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Boolean Functions

m Boolean function f: {-1,1}" — {-1,1}

) ~1 (TRUE) ifz=(-1)"

AND, (x) =
(=) {1 (FALSE)  otherwise



Approximate Degree

m A real polynomial p e-approximates f if
lp(z) — f(z)] <e Voe{-1,1}"

n &ﬁ(f) = minimum degree needed to e-approximate f

] (fie\é(f) := degy /3(f) is the approximate degree of f



Why Care About Approximate Degree?

Upper bounds on d/ér/ge(f) yield efficient learning algorithms.
m ¢~ 1/3: Agnostic Learning [KKMS05]

m e~ 1—2"": Attribute-Efficient Learning [KS04, STT12]
m ¢ — 1 (i.e., threshold degree, deg, (f)): PAC learning [KS01]
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Upper bounds on aér/ge(f) yield efficient learning algorithms.

m e~ 1/3: Agnostic Learning [KKMS05]
m e~ 1— 2" Attribute-Efficient Learning [KS04, STT12]
m ¢ — 1 (i.e., threshold degree, deg, (f)): PAC learning [KS01]

m Upper bounds on deg; /3(f) also:
m Imply fast algorithms for differentially private data release
[TUV12, CTUW14].
m Underly the best known lower bounds on formula complexity
and graph complexity [Tal2014, 2016a, 2016b]
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Lower bounds on agée(f) yield lower bounds on:

m Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]
m Circuit complexity [MP69, Bei93, Bei94, She08]
m Communication complexity [She08, SZ08, CA08, LS08, Shel2]

m Lower bounds hold for a communication problem related to f.
m Technique is called the Pattern Matrix Method [She08].

m A lower bound on d’éél/:),(f) implies that the pattern matrix of
f has high quantum communication complexity, even with
prior entanglement.

m Lower bounds on &E’é(f) also yield efficient secret-sharing
schemes [BIVW16] and oracle separations [Bei94, BCHTV16].
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Example: What is the Approximate Degree of AND,,?

deg(AND,) = O(y/n).
m Upper bound: Use Chebyshev Polynomials.

m Markov's Inequality: Let G(¢) be a univariate polynomial s.t.
deg(G) < d and max;c|_1 ) |G(¢)| < 1. Then

max |G'(t)| < d*.
te[—-1,1]

m Chebyshev polynomials are the extremal case.
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Example: What is the Approximate Degree of AND,,?

deg(AND,,) = O(/n).

m After shifting a scaling, can turn degree O(y/n) Chebyshev
polynomial into a univariate polynomial Q(t) that looks like:

Q(-1+2/n) =2/3

m Define n-variate polynomial p via p(z) = Q(>_7, x;i/n).
m Then |p(z) — AND, (z)| <1/3 Vze {-1,1}".



Example: What is the Approximate Degree of AND,,?

[NS92] deg(AND,,) = Q(v/n).

Lower bound: Use symmetrization.
Suppose |p(x) — AND,(z)| < 1/3 Va e {-1,1}"
There is a way to turn p into a univariate polynomial p¥¥™
that looks like this:

A

Q-1+2/n) 2 2/3
Claim 1: deg(p¥™) < deg(p).
Claim 2: Markov's inequality = deg(p»™) = Q(n'/?).



Focus of This Talk

m Approximate degree is a key tool for understanding ACY.

m At the heart of the best known bounds on the complexity of
AC® under measures such as:

Quantum Communication Complexity

Approximate Rank

Sign-rank ~ UPP**

Discrepancy ~ Margin complexity ~ PP

Majority-of-Threshold circuit size

Threshold-of-Majority circuit size

and more.
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m Approximate degree is a key tool for understanding ACY.

m At the heart of the best known bounds on the complexity of
AC® under measures such as:

Quantum Communication Complexity

Approximate Rank

Sign-rank ~ UPP**

Discrepancy ~ Margin complexity ~ PP

Majority-of-Threshold circuit size

Threshold-of-Majority circuit size

and more.

Problem 1: Is there a function on n variables that
is in ACY, and has approximate degree 2(n)?
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Approximate Degree of ACY: Details

m Best known result: Q(n?/3) for the Element Distinctness
function (Aaronson and Shi, 2004).
m Our result: For any constant 6 > 0, a function in AC? with
approximate degree Q(n1_5).
m More precisely, circuit depth is O(log(1/4)).
m Lower bound also applies to DNFs of polylogarithmic width
(and quasipolynomial size).



Applications

m Nearly optimal Q(n'~%) lower bounds on quantum
communication complexity of ACC.

m Essentially optimal (quadratic) separation of certificate
complexity and approximate degree.

m Better secret sharing schemes with reconstruction in ACC.



Prior Work: The Method of Dual Polynomials and
the AND-OR Tree



Beyond Symmetrization

m Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly p*™, we throw away information about p.

= Challenge Problem: What is deg(AND-OR,,)?

AND,

LTINS,

R 12 . OR 172

//\\ AN //\\

xl x 172



History of the AND-OR Tree

deg(AND-OR,,) = O(n!/2).
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History of the AND-OR Tree

deg(AND-OR,,) = O(n!/2).
Tight Upper Bound of O(n!/?)

[HMWO03] via quantum algorithms
[Shel2] different proof (via robustification)

Tight Lower Bound of Q(n'/?)
[BT13] and [Shel3] via the method of dual polynomials




Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f7
Primal LP (Linear in € and coefficients of p):

min, . €
sit. |p(x) — f(z)| <e forall z € {—1,1}"
degp <d
Dual LP:
max, Y P(x)f(x)

ze{—-1,1}"

s.t. > @) =1
ze{-1,1}"

Z P(x)g(x) =0 whenever degq < d
ze{-1,1}"



Dual Characterization of Approximate Degree

Theorem: deg, (f) > d iff there exists a “dual polynomial”
P {=1,1}" — R with

(1) Z Y(x)f(z) > € “high correlation with f"
ze{—-1,1}"

(2) Z ()| =1 “Li-norm 1"
ze{-1,1}7

(3) Z Y(z)q(x) =0, when degg <d  "“pure high degree d’
ze{-1,1}"

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.



Dual Characterization of Approximate Degree

Theorem: deg, (f) > d iff there exists a “dual polynomial”
P {=1,1}" — R with

(1) Z Y(x)f(z) > € “high correlation with f"
ze{—-1,1}"

(2) Z ()| =1 “Li-norm 1"
ze{-1,1}7

(3) Z Y(z)q(x) =0, when degg <d  "“pure high degree d’
ze{-1,1}"

Example: 27" - PARITY,, witnesses the fact that
lim_,; deg (PARITY,,) = n.



Goal: Construct an explicit dual polynomial
'@/)AND—OR for AND—OR



Constructing a Dual Polynomial

m By [NS92], there are dual polynomials
wour for deg (AND, 1/5) = Q(n/4)  and
iy for deg (OR,12) = Q(n'/4)
m Both [Shel3] and [BT13] combine 1oyt and ¢y to obtain a
dual polynomial )anp-or for AND-OR.

m The combining method was proposed in earlier work by [SZ09,
Lee09, She09].



The Combining Method [SZ09, She09, Lee09]

nl/2

YAND-OR (1, - -, T172) = C - out(-. ., sgn(thin(za)), .. ) [ o)
i1

(C chosen to ensure ®)anp-or has Li-norm 1).

AND,x

//f\\
//\\ VAN //\\

$1



The Combining Method [SZ09, She09, Lee09]

nl/2

YAND-OR(Z1, - - -, Tp1/2) := C - Yourt (. - -, sgn(¢in(zi)) H [N (i)

(C chosen to ensure ®)anp-or has Li-norm 1).

Must verify:
1AND-OR has pure high degree > nl/4. pl/4 = pl/2,

1AND-0OR has high correlation with AND-OR.



The Combining Method [SZ09, She09, Lee09]

nl/2

YAND-OR(Z1, - - -, Tp1/2) := C - Yourt (. - ., sgn(¢in(zi)) H [N (i)

(C chosen to ensure ®)anp-or has Li-norm 1).

Must verify:
1AND-OR has pure high degree > nl/4. pl/4 = n1/2.\/[5he09]
1AND-OR has high correlation with AND-OR. [BT13, Shel3]



Recent Progress on the Complexity of AC:
Applying the Method of Dual Polynomials to
Block-Composed Functions



(Negative) One-Sided Approximate Degree

m Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

m A real polynomial p is a negative one-sided e-approximation
for fif

p(x) =1 <e Voe f(1)
plz) < -1 Vaef(-1)

m o?e/g,’e(f) = min degree of a negative one-sided
e-approximation for f.

m Examples: ogg_71/3(ANDn) = 0(y/n); O/Cj\gg—,1/3(ORn) =1
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Theorem (BT13, Shel3)

Let f be a Boolean function with gggg_ylﬂ(f) >d. Let
F = ORy(f,..., f). Then degyy(F) > d- /1.
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Recent Theorems

Theorem (BT13, Shel3)

Let f be a Boolean function with oche/g,’l/Q(f) >d. Let
F = ORy(f,..., f). Then degyy(F) > d- /1.

Theorem (BT14)

Let f be a Boolean function with ofcie/g_yl/z(f) >d. Let
F = ORy(f,...,f). Thendeg, » (F) > d.

Theorem (Shel4)

Let f be a Boolean function with ofcye/g,’l/z(f) >d. Let
F =OR(f,...,f). Then deg, (F) = Q(min{d,t}).

Theorem (BCHTV16)

d. Let

Let f be a Boolean function with 3%1/2(]’) >
> Q(min{d, t}).

F = GAPMAJ,(f,. .., f). Then deg. (F)



Problem 1: [s there a function on n variables that
is in ACY, and has approximate degree 2(n)?



Our Techniques



Approximate Degree of ACY: Details

m Major technical obstacle to progress on lower bounds: By
Robustification [Shel2]:

deg(f(g, - .., 9)) <O(deg(f) - deg(y))-

m i.e., the approximate degree of fis o g (as a function of the
number of inputs M - N) is never larger than that of f or g
individually.



Approximate Degree of ACY: Details

m Major technical obstacle to progress on lower bounds: By
Robustification [Shel2]:

deg(f(g, - .., 9)) <O(deg(f) - deg(y))-

m i.e., the approximate degree of fis o g (as a function of the
number of inputs M - N) is never larger than that of f or g
individually.

m So must move beyond block-composed functions to make
progress on Problem 1.



A General Hardness Amplification Result

Theorem (Main Theorem)

Let f: {—1,1}" — {—1,1} with &Eé(f) =d. Then f can be
transformed into a function g on O(nlog" n) variables with

deg(g) > n'/? - d*/%.
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A General Hardness Amplification Result

Theorem (Main Theorem)

Let f: {—1,1}" — {—1,1} with &Eé(f) =d. Then f can be
transformed into a function g on O(nlog*n) variables with

deg(g) > n'/? - d*/%.

m f computed by circuit of depth d —
g computed by circuit of depth d + 3.

m f computed by monotone circuit of depth d —
g computed by monotone circuit of depth d + 2.

m f computed by monotone DNF of width w —>
g computed by monotone DNF of width O(w - log? n).

m ACY results obtained by recursively applying Main Theorem,
starting with f equal to OR,,.



Idea of the Hardness Amplification Construction



|dea of the Hardness-Amplifying Construction

m Consider the function SURJECTIVITY: {—1,1}" — {—1,1}.

m Let n = Nlog R. SURJ interprets its input x as a list of NV
numbers (x1,...,zxN) from a range [R].

m SURJ(z) = —1 if and only if every element of the range [R]
appears at least once in the list.

m When we apply Main Theorem to f = ANDg, the "harder”
function g is precisely SURJ.



Getting to Know SURJECTIVITY

m It is known that deg(SURJ) = Q(n2/3) for R = N/2 [AS04].
m Best known upper bound on &E(SURJ) is trivial O(n).
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Getting to Know SURJECTIVITY

m It is known that cfigg/(SURJ) = Q(n?/3) for R = N/2 [ASO04].
m Best known upper bound on &E(SURJ) is trivial O(n).
m An instructive way to achieve this trivial upper bound:

m Let
—lifa; =1
Yij = .
+1 otherwise

m Then
SURJ(J?):ANDR(ORN(yLl, e 7y]ﬂ]\[), ey ORN(yR,l e 7yR,N))~

m Let p be a degree O(VR - N) = O(N) polynomial
approximating ANDz(ORy,...,ORN).
m Can construct p via robustification.
m Then p(y11,...,¥1.N,---,YR15---,YR,N) apProximates
SURJ, and has degree O(deg(p) - log R) = O(n).



X; | X | X3 | X4 | X5 | X | (Eachx;in [R])







First Attempt: Amplifying Hardness of
f{-1,1}F—={-1,1} (R=3,N=6)

X; | X | X3 | X4 | X5 | X | (Eachx;in [R])




Hardness-Amplifying Construction: Second Attempt

m First attempt at handling general f fails when f = OR.

m g(z) = ORR(ORN(Y1,15-- - ¥1,N), -, ORN(YR1 - - -, YR,N))
has (exact) degree 1.



Hardness-Amplifying Construction: Second Attempt

m First attempt at handling general f fails when f = OR.

m g(z) = ORR(ORN(Y1,15-- - ¥1,N), -, ORN(YR1 - - -, YR,N))
has (exact) degree 1.

m Let R' = RlogR. For f: {—1,1}f — {—1,1}, the real*
definition of g is:

g(z)=(foANDioe r)(ORN (Y115 - - ¥1,N), - - LORN(YR/ 15- - -, YR/ N))

*This is still a slight simplification.



Idea of the Analysis for SURJECTIVITY
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|dea of the Analysis for SURJECTIVITY

m Let n = NlogR.

m Recall: to approximate SURJ: {-1,1}" — {-1,1}, itis
sufficient to approximate the block-composed function
ANDR(ORN, R ,ORN) on N - R bits.

m Goal is to show this approximation method is close to optimal.

m Step 1: Show that to approximate SURJ(x), it is necessary
to approximate ANDgr(ORy,...,ORy), under the promise
that the input has Hamming weight at most N.

m Follows from a symmetrization argument (Ambainis 2003).
m Step 2: Prove that for some N = O(R), this promise problem
requires degree > Q(R?/3).
m Builds on the “dual combining technique” used earlier to
analyze AND-OR,, (with no promise).




Overview of Step 2

Prove That For Some N = O(R), Approximating ANDy o ORy
Under the Promise That The Input Has Hamming Weight At
Most N Requires Degree > R?/3.



Attempt 1

m For some N = O(R), want a dual witness for
ANDRr(ORy,...,ORy) that only places mass on inputs
of Hamming weight at most V.

ANDg

T INN,
//\\ VAN //\\
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m For some N = O(R), want a dual witness for
ANDRr(ORy,...,ORy) that only places mass on inputs
of Hamming weight at most V.

m Attempt 1: Use the dual witness for ANDr(ORy,...,ORy)

from prior work [She09, Lee09, BT13, Shel3|.
R

YanD-or (Y1, - - yr) = C - Yanp (- - -, sgn(vor(Y))), - - ) [ ] [vor(y))]
j=1
(C chosen to ensure ®)anp-or has Li-norm 1).
Must verify:
Y)anp-oR has pure high degree > R'/2. N1/2=Q(N).v [She09]
1anp-or Well-correlated with AND-OR.v' [BT13, Shel3]

1AND-OR Places mass only on inputs of Hamming weight < N.X
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Patching Attempt 1

m Goal: Fix Property 3 without destroying Properties 1 or 2.
m Fact (cf. Razborov and Sherstov 2008): Suppose

> |vanp-or(y)| < R

ly|>N

m Then we can “post-process” 1anp-or to “zero out” any mass
it places it inputs of Hamming weight larger than N.

m While ensuring that the resulting dual witness still has pure
high degree min{/), PHD(¢)anp-0R) }
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Patching Attempt 1

m New Goal: Show that, for 1) ~ R2/3,

Z lanp-or(y)| < R™". (1)
ly|>N
m Recall:
R
Yanp-or(Y1,- - yr) := C - Yanp(.. . sgn(vor () H [vor(y;)]
m Intuition:

m A dual witness ¥gr for OR can be made “weakly” biased
toward low Hamming weight inputs.
m Specifically: 32, . _; [Yor(yi)| < t=2.
® |anD-OR(Y1,---,YR)| “resembles’ the product distribution
[T [vor(y;)]-
m So it is exponentially more biased toward low Hamming weight
inputs than ¥gg itself.
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Patching Attempt 1 (Slightly Loose Analysis)

m New Goal: Show that, for 1) ~ R2/3,

> |vanp-or()| < R (2)
|y‘>2R1.(]1
m Recall: B
YanD-0r (Y1, - - yR) = C - ¥anp (- . ., sgn(vor(y))), - - ) [ ] [vor(y))|
=1

m We need to modify ¥or to ensure that Equation (2) holds.
Modify 9or to place no mass whatsoever on inputs of
Hamming weight more than R/3.
Suppose 1R also satisfies the following “low Hamming weight
bias" condition.
] Z|yi\>R0-Ul W’OR(%‘” < R740~
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m We need to modify ¥or to ensure that Equation (2) holds.
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Hamming weight more than R/3.
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m Condition (2) + product-like nature of Y)anpD.OR =
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total mass Yanp-or places on such inputs is <



Completing The Analysis

m Fact: Both properties from previous slide are satisfied by a
dual witness 9or for OR of pure high degree ~ R!/S.

m This ensures Yanp-or has pure high degree
Z RY/2.RY/6 — R2/3. O



Future Directions

m An Q(n) lower bound on the approximate degree of AC??
m Extend our Q(n'~°%) degree lower bound from polylogarithmic
width DNFs to polynomial size DNFs?

m Extend our bounds on deg (f) from e = 1/3 to € much closer
to 17
m We believe our techniques can extend to give:
m A function f in AC® with deg, (f) > n'™?, fore=1-2"""
m New threshold degree lower bounds for AC®,
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Thank you!



