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Graphs a common abstraction for representing real world data:

» social networks (Facebook, Twitter)
» web topologies
» interaction graphs

> DY

Modern graphs are often too large to fit into memory of a
compute node

Need graph analysis primitives that use very little space



Streaming model

» edges of G=(V,E) arrive in an arbitrary order in a stream;
denote |V|=n,|E|=m

» algorithm can only use O(n) space

» several passes over the stream
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Streaming model

» edges of G=(V,E) arrive in an arbitrary order in a stream;
denote |V|=n,|E|=m

» algorithm can only use O(n) space

» several passes over the stream (ideally one pass)
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Q(n) space is often needed:
» output size often Q(n) (e.g., matching, sparsifier, spanner)
» even if output is a number (e.g. testing connectivity)
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Q(n) space is often needed:
» output size often Q(n) (e.g., matching, sparsifier, spanner)
» even if output is a number (e.g. testing connectivity)

But not always:

Kapralov-Khanna-Sudan’14 — can approximate matching size to
poly(log n) factor using poly(log n) space in random streams.

Also, Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15,
Bury-Schwiegelsohn’15, McGregor-Vorotnikova'16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,...

Approximate solution cost for graph problems
in o(n) space?



MAX-CUT

Given a graph output value of maximum cut

» A random cut cuts half of the edges — trivial factor 2
approximation

» 1.318-approximation due to Goemans-Williamson'95 (best
possible assuming UGC)

» 1.884 via spectral techniques Trevisan'09, Kale-Seshadhri’11



Streaming algorithms:

» factor 2 approximation: count the number of edges m and
output m/2. Only O(logn) space.

» (1+¢)-approximation using O(n/e?) space (keep a sample
of the edge set)
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Streaming algorithms:

» factor 2 approximation: count the number of edges m and
output m/2. Only O(logn) space.

» (1+¢)-approximation using O(n/e?) space (keep a sample
of the edge set)

\Better than factor 2 approximation in polylog(n) space?\
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Theorem (K.-Khanna-Sudan’15)

For any constant € >0 a single pass streaming algorithm for
approximating MAX-CUT value to factor 2 — € requires Q(+/n)
space, even in the random order model.
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Theorem (K.-Khanna-Sudan’15)

For any constant € >0 a single pass streaming algorithm for
approximating MAX-CUT value to factor 2 — € requires Q(+/n)
space, even in the random order model.

Rules out poly(log n) space, suggests O(v/n) space may be
possible in some settings...
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1. Hard input distribution
2. Boolean Hidden Partition Problem (BHP)

3. Analysis of BHP
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Hard distribution

We establish the main theorem using a hard distribution based
on Erdds-Rényi graphs:

YES: random bipartite (multi)graph with expected degree = 51_2

NO: non-bipartite (multi)graph with expected degree ~ %

€
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In the YES case MAX-CUT value is m, in the NO case
MAX-CUT value is (1+ O(e))m/2.



Hard distribution

We establish the main theorem using a hard distribution based
on Erdés-Rényi graphs:

YES: random bipartite (multi)graph with expected degree = 51_2

NO: non-bipartite (multi)graph with expected degree ~ %

€

In the YES case MAX-CUT value is m, in the NO case
MAX-CUT value is (1+ O(e))m/2.

Sufficient to show Q(/n) space required to distinguish between
the two cases.
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Erdds-Rényi graphs
Sample G=(V, E) from distribution %, ,

include each edge (u,v) e (g) independently with probability p
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probability 1 - O(ad).
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probability 1 - O(ad).
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Hard input distribution

Partition the stream into k = 1/e2 phases:

YES Tz ¢ >

M\

o 000 o6 >

NO
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Hard input distribution

Partition the stream into k = 1/e2 phases:

“hE W

v &

MAX-CUT value is min YES case and < (1+¢)m/2 in NO case.
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YES
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Sy =0 sy sy Sk
NO @ @ %
SN=0 SN sy Sy

We have S} =S} =0and IS) - SNII7v =(1).
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Y _
Sy =0 s/ Sy Sy
NO @ @ %
SN=0 S sy S

We have S} =S} =0and IS) - SNII7v =(1).
So there must exist j* (informative index) such that

1871 =Sl =18Y = Sy + Q(1/)
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YESge ¢ >

A\ V\/ Al

CRILIIEX

NO

We have S} =S} =0and IS) - SNII7v =(1).
So there must exist j* (informative index) such that

Y N
||Sj*+1 _Sj*+1

v =187 = STy +Q(1/k)
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YESTg ¢ > < e 99 9o 9 o0t
/4 : /
/W N V\/ i /)
S S
o g
~ Alice | Bo
holds bipartition X € {0,1}" holds graph G

We have S} =S} =0and IS) - SNII7v =(1).
So there must exist j* (informative index) such that

15,1 = SMallzy 2 18Y = Sy +Q(1/k)
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YES Cge ¢ > o 09 00 i Qe 9 o9 >
: /
M\ I/ E Al
sY sy
NO
holds bipartitan X e (0,1} holds 13ph G

YES case: Bob’s graph consistent with Alice’s bipartition
NO case: Bob’s graph inconsistent with Alice’s bipartition
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Boolean hidden partition problem (BHP)

Alice
binary string x € {0,1}"

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf’07, Verbin-Yi'11

13/51



Boolean hidden partition problem (BHP)

Alice
binary string x € {0,1}"

Extension of Gavinsky-Kempe-Kerenidis-Raz-de Wolf'07, Verbin-Yi'11

13/51



Boolean hidden partition problem (BHP)

. message m
Alice > Bob
binary string x € {0,1}"
0 0 0
o o o
o
1 o
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Boolean hidden partition problem (BHP)

message m

Alice » Bob
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Distributional BHP (D-BHP)

Alice gets a uniformly random string x € {0, 1}"

Bob gets graph G sampled from distribution <, , with p=a/n,
ae (0,1) a small constant

o—0

YES case independently with probability 1/2, NO case
otherwise.
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Distributional BHP (D-BHP)

Alice gets a uniformly random string x € {0, 1}"

Bob gets graph G sampled from distribution <, , with p=a/n,
ae (0,1) a small constant

o—0

YES case independently with probability 1/2, NO case
otherwise.

v/n communication protocol by birthday paradox: Alice sends x; for ~ v/n

il
values of /! 45



Reduction from D-BHP to MAX-CUT

Lemma

A single-pass streaming algorithm ALG that achieves

(2 —€)-approximation to MAX-CUT with probability =99 /100 for
our input distribution yields a protocol for D-BHP with
advantage Q(1/k) over random guessing.
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B A

Sy S;

JiVAN

NO

Alice Bob
holds bipartitlion X e{0,1}" holds goraph G

Alice simulates Sj’: using bipartition X
Bob forms G’ by including edges of G with we =1
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Communication complexity of D-BHP

Theorem

Let G=(V,E) be sampled from 4, ., forae (n~1/19,1/16).
Then a one-way protocol with communication

yvn,y e (n~1/19,1) achieves at most O(y + «*/?) advantage over
random guessing for D-BHP,
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2. Boolean Hidden Partition Problem (BHP)

3. Analysis of BHP
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Show that distribution of MX in the YES case is close to uniform
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Show that distribution of MX in the YES case is close to uniform

Conditioned on Alice’s message, is distribution of MX close to
uniform?

X ~ UNIF(A) . |A| = 2M-S

conditioned on m
f(x) :=indicator of A
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Goal: show that
pm(2) =Pr[Mx =z|x € A

is close to uniform
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Goal: show that

pm(2) =Pr[Mx =z|x € A
is close to uniform
Write py(+) in Fourier basis:

pm(z)= Y Pm(s)(-1)%*
se(0,1}F

Show that most Fourier mass is in the constant term, i.e. bound

> Pm(s)?

S#P
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Gavinsky et al’07:

22n .
llom — UNIF || rvp < T Y f(MTs)?
s€{0,13M\{0}
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Gavinsky et al’07:

22n .
llow - UNIFlITvp< = 3 f(MTs)2
s€{0,1}M\{0}

Given v € {0,1}", when do we have M s = v for some
se{0,1}M?

o—0

VAR
< .

(]
vertices in v
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22n =R
llom = UNIF || Typ < Tz > f(MTs)2
s€{0,11M\{0}

Each element of weight k appears with probability = n=*/2.
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22n .
llom = UNIF || Typ < Tz > f(MTs)2
s€{0,11M\{0}

Each element of weight k appears with probability = n=*/2.

Lemma (Gavinsky et al’07; from KKL)

Iff:{0,1}""— (0,1} is the indicator function of a set Ac {0,1}",
|Al =2"-5, then for every k =1,

22 1(2)% < (0O(s)/k)?k
er{mmz':% (2)°=(0(s)/k)
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22n .
llpm = UNIFllrvps ——= . f(MTs)2
1A% 50,1703

Each element of weight k appears with probability = n=*/2.

Lemma (Gavinsky et al’07; from KKL)
Iff:{0,1}""— (0,1} is the indicator function of a set Ac {0,1}",
|Al =2"-5, then for every k =1,

22 1(2)% < (0O(s)/k)?k
er{mmz':% (2)°=(0(s)/k)

Plugging in k =1, we get = s?/n, so s <« v/n suffices
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22n .
llom = UNIF || Typ < Tz > f(MTs)2
s€{0,11M\{0}

Each element of weight k appears with probability = n=*/2.

Lemma (Gavinsky et al’07; from KKL)

Iff:{0,1}""— (0,1} is the indicator function of a set Ac {0,1}",
|Al =2"-5, then for every k =1,

2en 3002 2k

H f(2)" < (O(s)/k)
IAIZ 2¢10,117 1 z1=2k

Plugging in k =1, we get = s?/n, so s < /n suffices

Fourier mass bounds fairly tight for a coordinate subspace...

22/51



(1+Q(1))-Approximation to MAX-CUT Requires Linear
Space

23/51



Main result

Theorem (K.-Khanna-Sudan-Velingker'17)
There exists a constant e, > 0 such that a single pass

streaming algorithm for approximating MAX-CUT value to factor
1+e, requires Q(n) space.
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Q1: A poly(logn) space approximation scheme?
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this result: NO

Q3: There exist 1 <, <2 and 0 <p. <1 such that
o.-approximation can be achieved in nP+ space?

777
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Hard distribution on MAX-CUT instances

YES: random bipartite graph with =~ constant degrees

NO: non-bipartite graph with = constant degrees

26/51



Hard distribution on MAX-CUT instances

YES: random bipartite graph with =~ constant degrees

NO: non-bipartite graph with = constant degrees

1. ensure MAX-CUT value gap between NO case and YES
case

2. show Q(n) space required to distinguish between the two
cases
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1. Implicit hidden partition problem
2. Reduction from MAX-CUT

3. Communication problem analysis via Fourier techniques
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Implicit Hidden Partition Problem

0 Player 1

graph Gy, labels

1 1
° w' on edges
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Implicit Hidden Partition Problem

0 o O Player1 —— my
'7‘ graph Gy, labels
1 ° w' on edges
1 0 1
0 0
0 Player T —— mr
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YES case: 3 partition x € {0,1}" such that w! = Mix for1<t<T
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Implicit Hidden Partition Problem

0 o O Player1 —— my
'7‘ graph Gy, labels
1 ° w' on edges
1 0 1
0 0
0 Player T —— mr
1 1 graph Gr, labels
1 1 w' on edges

YES case: 3 partition x € {0,1}" such that w! = M!xfor1<t<T
NO case: no such partition exists
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Distributional communication problem
Choose a hidden partition X € UNIF({0,1}")
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Distributional communication problem
Choose a hidden partition X € UNIF({0,1}")

0 o O Player1 —— my
o
graph Gy, labels
(W =0+ ] 1 w' on edges
L
1 0 1

0
0 K Player T —— mr
1 1 graph Gr, labels
1

w' on edges
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Distributional communication problem
Choose a hidden partition X € UNIF({0,1}")

0 o 0 Player1 —— my
@ graph Gy, labels
1
1 ° w' on edges
1 0 1
0 0
(]
0 Player T —— mr
1 1 graph Gr, labels
1 1 w' on edges

YES case: labels satisfy w!=M!X for1<t<T
NO case: labels are random: w! ~ UNIF
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Distribution on players’ graphs

S

Player 1

o\. /
G a perfect matching
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Distribution on players’ graphs

Player 1

9

®
\.

Player 2

G, a perfect matching, G, a (random) near perfect matching
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Distribution on players’ graphs

Pl 1
ayer ./

/ Player 2

\

\

o @
Player 3

G, a perfect matching, G» a (random) near perfect matching, Gz an
Erd6s-Rényi graph
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1. Implicit hidden partition problem
2. Reduction from MAX-CUT

3. Communication problem analysis via Fourier techniques
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Reduction from MAX-CUT

YES: random bipartite graph with ~ constant degrees

NO: non-bipartite graph with = constant degrees

0 o O Playert —— m;
¢ graph G, labels
1 ° w! on edges
1 0 1

t-th player generates graph G; by including edges e e G; with
wl=1

YES case: labels satisfy wi=M!X for1<t<T
Ut G} is bipartite

NO case: labels are random: w! ~ UNIF
Ut G; is a sample of U; G at rate 1/2
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W

1 /
S\Y

Distributional Implicit Hidden Partition Problem (DIHP): G; a
perfect matching, G, a (random) near perfect matching, Gz an
Erdds-Rényi graph close to the giant component threshold

Theorem

IfGi(1/2),i=1,2,3 is G; subsampled at rate 1/2, then
G1(1/2)uGo(1/2)u G3(1/2) is Q(1)-far from bipartite with high
probability.
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1. Implicit hidden partition problem
2. Reduction from MAX-CUT

3. Communication problem analysis via Fourier techniques
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1. Implicit hidden partition problem

2. Reduction from MAX-CUT

3. | Communication problem analysis via Fourier techniques
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1 0 1
0 0
ol

VAR

1 1

Player O
bipartition X €{0,1}" > Mo

Player1 —— my
graph Gy, labels
w'=M"'X on edges

Player3 —— m3
graph Gs, labels
w3 = M3 X on edges
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player 0 dominates communication!
K.-Khanna-Sudan’'15

0
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\1
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1 0 1

Player O
bipartition X €{0,1}" > Mo

Player1 —— my
graph Gy, labels
w'=M"'X on edges

Player3 —— m3
graph Gs, labels
w3 = M3 X on edges
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Our approach: Implicit Hidden Partition Problem

player 0 dominates communication!
K.-Khanna-Sudan’'15

0
o
\ 1
@

Player O
bipartition X € {0,1}" >

Player1 ——
graph Gy, labels
w' =M'X on edges

Player3 ——
graph Gs, labels
w3 = M3 X on edges

mo

m

ma
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Our approach: Implicit Hidden Partition Problem

information about X revealed Player 0
implicitly! biparisi 0,1} > mo
0 0
¢ Player1 —— my
\ 1 ° graph Gi, labels
1 0 1 w' = M' X on edges
0 0
——
/ k Player3 —— m3
] : graph Gj, labels

w3 = M®X on edges .



Our approach: Implicit Hidden Partition Problem

information about X revealed

implicitly!
0 0
o
Player 1 —— my
\ 1 ° graph G, labels
1 0 1 w' = M' X on edges
0 0
0
/ k Player3 —— m3
: : graph Gj, labels

w3 = M®X on edges .



Communication complexity of D-IHP

.<
K v
Theorem

Any one-way protocol with communication o(n) achieves at
most o(1) advantage over random guessing for D-IHP.

Fourier analysis (convolution theorem) and graph theoretic
considerations.
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Conditioned on messages of player 1 and player 2, is
distribution of M3 X close to uniform?

45/51



Conditioned on messages of player 1 and player 2, is
distribution of Ms X close to uniform?

X ~UNIF(A1nA2)
conditioned on (my, mo)

|A1l =275, |Ax| = 275

fi(x) :=indicator of A
fo(x) :=indicator of Ay

The indicator of AinAs is fy - .
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Conditioned on messages of player 1 and player 2, is
distribution of M3 X close to uniform?

X ~UNIF(A1nAz)
conditioned on (mq, mo)

|A1l = 2775, |Ax| = 275

fi(x) :=indicator of A
f(x) :=indicator of Ay

The indicator of AjnAs is fy - . Will prove that for k =1

22n

———— Y R -h(v)2=(0(s)/k)*
|A1 ﬂA2|2 ve{0,1}"

lvi=2k
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X ~UNIF(A1nAp)
conditioned on (my, my)

|A1] = 2M75,|Ag| = 2775

fi(x) :=indicator of A
f(x) :=indicator of Ay

Players only access X via M; X, so 7 is supported on edges
and has strong spectral properties:

225 Y F(v)?=(O(s)/k)"
|v|=2k
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X ~UNIF(A1nA)
conditioned on (my, my)

|A1] = 2M75,|Ag| = 2775

fi (x) :=indicator of A4
f(x) :=indicator of Ay

Players only access X via M; X, so 7 is supported on edges
and has strong spectral properties:

225 Y F(v)?=(O(s)/k)"
lv|=2k

Intuition: with s space can only learn about =~ s pairs
Prior work, with player 0: with s space can only learn about
~ §2 pairs
47/51



X ~UNIF(A1nA2)
conditioned on (my, my)

|A1] =275, |Ax| = 275

fi (x) :=indicator of A4
f>(x) :=indicator of Ay

Players only access X via M; X, so 7, is supported on edges
and has strong spectral properties:

225 3" F(v)?=(O(s)/k)¥
lv|=2k

The indicator of A1 nAs is f; - >, so by the convolution theorem

frb=hh
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Hidden partition ® .\.

Xe{0,1}" ¢
a®
\™, [
b AR o
po
C
d

Intuition: 71 (a,b,c, d)2 ~ how much information player 1
transmits about parity Xz + Xp + Xc + Xy

?g(b, ¢)? = how much information player 2 transmits
about parity Xp+ X¢

fi-h(a,d)?=Ff(ab,c,d)?-h(b,c)? ~ how much
information players 1 and 2 transmit about parity X5+ Xy
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For any £=0,

Y ARWP=Y Y hwR| Y B(wivy?

ve{0,1}", k=0 we{0,1}",lw|=2k ve(0,1}",|v|=2¢
lvi=2¢ s ~- ‘N ~- g
large for k>¢! small for k>1?
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For any £=0,

Y ARWP=Y Y hwR| Y B(wivy?

ve{0,1}", k=20 we{0,1}",|w|=2k ve{0,1}7,|lv|=2¢
|v|=2¢ s ~ N ~ -
large for k>¢! small for k>1?

Show that the last term decays for k > [?
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For any £=0,

Y fh(v?=Y % a(w)z. Z B(w+v)?
ve{0,1}", k=0 we{0,1}",|w|=2k 117 vi=2¢
lv|=2¢ ~

\

large for k>¢! small for k>I?

Show that the last term decays for k > [?

@
Hidden partition e .\

n
Xe€{0,1} @ ® w={abcadlw =

\-. !

Q’ .
b \5’
A
: [
A/
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Hidden partition
Xe{0, 13" ./ \.
\
a .,’ /.

51/51



Hidden partition ® .\

Xei{0,1)" ¢ ®
a®@ ®
\™, [
b &, ®
.
C
d

Open problems
Any improvement over factor 2 requires Q(n) space?
(2 —&.)-approximation in n'~® space?

Analyze Ty « fp % ---  f7 for large T?
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Hidden partition ® .\

Xei{0,1)" ¢ ®
a®@ ®
\™, [
b &, ®
.
C
d

Open problems
Any improvement over factor 2 requires Q(n) space?
(2 —&.)-approximation in n'~® space?

Analyze Ty « fp % ---  f7 for large T?

Thank you!

51/51



	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 
	anm10: 
	anm11: 
	anm12: 
	anm13: 
	anm14: 


