
iterations such that for all j € [R], y; in iteration j has mutual
information < %Iog% — 1 with the randomness used by P.

> After iteration j, D randomly adds t; elements of B to T to
dilute info about elements of S recovered from M so far.

> Need t; big enough to get enough information dilution. This
forces R = O(log § log)-

m
I
log 5

Optimal lower bound for R;"**?(URS™)

» Our approach: Give up on D recovering all of S from M.

» D will recover subset AC S, E |A| = O(log } log |ogl) from
o

M. E(S) then is the concatenation of M, together with the
elements B = S\ A explicitly written down (log (“’3’,') bits).

> A comes from R = ©(log % log Iog%) iterations in decoder.
Will have P succeeding in g iterations in expectation.

> In light of Lemma, D will pretend to be Bob in each of the R
iterations such that for all j € [R], y; in iteration j has mutual
information < %Iog% — 1 with the randomness used by P.

> After iteration j, D randomly adds t; elements of B to T to
dilute info about elements of S recovered from M so far.

> Need t; big enough to get enough information dilution. This
forces R = O(log § log IOZ%)-

> Will get lower bound [M| = Q(RIg2) =Q(lg }lg T lg 2)

lg 5 m
set m= 1/n|og%

Optimal lower bound for R;"**?(URS™)

Variables shared by £ and D.

1 m< nlog %
el

2. K < |4 log 5]

3: R+ |Klog(m/4K)|
4 forr=0,...,Rdo
5
6
7

n, + |m-27%| > |Sr| = n, and Vr np — npypq > 2
: end for
. 7 is a random permutation on [n]

Optimal lower bound for R;"**?(URS™)

Variables shared by £ and D.

1 m<+ nlog %

| LﬁJ
2. K < |4 log 5]

3: R+ |Klog(m/4K)|
4 forr=0,...,Rdo
5
6
.

n, + |m-27%| > |Sr| = n, and Vr np — npypq > 2
: end for
. 7 is a random permutation on [n]

n; is such that after j iterations, D has already recovered m — n;
elements of S (S;, |Sj| = nj, remains to be recovered)

Optimal lower bound for R;"**?(URS™)

Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)
> M is Alice(1s)
> b € {0,1}F indicates rounds in which Bob succeeds
> B contains all elements of S that D doesn’t recover via M

Optimal lower bound for R;"**?(URS™)

Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)

> M is Alice(1s)

> b € {0,1}F indicates rounds in which Bob succeeds

> B contains all elements of S that D doesn't recover via M
2: A+ > the subset of S we recover just from M
3 To+ 0 > subset of S we've built up so far

Optimal lower bound for R;"**?(URS™)
Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)

> M is Alice(1s)
> b € {0,1}F indicates rounds in which Bob succeeds
> B contains all elements of S that D doesn’t recover via M

A+ > the subset of S we recover just from M
To+ 0 > subset of S we've built up so far
for r=1,...,R do © each iteration tries to recover 1 elt via M

Tr — T,_l

Optimal lower bound for R;"**?(URS™)
Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)

AL

> M is Alice(1s)
> b € {0,1}F indicates rounds in which Bob succeeds
> B contains all elements of S that D doesn’t recover via M

A+ > the subset of S we recover just from M

To+ 0 > subset of S we've built up so far

for r=1,...,R do © each iteration tries to recover 1 elt via M
Tr — T,_l

if b, =1 then > this means Bob succeeds in round r

Optimal lower bound for R;"**?(URS™)
Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)

N LN

> M is Alice(1s)
> b € {0,1}F indicates rounds in which Bob succeeds
> B contains all elements of S that D doesn’t recover via M

A+ > the subset of S we recover just from M
To+ 0 > subset of S we've built up so far
for r=1,...,R do © each iteration tries to recover 1 elt via M
Tr — T,_l
if b, =1 then > this means Bob succeeds in round r
s, <+ Bob(M,17,_)) > Invariant: T, = S\S,
A—AU{s}, T, < T, U{s}
end if

Optimal lower bound for R;"**?(URS™)
Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)

._.
e

[y
=

N LN

> M is Alice(1s)
> b € {0,1}F indicates rounds in which Bob succeeds
> B contains all elements of S that D doesn’t recover via M

A+ > the subset of S we recover just from M
To+ 0 > subset of S we've built up so far
for r=1,...,R do © each iteration tries to recover 1 elt via M
Tr — T,_l
if b, =1 then > this means Bob succeeds in round r
s, <+ Bob(M,17,_)) > Invariant: T, = S\S,
A—AU{s}, T, < T, U{s}
end if

Insert m — n, — | T,| items from B\ T, into T, with smallest 7;
> “Differential Privacy” step. Still n, elements left to recover.
end for

Optimal lower bound for R;"**?(URS™)

Decoding algorithm to recover S C [n], |S|=m

1: procedure D(M, B, b)

._.
e

11:
12:

N LN

> M is Alice(1s)
> b € {0,1}F indicates rounds in which Bob succeeds
> B contains all elements of S that D doesn’t recover via M

A+ > the subset of S we recover just from M
To+ 0 > subset of S we've built up so far
for r=1,...,R do © each iteration tries to recover 1 elt via M
Tr — T,_l
if b, =1 then > this means Bob succeeds in round r
s, <+ Bob(M,17,_)) > Invariant: T, = S\S,
A—AU{s}, T, < T, U{s}
end if

Insert m — n, — | T,| items from B\ T, into T, with smallest 7;
> “Differential Privacy” step. Still n, elements left to recover.
end for
return BUA

13: end procedure

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

1: procedure E(S)
2: M + Alice(1s)
3 A0 > the set D recovers just from M

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

1: procedure E(S)

2 M + Alice(1s)

3 A0 > the set D recovers just from M
4 So+ S > at end of round r, D still needs to recover S,

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

1: procedure E(S)

2 M + Alice(1s)

3 A0 > the set D recovers just from M
4: So+ S > at end of round r, D still needs to recover S,
5 forr=1,...,R do

6 sr < Bob(M,1s\s,_,) > s, é S,_1 found in round r

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

1: procedure E(S)

2 M + Alice(1s)

3 A0 > the set D recovers just from M
4 So+ S > at end of round r, D still needs to recover S,
5: forr=1,...,R do

6 sr < Bob(M,1s\s,_,) > s, é S,_1 found in round r
7 S« 51

8 if s, € 5,_1 then > i.e. if s, is a valid sample

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

1: procedure E(S)

2 M + Alice(1s)

3 A0 > the set D recovers just from M
4 So+ S > at end of round r, D still needs to recover S,
5: forr=1,...,R do

6 sr < Bob(M,1s\s,_,) > s, é S,_1 found in round r
7 S« 51

8 if s, € 5,_1 then > i.e. if s, is a valid sample
9 b, <1 > b e {0,1}F indicating which rounds succeed

10: A AU{s) S, « S\{s}

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

1: procedure E(S)

2 M + Alice(1s)

3 A0 > the set D recovers just from M
4 So+ S > at end of round r, D still needs to recover S,
5: forr=1,...,R do

6 sr < Bob(M,1s\s,_,) > s, é S,_1 found in round r
7 S« 51

8 if s, € 5,_1 then > i.e. if s, is a valid sample
0: by 1 > b € {0,1}® indicating which rounds succeed
10: A+ AU{s} S < S\{s}

11: else

12: b+ 0

13: end if

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

procedure E(S)
M + Alice(1s)

1:

2

3 A0 > the set D recovers just from M
4 So+ S > at end of round r, D still needs to recover S,
5: forr=1,...,R do

6 sr < Bob(M,1s\s,_,) > s, é S,_1 found in round r
7 S« 51

8 if s, € 5,_1 then > i.e. if s, is a valid sample
0: by 1 > b € {0,1}® indicating which rounds succeed
10: A+ AU{s} S < S\{s}
11: else

12: b+ 0

13: end if

14: remove |S,| — n, elts from S, with smallest 7; > now |S,| = n,

15: end for

Optimal lower bound for R;"**?(URS™)
Encoding algorithm for S C [n], |S| =m

procedure E(S)
M + Alice(1s)

1:

2

3 A0 > the set D recovers just from M
4 So+ S > at end of round r, D still needs to recover S,
5: forr=1,...,R do

6 sr < Bob(M,1s\s,_,) > s, é S,_1 found in round r
7 S« 51

8 if s, € 5,_1 then > i.e. if s, is a valid sample
0: by 1 > b € {0,1}® indicating which rounds succeed
10: A+ AU{s} S < S\{s}
11: else

12: b+ 0

13: end if

14: remove |S,| — n, elts from S, with smallest 7; > now |S,| = n,

15: end for
16: return (M, S\A, b)
17: end procedure

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.
Proof:

> 1(X;S,) = H(S,) — H(S:|X)

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.
Proof:

» 1(X;S,) = H(S,) — H(S/|X)
» |S;| =n, and |S| = m, so H(S,) < log (,’fr’)

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.
Proof:

» 1(X;S,) = H(S,) — H(5/1X)
» |S;| =n, and |S| = m, so H(S,) < log (,’fr’)
» We show that for any T € (ns,) and x,

]P’(Sr:T\X:x)gp:%

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.
Proof:

» 1(X;S,) = H(S,) — H(5/1X)
» |S;| =n, and |S| = m, so H(S,) < log (,’fr’)
» We show that for any T € (ns,) and x,
P(S, = T\X:x)gp:%
= H(S/|X) > log 1 > log () — 6K O

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.
Proof:

» 1(X;S,) = H(S,) — H(5/1X)
» |S;| =n, and |S| = m, so H(S,) < log (,’fr’)
» We show that for any T € (ns,) and x,

P(S, = T\X:x)gp:%
= H(S/|X) > log 1 > log () — 6K O

Correctness of protocol then follows by adaptivity lemma.

Analysis
Recall K = L% Iog%J. Note n, =2~"Km~ (1 —1/K) ' m.
X is randomness used by UR™" protocol.

Lemma: If in each round we add a random 1/K-fraction of the
remaining elements of S to T,, then for all r € [R], I(X;S,) < 6K.
Proof:

» 1(X;S,) = H(S,) — H(5/1X)
» |S;| =n, and |S| = m, so H(S,) < log (,’fr’)
» We show that for any T € (ns,) and x,

P(S, = T\X:x)gp:%
= H(S/|X) > log 1 > log () — 6K O

Correctness of protocol then follows by adaptivity lemma.

Note a “1/K-fraction of what's left” requires at least K items left.
Thus we stop when 27R/Km < K, i.e. R = ©(K log(m/K)).

The End

