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Augmented Index    (AIn)

Variant of Index function

Alice has an    n-bit   string   x

Bob has the prefix   x[1, k-1] ,   and a bit   b

Goal:    Compute    xk ⊕ b

x = x1 x2 ... xn k,  x[1, k-1],  b

Is    xk = b   ?



(Augmented) Index function
Fundamental problem with a rich history

• communication complexity    [KN’97]

• data structures    [MNSW’98]

• private information retrieval    [CKGS’98]

• learnability of states    [KNR’95,  A’07]

• finite automata    [ANTV’99]

• formula size    [K’07]

• locally decodable codes    [KdW’03]

• sketching    e.g., [BJKK’04]

• information causality    [PPKSWZ’09]

• non-locality and uncertainty principle    [OW’10]

• quantum ignorance    [VW’11]    and more!



Connection with streaming algorithms

Magniez, Mathieu, N. ’10:

• For Dyck(2):     is an expression in two types of parentheses is 
well-formed ?

• ( [ ] ( ) )     is well-formed

• ( [ )( ] )     is not well-formed

• Motivation:    what is the complexity of problems beyond 
recognizing regular languages, say of context-free languages ?

• Dyck(2) is a canonical CFL, used in practice: e.g., checking well-
formedness of large XML file



Streaming algorithms for Dyck(2)

Magniez, Mathieu, N.’10:

• A single pass randomized algorithm that uses  O( (n log n)1/2 )   
space,   O(polylog n)   time/ symbol

• 2-pass algorithm, uses  O(log2 n)  space,  O(polylog n)   time/ 
symbol,   second pass in reverse

• Space usage of  one-pass algorithm is optimal,   via an 
information cost trade-off for Augmented Index (two-round)

Chakrabarti, Cormode, Kondapalli, McGregor ’10;     Jain, N.’10:

• Space usage of unidirectional  T-pass algorithm is   n1/2 / T

• Again, through information cost trade-off for Augmented Index, 
for an arbitrary number of rounds



Classical information trade-offs for AIn

rounds error Alice reveals or Bob reveals Ref.

two, Alice 
starts 1/ (n log n) Ω(n) Ω(n log n) MMN’10

any no. constant Ω(n) Ω(1) CCKM’10 
JN’10

any no. constant Ω(n/2m) Ω(m) CK’11

• trade-offs w.r.t. uniform distribution over 0-inputs

• Internal information cost for classical protocols



Augmented Index    AIn

x = x1 x2 ... xn k,  x[1, k-1],  b
Is    xk = b   ?

• Simple protocols:     Alice sends   x    or Bob sends    k, b

• Can interpolate between the two:

• Bob sends the    m    leading bits of    k

• Alice sends the corresponding block of    x    of 
length    n / 2m



Streaming algorithms

Attractive model for quantum computation

• initial quantum computers are likely to have few qubits

• captures fast processing of input, may cope with low coherence 
time

• goes beyond finite quantum automata

··· 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0···

device with small memory



Streaming quantum algorithms

Advantage over classical

• Quantum finite automata:   streaming algorithms with constant 
memory and time per symbol. Some are exponentially smaller 
than classical FA.

• Use exponentially smaller amount of memory for certain 
problems   [LeG’06,  GKKRdW’06]

Advantage for natural problems ?

• For Dyck(2), checking if an expression in two types of 
parentheses is well-formed ?



Quantum streaming complexity of Dyck(2) ?

Theorem   [Jain, N. ’11]

If a quantum protocol computes   AIn   with probability   1 - ε    
on the uniform distribution, either 

Alice reveals   Ω( n / t )   information about   x ,  or 

Bob reveals   Ω( 1 / t )   information about   k ,  

under the uniform distribution over 0-inputs, where   t   is the 
number of rounds.

• Specialized notion of information cost

• Connection to streaming algorithms breaks down

• Connection to communication complexity unclear

• Other notions:     fixed above problems, but couldn’t analyze



Results

Theorem   [N., Touchette ’16]

*     If a quantum protocol computes AIn with probability    1 - ε    
on the uniform distribution, either 

Alice reveals   Ω( n / t2 )   information about   x ,  or 

Bob reveals   Ω( 1 / t2 )   information about   k ,  

under the uniform distribution over 0-inputs, where   t   is the 
number of rounds.

*    Any    T-pass unidirectional quantum streaming algorithm for 
Dyck(2) uses    n1/2 / T3    qubits on instances of length    n

x = x1 x2 ... xn k,  x[1, k-1],  bIs    xk = b   ?



Quantum information trade-off

• Uses a new notion,  Quantum Information Cost    [Touchette ’15]

• High-level intuition and structure of proof similar to [Jain, N. ’11], but 
new execution, uses new tools

• Overcomes earlier difficulties in analysis:

• inputs to Alice and Bob are correlated

• need to work with superpositions over inputs

• superpositions leak information in counter-intuitive ways

• Develop a “fully-quantum” analogue of the “Average Encoding Theorem” 
[KNTZ’07, JRS’03]

• Use of tools needs special care



Lower bound for quantum streaming algorithms

• Define general model for quantum streaming algorithms:    allows for 
measurements / discarding qubits    (non-unitary evolution)

• Quantum Information Cost allows us to lift the [MMN’10] connection 
between streaming and low-information protocols, even for this general 
model 

• Proof of information cost trade-off requires protocols with pure 
(unmeasured) quantum states

• QIC does not increase, when we transform protocols with intermediate 
measurements to those without



Main 
Result

Theorem   [N., Touchette ’16]

If a quantum protocol computes AIn with probability    1 - ε    on 
the uniform distribution, either 

Alice reveals   Ω( n / t2 )   information about   x ,  or 

Bob reveals   Ω( 1 / t2 )   information about   k ,  

under the uniform distribution over 0-inputs, where   t   is the 
number of rounds.

x = x1 x2 ... xn k,  x[1, k-1],  bIs    xk = b   ?



Intuition behind proof    
(2 classical messages,  [JN’10])

Consider uniformly random   X,   K,   let   B = XK     (0-input)

• Consider   K   in   [n/2].   If   MA   has   o(n)   information about   X,   
then it is nearly independent of   XL ,   L > n/2.   Flipping  Alice’s  L-th bit 
does not perturb   MA   much.

• If   MB   has   o(1)   information about   K,   then   MB   is nearly the 
same, on average, for pairs   J ≤ n/2,    L  >  n/2.   Switching  Bob’s index 
from   J   to   L   does not perturb   MB   much.

Consequences of Average Encoding Theorem    [KNTZ’07, JRS’03]

x = x1 x2 ... xn k,  x[1, k-1],  bMA

MB

output



Intuition continued...

      0

      0

same L-th bit
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switch index

      0
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Alice’s input Bob’s input Protocol transcript
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0-input
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Finally...
Alice’s input Bob’s input Protocol transcript

      0

      1

flip L-th bit

X[1, K]

X[1, L]

M

M’’’

switch index

We have   M  ≈   M’    and   M  ≈   M’’ .   Therefore,   M’  ≈   M’’    (triangle 
inequality)

Cut and paste lemma    [BJKS’04]

In any (private coin) randomized protocol, the Hellinger distance between 
message transcripts on inputs   (u,v)   and   (u’,v’)   is the same as that 
between   (u’,v)   and   (u,v’)

Therefore,    M  ≈   M’’’   and the (low-information) protocol errs.

0-input

1-input

X

X’



Quantum case 
(2 messages,  both superpositions)

Uniformly random   X,   K,   let   B = XK     (0-input)

• Assume no party retains private qubits

• K   in   [n/2],    L > n/2

• first message has   o(n)   information about   X    (given prefix),    
second message has little information about    K    (given X)

In this case, can use (quantum) mutual information, and Average Encoding 
Theorem    [KNTZ’07, JRS’03]

x = x1 x2 ... xn k,  x[1, k-1],  b

｜ψ =   VK UX｜0 

output

UX｜0 



Quantum case continued...
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      0

same L-th bit

X[1, K]

X[1, L]

｜ψ 

｜ψ’’  ｜ψ   

switch index
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Alice’s input Bob’s input Final protocol state

flip L-th bit

X[1, K]

X[1, K]

｜ψ 

｜ψ’  ｜ψ   

same index

0-input
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flip L-th bit

X[1, K]
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X

X
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Finally...
Alice’s input Bob’s input Protocol state

      0

      1

flip L-th bit

X[1, K]

X[1, L]

｜ψ 

｜φ  ｜ψ  ? 

switch index

｜ψ =   VK UX｜0 ,    ｜ψ’ =   VK UX’｜0 ,   ｜ψ’’ =   VL UX｜0 

｜φ =   VL UX’｜0 

｜φ - ψ｜  ≤   ｜ ψ - ψ’’｜+ ｜φ - ψ’’｜

                  ≤    δ   +   ｜ VL UX’｜0 -  VL UX｜0 ｜

                  =    δ   +   ｜ VK UX’｜0 -  VK UX｜0 ｜

                  =    δ   +   ｜ ψ - ψ’ ｜   ≤    2 δ

X

X’



Details omitted

• Alice and Bob may maintain private workspace, communicate over 
more rounds

• Need to use QIC to quantify information, work with 
superpositions over inputs

• Use “superposed average encoding theorem”, building on a 2015 
breakthrough by Fawzi-Renner

• Perturbation of message due to switching of input depends on the 
number of rounds

• Hybrid argument conducted round by round à la [JRS’03]

• Leads to round-dependant trade-off

• Trade-off can be strengthened using ideas from [Lauriere and 
Touchette’16],    can then work with Average Encoding Theorem



Final remarks

• Established a trade-off for quantum information cost for 
Augmented Index

• Round dependence probably an artefact of the proof; eliminating 
this is related to question about Disjointness

• Implies a space lower bound for streaming algorithms for Dyck(2):        
matches classical case, up to round-dependence

• Tools may be useful more generally in quantum communication 
complexity


