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Graphs a common abstraction for representing real world data:

Ï social networks (Facebook, Twitter)
Ï web topologies
Ï interaction graphs
Ï . . .

Modern graphs are often too large to fit into memory of a
compute node

Need graph analysis primitives that use very little space
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Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï algorithm can only use Õ(n) space
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream
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Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï algorithm can only use Õ(n) space
Ï several passes over the stream (ideally one pass)

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream
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Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

Kapralov-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Also, Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15,
Bury-Schwiegelsohn’15, McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,...

Approximate solution cost for graph problems
in o(n) space?
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MAX-CUT
Given a graph output value of maximum cut

weights on edges

G

Ï A random cut cuts half of the edges – trivial factor 2
approximation

Ï 1.318-approximation due to Goemans-Williamson’95 (best
possible assuming UGC)

Ï 1.884 via spectral techniques Trevisan’09, Kale-Seshadhri’11
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Streaming algorithms:

Ï factor 2 approximation: count the number of edges m and
output m/2. Only O(logn) space.

Ï (1+ε)-approximation using O(n/ε2) space (keep a sample
of the edge set)

Better than factor 2 approximation in polylog(n) space?
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Theorem (K.-Khanna-Sudan’15)
For any constant ε> 0 a single pass streaming algorithm for
approximating MAX-CUT value to factor 2−ε requires Ω(

p
n)

space, even in the random order model.

Rules out poly(logn) space, suggests Õ(
p

n) space may be
possible in some settings...
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1. Hard input distribution

2. Boolean Hidden Partition Problem (BHP)

3. Analysis of BHP
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Hard distribution

We establish the main theorem using a hard distribution based
on Erdős-Rényi graphs:

YES: random bipartite (multi)graph with expected degree ≈ 1
ε2

NO: non-bipartite (multi)graph with expected degree ≈ 1
ε2

In the YES case MAX-CUT value is m, in the NO case
MAX-CUT value is (1+O(ε))m/2.

Sufficient to show Ω(
p

n) space required to distinguish between
the two cases.
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Erdős-Rényi graphs

Sample G = (V ,E) from distribution Gn,p
=

include each edge (u,v) ∈ (V
2
)

independently with probability p

If p = α/n for α< 1, then G is a union of O(logn) size trees, with
probability 1−O(α3).
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Hard input distribution
Partition the stream into k ≈ 1/ε2 phases:

MAX-CUT value is m in YES case and ≤ (1+ε)m/2 in NO case.
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We have SN
0 =SY

0 = 0 and ||SY
k −SN

k ||TV =Ω(1).
So there must exist j∗ (informative index) such that

||SY
j∗+1 −SN

j∗+1||TV ≥ ||SY
j∗ −SN

j∗ ||TV +Ω(1/k)
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YES case: Bob’s graph consistent with Alice’s bipartition

NO case: Bob’s graph inconsistent with Alice’s bipartition
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1. Hard input distribution

2. Boolean Hidden Partition Problem (BHP)

3. Analysis of BHP
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Boolean hidden partition problem (BHP)

Alice
binary string x ∈ {0,1}n

message m
Bob

graph G = (V ,E), V = [n]

labels we on edges

0 0 0

1
1

1 1

0

0

YES: labels consistent with partition x : wuv = xu +xv , i.e. w =Mx , i.e.
w =Mx

NO: labels are uniformly random

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf’07, Verbin-Yi’11
13 / 51
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Distributional BHP (D-BHP)
Alice gets a uniformly random string x ∈ {0,1}n

Bob gets graph G sampled from distribution Gn,p with p = α/n,
α ∈ (0,1) a small constant

YES case independently with probability 1/2, NO case
otherwise.

p
n communication protocol by birthday paradox: Alice sends xi for ≈p

n
values of i !
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Reduction from D-BHP to MAX-CUT

Lemma
A single-pass streaming algorithm ALG that achieves
(2−ε)-approximation to MAX-CUT with probability ≥ 99/100 for
our input distribution yields a protocol for D-BHP with
advantage Ω(1/k) over random guessing.
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Alice simulates SY
j∗ using bipartition X

Bob forms G′ by including edges of G with we = 1

15 / 51



Communication complexity of D-BHP

Theorem
Let G = (V ,E) be sampled from Gn,α/n for α ∈ (n−1/10,1/16).
Then a one-way protocol with communication
γ
p

n,γ ∈ (n−1/10,1) achieves at most O(γ+α3/2) advantage over
random guessing for D-BHP.
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1. Hard input distribution

2. Boolean Hidden Partition Problem (BHP)

3. Analysis of BHP
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Show that distribution of MX in the YES case is close to uniform

Conditioned on Alice’s message, is distribution of MX close to
uniform?

|A| ≈ 2n−sX ∼UNIF (A)
conditioned on m

f (x) :=indicator of A
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Goal: show that

pM(z)=Pr[Mx = z|x ∈A]

is close to uniform

Write pM(·) in Fourier basis:

pM(z)= ∑
s∈{0,1}E

p̂M(s)(−1)s·z

Show that most Fourier mass is in the constant term, i.e. bound∑
s 6=;

p̂M(s)2
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Gavinsky et al’07:

||pM −UNIF ||TVD ≤ 22n

|A|2
∑

s∈{0,1}M \{0}

f̂ (MT s)2

Given v ∈ {0,1}n, when do we have MT s = v for some
s ∈ {0,1}M?

vertices in v

edges in s

20 / 51



Gavinsky et al’07:

||pM −UNIF ||TVD ≤ 22n

|A|2
∑

s∈{0,1}M \{0}

f̂ (MT s)2

Given v ∈ {0,1}n, when do we have MT s = v for some
s ∈ {0,1}M?

vertices in v

edges in s

20 / 51



Gavinsky et al’07:

||pM −UNIF ||TVD ≤ 22n

|A|2
∑

s∈{0,1}M \{0}

f̂ (MT s)2

Given v ∈ {0,1}n, when do we have MT s = v for some
s ∈ {0,1}M?

vertices in v

edges in s

20 / 51



Gavinsky et al’07:

||pM −UNIF ||TVD ≤ 22n

|A|2
∑

s∈{0,1}M \{0}

f̂ (MT s)2

Given v ∈ {0,1}n, when do we have MT s = v for some
s ∈ {0,1}M?

vertices in v

edges in s

21 / 51



||pM −UNIF ||TVD ≤ 22n

|A|2
∑

s∈{0,1}M \{0}

f̂ (MT s)2

Each element of weight k appears with probability ≈ n−k/2.

Lemma (Gavinsky et al’07; from KKL)
If f : {0,1}n → {0,1} is the indicator function of a set A⊂ {0,1}n,
|A| ≥ 2n−s, then for every k ≥ 1,

22n

|A|2
∑

z∈{0,1}n,|z|=2k
f̂ (z)2 ≤ (O(s)/k)2k

Plugging in k = 1, we get ≈ s2/n, so s ¿p
n suffices

Fourier mass bounds fairly tight for a coordinate subspace...
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(1+Ω(1))-Approximation to MAX-CUT Requires Linear
Space
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Main result

Theorem (K.-Khanna-Sudan-Velingker’17)
There exists a constant ε∗ > 0 such that a single pass
streaming algorithm for approximating MAX-CUT value to factor
1+ε∗ requires Ω(n) space.

24 / 51



Q1: A poly(logn) space approximation scheme?

NO:
Better than factor 2 requires Ω(

p
n) space K-Khanna-Sudan’14

(1+ε)-approximation requires n1−O(ε) space K-Khanna-Sudan’14,
Kogan-Krauthgamer’14

Q2: For every 1< α< 2 there exists 0≤ β< 1 such that
α-approximation can be achieved in nβ space?

this result: NO

Q3: There exist 1< α∗ < 2 and 0≤ β∗ < 1 such that
α∗-approximation can be achieved in nβ∗ space?

???

25 / 51



Q1: A poly(logn) space approximation scheme?

NO:
Better than factor 2 requires Ω(

p
n) space K-Khanna-Sudan’14

(1+ε)-approximation requires n1−O(ε) space K-Khanna-Sudan’14,
Kogan-Krauthgamer’14

Q2: For every 1< α< 2 there exists 0≤ β< 1 such that
α-approximation can be achieved in nβ space?

this result: NO

Q3: There exist 1< α∗ < 2 and 0≤ β∗ < 1 such that
α∗-approximation can be achieved in nβ∗ space?

???

25 / 51



Q1: A poly(logn) space approximation scheme?

NO:
Better than factor 2 requires Ω(

p
n) space K-Khanna-Sudan’14

(1+ε)-approximation requires n1−O(ε) space K-Khanna-Sudan’14,
Kogan-Krauthgamer’14

Q2: For every 1< α< 2 there exists 0≤ β< 1 such that
α-approximation can be achieved in nβ space?

this result: NO

Q3: There exist 1< α∗ < 2 and 0≤ β∗ < 1 such that
α∗-approximation can be achieved in nβ∗ space?

???

25 / 51



Q1: A poly(logn) space approximation scheme?

NO:
Better than factor 2 requires Ω(

p
n) space K-Khanna-Sudan’14

(1+ε)-approximation requires n1−O(ε) space K-Khanna-Sudan’14,
Kogan-Krauthgamer’14

Q2: For every 1< α< 2 there exists 0≤ β< 1 such that
α-approximation can be achieved in nβ space?

this result: NO

Q3: There exist 1< α∗ < 2 and 0≤ β∗ < 1 such that
α∗-approximation can be achieved in nβ∗ space?

???

25 / 51



Q1: A poly(logn) space approximation scheme?

NO:
Better than factor 2 requires Ω(

p
n) space K-Khanna-Sudan’14

(1+ε)-approximation requires n1−O(ε) space K-Khanna-Sudan’14,
Kogan-Krauthgamer’14

Q2: For every 1< α< 2 there exists 0≤ β< 1 such that
α-approximation can be achieved in nβ space?

this result: NO

Q3: There exist 1< α∗ < 2 and 0≤ β∗ < 1 such that
α∗-approximation can be achieved in nβ∗ space?

???

25 / 51



Q1: A poly(logn) space approximation scheme?

NO:
Better than factor 2 requires Ω(

p
n) space K-Khanna-Sudan’14

(1+ε)-approximation requires n1−O(ε) space K-Khanna-Sudan’14,
Kogan-Krauthgamer’14

Q2: For every 1< α< 2 there exists 0≤ β< 1 such that
α-approximation can be achieved in nβ space?

this result: NO

Q3: There exist 1< α∗ < 2 and 0≤ β∗ < 1 such that
α∗-approximation can be achieved in nβ∗ space?

???

25 / 51



Hard distribution on MAX-CUT instances

YES: random bipartite graph with ≈ constant degrees

NO: non-bipartite graph with ≈ constant degrees

1. ensure MAX-CUT value gap between NO case and YES
case

2. show Ω(n) space required to distinguish between the two
cases
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2. Reduction from MAX-CUT

3. Communication problem analysis via Fourier techniques
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Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
graph G1, labels

w1 on edges

m10 0

1 1

1

0

0

...
...

Player T
graph GT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists
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Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
graph G1, labels

w1 on edges

m1

...
...

Player T
graph GT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF
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Distribution on players’ graphs

Player 1

Player 2

Player 3

G1 a perfect matching

, G2 a (random) near perfect matching

, G3 an
Erdős-Rényi graph
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Erdős-Rényi graph

33 / 51



Distribution on players’ graphs

Player 1

Player 2

Player 3

G1 a perfect matching, G2 a (random) near perfect matching, G3 an
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1. Implicit hidden partition problem

2. Reduction from MAX-CUT
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Reduction from MAX-CUT
YES: random bipartite graph with ≈ constant degrees

NO: non-bipartite graph with ≈ constant degrees

Alice (player 0)
binary string

x ∈ {0,1}n
wuv = xu +xv

Player t
graph Gt , labels

w t on edges

mt0 0

1 1

1

0

0

t-th player generates graph G′
t by including edges e ∈Gt with

w t
e = 1

YES case: labels satisfy w t =M tX for 1≤ t ≤T

YES case:

⋃
t G′

t is bipartite

NO case: labels are random: w t ∼UNIF

NO case:

⋃
t G′

t is a sample of
⋃

t Gt at rate 1/2
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Distributional Implicit Hidden Partition Problem (DIHP): G1 a
perfect matching, G2 a (random) near perfect matching, G3 an

Erdős-Rényi graph close to the giant component threshold

Theorem
If Gi(1/2), i = 1,2,3 is Gi subsampled at rate 1/2, then
G1(1/2)∪G2(1/2)∪G3(1/2) is Ω(1)-far from bipartite with high
probability.
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1. Implicit hidden partition problem

2. Reduction from MAX-CUT

3. Communication problem analysis via Fourier techniques
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Player 0

bipartition X ∈ {0,1}n m0

player 0 dominates communication!

K.-Khanna-Sudan’15 message m

wuv = xu +xv
Player 1

graph G1, labels

w1 =M1X on edges

m1

...
...

Player 3
graph G3, labels

w3 =M3X on edges

m3

0 0

1 1

1

0

0

0 0

1 1

1 1

0
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Our approach: Implicit Hidden Partition Problem
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Communication complexity of D-IHP

Theorem
Any one-way protocol with communication o(n) achieves at
most o(1) advantage over random guessing for D-IHP.

Fourier analysis (convolution theorem) and graph theoretic
considerations.
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Conditioned on messages of player 1 and player 2, is
distribution of M3X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2)

conditioned on (m1,m2)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

The indicator of A1 ∩A2 is f1 · f2.

Will prove that for k ≥ 1

22n

|A1 ∩A2|2
∑

v∈{0,1}n

|v |=2k

�f1 · f2(v)2 ≤ (O(s)/k)k

45 / 51



Conditioned on messages of player 1 and player 2, is
distribution of M3X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2)

conditioned on (m1,m2)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

The indicator of A1 ∩A2 is f1 · f2.

Will prove that for k ≥ 1

22n

|A1 ∩A2|2
∑

v∈{0,1}n

|v |=2k

�f1 · f2(v)2 ≤ (O(s)/k)k

45 / 51



Conditioned on messages of player 1 and player 2, is
distribution of M3X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2)

conditioned on (m1,m2)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

The indicator of A1 ∩A2 is f1 · f2. Will prove that for k ≥ 1

22n

|A1 ∩A2|2
∑

v∈{0,1}n

|v |=2k

�f1 · f2(v)2 ≤ (O(s)/k)k

46 / 51



|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2)

conditioned on (m1,m2)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

Players only access X via MiX , so f̂i is supported on edges
and has strong spectral properties:

22s ∑
|v |=2k

f̂i(v)2 ≤ (O(s)/k)k

Intuition: with s space can only learn about ≈ s pairs
Prior work, with player 0: with s space can only learn about
≈ s2 pairs

47 / 51



|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2)

conditioned on (m1,m2)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

Players only access X via MiX , so f̂i is supported on edges
and has strong spectral properties:

22s ∑
|v |=2k

f̂i(v)2 ≤ (O(s)/k)k

Intuition: with s space can only learn about ≈ s pairs
Prior work, with player 0: with s space can only learn about
≈ s2 pairs

47 / 51



|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2)

conditioned on (m1,m2)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

Players only access X via MiX , so f̂i is supported on edges
and has strong spectral properties:

22s ∑
|v |=2k

f̂i(v)2 ≤ (O(s)/k)k

The indicator of A1 ∩A2 is f1 · f2, so by the convolution theorem

�f1 · f2 = f̂1 ∗ f̂2
48 / 51



Hidden partition
X ∈ {0,1}n

Hidden partition
X ∈ {0,1}n

Player 1
Player 2

a

b

c
d

Intuition: f̂1(a,b,c,d)2 ≈ how much information player 1
transmits about parity Xa +Xb +Xc +Xd

Intuition:

f̂2(b,c)2 ≈ how much information player 2 transmits
about parity Xb +Xc

Intuition:

�f1 · f2(a,d)2 = f̂1(a,b,c,d)2 · f̂2(b,c)2 ≈ how much
information players 1 and 2 transmit about parity Xa +Xd
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For any `≥ 0,

∑
v∈{0,1}n,
|v |=2`

�f1 · f2(v)2 = ∑
k≥0

∑
w∈{0,1}n,|w |=2k

f̂1(w)2

︸ ︷︷ ︸
large for kÀ`!

·
( ∑

v∈{0,1}n,|v |=2`
f̂2(w +v)2

)
︸ ︷︷ ︸

small for kÀl?

Show that the last term decays for k > l?

Hidden partition
X ∈ {0,1}n

Hidden partition
X ∈ {0,1}n

Player 1
Player 2

a

b

c
d

w = {a,b,c,d }, |w | = 4
v = {a,d }, |v | = 2
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Hidden partition
X ∈ {0,1}n

Hidden partition
X ∈ {0,1}n

Player 1
Player 2

a

b

c
d

Open problems
Any improvement over factor 2 requires Ω(n) space?

(2−ε∗)-approximation in n1−δ space?

Analyze f̂1 ∗ f̂2 ∗·· ·∗ f̂T for large T?

Thank you!
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