Testable Bounded Degree
Graph Properties Are Random
Order Streamable




Sparse Graphs

Given a graph G(V,E) where n=|V| and m = |[E| = O(n).




Examples




d-Bounded Degree Graphs

Given a graph G(V,E) whose maximum degree d 1s
constant, where n=|V| and 0 <m = |E| < nd.




(€,k,d)-Hypertinite G(V,E)

G 1s (¢,k,d)-hypertinite graph 1f we remove a set of at
most edn edges of G s.t. the remaining graph has
connected components of size at most k.




Arboricity

w- Is a way to quantify the density of a graph G(V,E).
w- ¢ = maxu {|E(U)|/(JU|-1)} where U 1s a subset of V.
r G can be partitioned into at most ¢ forests.




Maximum Matching

Given a graph G(V,E), find a set of pairwise
non-adjacent of maximum size, 1.€., no two










Maximum Matching

w~ 30-years-old algorithm due to Micali and Vazirani with
running time mn.

w- Greedy algorithm returns maximal matching (2-
approximation of maximum matching).




Maximum Matching

w~ 30-years-old algorithm due to Micali and Vazirani with
running time mn.

w- Greedy algorithm returns maximal matching (2-
approximation of maximum matching).




Big Data Models for Graphs

15~ Data Streams: Graph Streams




Streaming Model




Streaming Model
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Graph Streams

@ Adverserial or Random Order Model

= O(c)-approximate the size of matching in c-
bounded arbor1c1ty graphs using O(clog n)
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Graph Streams

@ Adverserial or Random Order Model

In general, 1t 1s not clear which graph problems
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Graph Streams

15~ Semi-Streaming Model: O(n polylog(n)) space

& Sparse Graphs: m=O(n)




Constant Query Property Testing

SRt id d_




d-Bounded Graph

Given a graph G(V,E) whose maximum degree d 1s
constant, where n=|V| and 0 <m = |E| < nd.




Adjacency List Model

Query access to the adjacency list of G:

For any vertex v and index 1 one can query the 1-th




Property Testing

A property | | = for d-bounded n-vertex graphs i1s testable with
query complexity g, if for every &, d and n, there exists an

algorithm that performs q(n,d, €) queries to the adjacency list
of the graph and with probability 2/3
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Property Testing

Theorem: Any d-bounded graph property that is
constant-query testable in the adjacency li del can




Examples

Adversary Order Model:

Testing k-edge connectivity, k-vertex connectivity and




Examples

Random Order Model:

k-edge connectivity, k-vertex connectivity and cycle-

freeness of d-bounded degree graphs are testable in
constant space 1n the random order stream model, since they

are constant-auerv testanle 1n the aaiacenc M OE ,




Property Testing

Proof (sketch): Every constant query property
tester

- Samples a constant number of vertices




k-disc

The local neighborhood of depth k of a vertex is the
subgraph induced by all vertices of distance at most k.




k-disc

The local neighborhood of depth k of a vertex is the
subgraph induced by all vertices of distance at most k.
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k-disc

The local neighborhood of depth k of a vertex is the
subgraph induced by all vertices of distance at most k.
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Constant-Time Approximation
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Adjacency List Model

Query access to the adjacency list of G:

For any vertex v index 1 one can query the the 1-th




(X,y)-Approximation

We call a value t an (x,y)-approximation for the problem
P, if for any instance I, we have




O(1)-time Approximation Algorithm

Theorem: There exists an algorithm that uses

constant space in the random order model, and with
- probability 2/3, (1,en)-approximates the size of a




O(1)-time Approximation Algorithm

Similar result holds for minimum vertex cover,
maximum matching, the number of connected

Vat aVat =t e S 5 - L : - (W s . B L B




O(1)-time Approximation Algorithm

Theorem: There exists an algorithm that uses
constant space 1n the random order model, and with




O(1)-time Approximation Algorithm

Greedy Matching

Stream: €, € €, €, ... e.




O(1)-time Approximation Algorithm

Greedy Matching

Stream: €; €, €; ¢




O(1)-time Approximation Algorithm
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k-Disc Primitive 1n Data Streams

= [AERL LG d_




k-disc Primitive

Given a random order stream S of edges of an
underlying d-bounded degree graph G(V,E).




2-Pass Streaming Algorithm

= [AERL LG d_




2-Pass Algorithm

First Pass:

Sample a set S of (d¥*?)! vertices and collect their
observed k-discs 1n S.




2-Pass Algorithm

Second Pass:

Find the degree of vertices in (partially explored) k-discs
- of the vertices , ., |

_____




1-Pass Streaming Algorithm

= [AERL LG d_




Partial Order

Hax={A1,...,Ax} : The set of all k-disc isomorphism
types.

Ai=A; : Aj1s root-preserving 1somorphic to some
subgraph of Ai.




Ordering

Order all the k-disc types Ai,..., Ax such that
if Ai=A;, then 1 <.




Ordering

Order all the k-disc types Ay,..., Ax such that
1f Ai=A;, then 1 <.




Frequency Vector F(G,d)

Vi: The set of vertices with k-disc 1somorphic to A;

Vi={v € V: disckg(V) = Ai}




Marginal Probability

Let S be a random order Stream.

Let v be a vertex with k-disc isomorphic to A;.

Marginal Probability: The probability A(A;|A;) that the observed
k-disc of v in S 1s discy(v,S) = A; for any j such that A= A;.




1-Pass Algorithm

Preprocssing:
Sample a set T of O(2@ )1 /€2) vertices.




1-Pass Algorithm

Preprocssing:
Sample a set T of O(2@*™)! /£2) vertices.

Streaming:




1-Pass Algorithm

Postprocessing:

Let H=UyerHy.




1-Pass Algorithm

Postprocessing:

Let H=UyeTH,.
For 1 =1 to x where x=|F(G,d)|
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Postprocessing:

Let H=UyeTH,.
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1-Pass Algorithm

Postprocessing:

Let H=UyeTH,.
For 1 =1 to x where x=|F(G,d)|




Open Problems

= In general, it 1s not clear which graph problems can be

solved with much smaller space 1n the random order stream
than in the adversary order stream.




Thank You




(Almost) Isomorphic Graphs

Benjamini, Shapira, and Schramm, STOC’08
Newman and Sohler, STOC’11

G and G2 : (€,k,d)-hypertinite graphs.




